Pub Date : 2024-08-11DOI: 10.1088/2053-1591/ad695b
Qing Hui Wang and Xue Song Li
Traditional methods for surface pretreatment of carbon fibers often rely on the use of precious metals like palladium and silver as activators to enhance surface reactivity through redox reactions, achieving metallization. However, such approaches are costly and economically inefficient. This study employed a cost-effective copper (Cu)-nickel (Ni) colloid mixture as an activator and investigated its effectiveness in enhancing surface reactivity. Meanwhile, it examined the influence of various parameters, such as pH value, reducing agent (formaldehyde (HCHO) concentration, temperature, and deposition duration, on the morphology and structure of copper-electrodeposited carbon fibers. To characterize the treated samples, scanning electron microscope (SEM) and x-ray photoelectron spectrometer (XPS) were adopted, shedding light on the mechanism underlying copper electrodeposition on the carbon fiber surface. The results indicate that Cu-Ni colloid mixture activation exhibits significant improvements. The optimal conditions for uniform and smooth copper electrodeposition on the carbon fiber surface identified as follows: a pH value of 13.5, a HCHO concentration of 15 ml L−1, a temperature of 50 °C, and a deposition duration of 5 min. Consequently, these results represent a cost-effective alternative to traditional precious metal-based activation methods, with promising applications in surface pretreatment for carbon fibers.
碳纤维表面预处理的传统方法通常依赖于使用钯和银等贵金属作为活化剂,通过氧化还原反应提高表面活性,从而实现金属化。然而,这种方法成本高昂,经济效益低。本研究采用了一种具有成本效益的铜(Cu)-镍(Ni)胶体混合物作为活化剂,并研究了其在提高表面活性方面的有效性。同时,研究了各种参数,如 pH 值、还原剂(甲醛 (HCHO) 浓度、温度和沉积持续时间)对铜电沉积碳纤维形貌和结构的影响。为了表征处理过的样品,采用了扫描电子显微镜(SEM)和 X 射线光电子能谱仪(XPS),以揭示铜在碳纤维表面电沉积的机理。结果表明,Cu-Ni 胶体混合物活化效果显著。在碳纤维表面进行均匀、平滑的铜电沉积的最佳条件是:pH 值为 13.5,HCHO 浓度为 15 ml L-1,温度为 50 °C,沉积持续时间为 5 分钟。因此,这些结果代表了一种替代传统贵金属活化方法的经济有效的方法,在碳纤维表面预处理中具有广阔的应用前景。
{"title":"Electroless plating of copper on carbon fiber surfaces and corresponding mechanism","authors":"Qing Hui Wang and Xue Song Li","doi":"10.1088/2053-1591/ad695b","DOIUrl":"https://doi.org/10.1088/2053-1591/ad695b","url":null,"abstract":"Traditional methods for surface pretreatment of carbon fibers often rely on the use of precious metals like palladium and silver as activators to enhance surface reactivity through redox reactions, achieving metallization. However, such approaches are costly and economically inefficient. This study employed a cost-effective copper (Cu)-nickel (Ni) colloid mixture as an activator and investigated its effectiveness in enhancing surface reactivity. Meanwhile, it examined the influence of various parameters, such as pH value, reducing agent (formaldehyde (HCHO) concentration, temperature, and deposition duration, on the morphology and structure of copper-electrodeposited carbon fibers. To characterize the treated samples, scanning electron microscope (SEM) and x-ray photoelectron spectrometer (XPS) were adopted, shedding light on the mechanism underlying copper electrodeposition on the carbon fiber surface. The results indicate that Cu-Ni colloid mixture activation exhibits significant improvements. The optimal conditions for uniform and smooth copper electrodeposition on the carbon fiber surface identified as follows: a pH value of 13.5, a HCHO concentration of 15 ml L−1, a temperature of 50 °C, and a deposition duration of 5 min. Consequently, these results represent a cost-effective alternative to traditional precious metal-based activation methods, with promising applications in surface pretreatment for carbon fibers.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"56 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-11DOI: 10.1088/2053-1591/ad6afa
Nader Amini, Kazhal Naderi, Abbas Ahmadi, Kambiz Hassanzadeh, Mohammad-Nazir Menbari, Mohammad Abdi, Ebrahim Ghaderi and Mohammad-Rezgar Zarehbin
In this study, the electrochemical properties of aqueous chlorpromazine hydrochloride (CPZ) in the presence of Fe (II) were investigated by cyclic voltammetry at a boron-doped diamond (BDD) electrode. The results showed that an EC′ reaction mechanism occurs, where electrochemically generated CPZ species (cation radical) are reduced by Fe (II) back to the parent CPZ, and Fe (II) is oxidized to Fe (III). The detection limit, sensitivity, and dynamic concentration ranges were 2.8 μM, 0.0188 μA μM−1 and 10–166 μM. Based on the electrochemical results, the interaction of chlorpromazine (CPZ), a widely used antipsychotic tranquillizer, with the allosteric protein, hemoglobin, has been studied. First, four groups of six female rats weighing 400–450 g were selected. The rats were injected with different concentrations of chlorpromazine over a 3-week period, and the concentrations of hemoglobin, methemoglobin, red blood cells (RBCs), and hematocrit (HCT) were analyzed in the blood of each rat. After injection of different concentrations of the drug, the amount of hemoglobin) as a source of Fe (II)) decreased, but the amount of methemoglobin (as a source of Fe (III) increased. In addition, UV spectroscopic measurements in the range of 200–700 nm indicate the conversion of hemoglobin to methemoglobin in chlorpromazine-treated rats compared to the normal sample, and there was a direct relationship between the increasing methemoglobin concentration of chlorpromazine. Furthermore, the amount of RBC and HCT was measured. The results showed that RBC (21.05%–56.52%) and HCT (10.04%–53.19%) decreased. Finally, this study demonstrates a new mechanism for the effects of CPZ on hemoglobin iron in rat blood based on electrochemical results.
本研究在掺硼金刚石(BDD)电极上通过循环伏安法研究了盐酸氯丙嗪(CPZ)水溶液在铁(II)存在下的电化学性质。结果表明发生了 EC′ 反应机制,即电化学生成的 CPZ 物种(阳离子自由基)被 Fe (II) 还原成 CPZ 母体,而 Fe (II) 被氧化成 Fe (III)。检测限、灵敏度和动态浓度范围分别为 2.8 μM、0.0188 μA μM-1 和 10-166 μM。根据电化学结果,研究了氯丙嗪(CPZ)这种广泛使用的抗精神病镇定剂与异构蛋白血红蛋白的相互作用。首先,研究人员选取了四组体重为 400-450 克的六只雌性大鼠。给大鼠注射不同浓度的氯丙嗪,为期 3 周,分析每只大鼠血液中血红蛋白、高铁血红蛋白、红细胞(RBC)和血细胞比容(HCT)的浓度。注射不同浓度的药物后,作为铁(II)来源的血红蛋白量减少,但作为铁(III)来源的高铁血红蛋白量增加。此外,200-700 纳米范围内的紫外光谱测量结果表明,与正常样本相比,氯丙嗪处理的大鼠血红蛋白转化为高铁血红蛋白,而高铁血红蛋白浓度的增加与氯丙嗪有直接关系。此外,还测量了 RBC 和 HCT 的数量。结果显示,RBC(21.05%-56.52%)和 HCT(10.04%-53.19%)均有所下降。最后,本研究根据电化学结果证明了 CPZ 对大鼠血液中血红蛋白铁影响的新机制。
{"title":"Electrochemical oxidation of Fe (II) using chlorpromazine drug at boron-doped diamond electrode: application to in vivo mechanism study interaction of chlorpromazine on hemoglobin iron and evaluation of some biomolecules","authors":"Nader Amini, Kazhal Naderi, Abbas Ahmadi, Kambiz Hassanzadeh, Mohammad-Nazir Menbari, Mohammad Abdi, Ebrahim Ghaderi and Mohammad-Rezgar Zarehbin","doi":"10.1088/2053-1591/ad6afa","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6afa","url":null,"abstract":"In this study, the electrochemical properties of aqueous chlorpromazine hydrochloride (CPZ) in the presence of Fe (II) were investigated by cyclic voltammetry at a boron-doped diamond (BDD) electrode. The results showed that an EC′ reaction mechanism occurs, where electrochemically generated CPZ species (cation radical) are reduced by Fe (II) back to the parent CPZ, and Fe (II) is oxidized to Fe (III). The detection limit, sensitivity, and dynamic concentration ranges were 2.8 μM, 0.0188 μA μM−1 and 10–166 μM. Based on the electrochemical results, the interaction of chlorpromazine (CPZ), a widely used antipsychotic tranquillizer, with the allosteric protein, hemoglobin, has been studied. First, four groups of six female rats weighing 400–450 g were selected. The rats were injected with different concentrations of chlorpromazine over a 3-week period, and the concentrations of hemoglobin, methemoglobin, red blood cells (RBCs), and hematocrit (HCT) were analyzed in the blood of each rat. After injection of different concentrations of the drug, the amount of hemoglobin) as a source of Fe (II)) decreased, but the amount of methemoglobin (as a source of Fe (III) increased. In addition, UV spectroscopic measurements in the range of 200–700 nm indicate the conversion of hemoglobin to methemoglobin in chlorpromazine-treated rats compared to the normal sample, and there was a direct relationship between the increasing methemoglobin concentration of chlorpromazine. Furthermore, the amount of RBC and HCT was measured. The results showed that RBC (21.05%–56.52%) and HCT (10.04%–53.19%) decreased. Finally, this study demonstrates a new mechanism for the effects of CPZ on hemoglobin iron in rat blood based on electrochemical results.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1088/2053-1591/ad68cd
Dun Wu, Nan Wang, Jiaming Zhao, Jiaqi Liu, Rudong Zhou, Junfeng Cheng and Chunlin Liu
Hydrogen production via electrocatalytic water splitting is generally considered as an efficient and eco-friendly strategy for energy storage. The exploration of novel electrocatalytic cathode material towards hydrogen evolution reaction (HER) has never ended. Laser induced graphene (LIG), as a cheap and porous material with large surface area, not only can be used as a carrier of active substances for collaborative catalysis towards hydrogen evolution, but also can be directly used as catalytic electrode via heteroatoms doping. We synthesized Fe3O4 embedded LIG via laser ablation of polyimide (PI)/Fe(acac)3 film and tested its HER electrocatalytic performance. An overpotential of 269 mV was obtained under the current density of 10 mA cm−2 with a slight current decay in the 10 h chronoamperometric examination in 1 M KOH electrolyte. This work provides an insight into methods of optimizing electrochemical properties and improving catalytic activity of LIG based materials. The performance of our Fe3O4 embedded LIG demonstrates the potential of LIG based materials as next generation HER electrocatalyst.
人们普遍认为,通过电催化分水制氢是一种高效、环保的储能策略。针对氢进化反应(HER)的新型电催化阴极材料的探索从未停止过。激光诱导石墨烯(LIG)作为一种廉价且比表面积大的多孔材料,不仅可以作为活性物质的载体协同催化氢气进化,还可以通过掺杂杂原子直接用作催化电极。我们通过激光烧蚀聚酰亚胺(PI)/Fe(acac)3 薄膜合成了嵌入 Fe3O4 的 LIG,并测试了其 HER 电催化性能。在 1 M KOH 电解液中,电流密度为 10 mA cm-2 时,过电位为 269 mV,10 h 的计时电流测试中电流略有衰减。这项研究为优化基于 LIG 的材料的电化学特性和提高其催化活性的方法提供了启示。我们的嵌入式 Fe3O4 LIG 的性能证明了基于 LIG 的材料作为下一代 HER 电催化剂的潜力。
{"title":"Synthesis of Fe3O4 embedded LIG via laser ablation of PI/Fe(acac)3 film for enhanced electrocatalytic hydrogen evolution","authors":"Dun Wu, Nan Wang, Jiaming Zhao, Jiaqi Liu, Rudong Zhou, Junfeng Cheng and Chunlin Liu","doi":"10.1088/2053-1591/ad68cd","DOIUrl":"https://doi.org/10.1088/2053-1591/ad68cd","url":null,"abstract":"Hydrogen production via electrocatalytic water splitting is generally considered as an efficient and eco-friendly strategy for energy storage. The exploration of novel electrocatalytic cathode material towards hydrogen evolution reaction (HER) has never ended. Laser induced graphene (LIG), as a cheap and porous material with large surface area, not only can be used as a carrier of active substances for collaborative catalysis towards hydrogen evolution, but also can be directly used as catalytic electrode via heteroatoms doping. We synthesized Fe3O4 embedded LIG via laser ablation of polyimide (PI)/Fe(acac)3 film and tested its HER electrocatalytic performance. An overpotential of 269 mV was obtained under the current density of 10 mA cm−2 with a slight current decay in the 10 h chronoamperometric examination in 1 M KOH electrolyte. This work provides an insight into methods of optimizing electrochemical properties and improving catalytic activity of LIG based materials. The performance of our Fe3O4 embedded LIG demonstrates the potential of LIG based materials as next generation HER electrocatalyst.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"48 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1088/2053-1591/ad6957
Maithili K Rao, Selvaraj Paramasivam, M Selvakumar, M S Santosh, M G Mahesha and S Senthilkumar
This study delves into the intricate dynamics of ligand engineering for the synthesis of Methyl Ammonium Lead Bromide (MAPbBr3) nanocrystals (NCs), which exhibit immense potential in optoelectronic and photovoltaic applications. Our focus centres on the role of the quaternary ammonium molecule CTAB as a ligand in stabilizing MAPbBr3 NCs. This also addresses the challenges related to the stability and surface defects of NCs that hinder their commercial viability. Employing a modified ligand-assisted reprecipitation technique (LARP) with a dual solvent system, we optimized the CTAB concentration to 0.05 mmol, resulting in MAPbBr3 NCs with an impressive 88% quantum yield. XPS and FTIR analyses confirm the presence and binding of CTAB on the NC surface. The MAPbBr3-CTAB NCs exhibit higher exciton–phonon binding energy, enhancing their optical properties. Despite an unfavourable geometric fit, CTAB is effective in surface defect passivation due to its binding, solvation, and desorption energy during the dynamic binding process. 2D-DOSY NMR reveals approximately 66% CTAB bound to the NC surface. A comparative study involving MAPbBr3-OA, OLA, and MAPbBr3-CTAB deposited on LEDs demonstrates the superior performance of the latter, achieving a luminous efficiency of 42.18 lm W−1 at 1.2 ml deposition. These findings highlight the efficacy of CTAB in achieving high-purity green luminescence, aligning with BT.2020 display colour standards and paving the way for advanced optoelectronic applications. The successful synthesis and improved performance of MAPbBr3-CTAB NCs underscore their potential as a promising material for future optoelectronic and photovoltaic technologies.
{"title":"In-situ synthesis of quaternary alkylammonium ligand capped organic-inorganic hybrid halide perovskite for high pure green luminescence in display application","authors":"Maithili K Rao, Selvaraj Paramasivam, M Selvakumar, M S Santosh, M G Mahesha and S Senthilkumar","doi":"10.1088/2053-1591/ad6957","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6957","url":null,"abstract":"This study delves into the intricate dynamics of ligand engineering for the synthesis of Methyl Ammonium Lead Bromide (MAPbBr3) nanocrystals (NCs), which exhibit immense potential in optoelectronic and photovoltaic applications. Our focus centres on the role of the quaternary ammonium molecule CTAB as a ligand in stabilizing MAPbBr3 NCs. This also addresses the challenges related to the stability and surface defects of NCs that hinder their commercial viability. Employing a modified ligand-assisted reprecipitation technique (LARP) with a dual solvent system, we optimized the CTAB concentration to 0.05 mmol, resulting in MAPbBr3 NCs with an impressive 88% quantum yield. XPS and FTIR analyses confirm the presence and binding of CTAB on the NC surface. The MAPbBr3-CTAB NCs exhibit higher exciton–phonon binding energy, enhancing their optical properties. Despite an unfavourable geometric fit, CTAB is effective in surface defect passivation due to its binding, solvation, and desorption energy during the dynamic binding process. 2D-DOSY NMR reveals approximately 66% CTAB bound to the NC surface. A comparative study involving MAPbBr3-OA, OLA, and MAPbBr3-CTAB deposited on LEDs demonstrates the superior performance of the latter, achieving a luminous efficiency of 42.18 lm W−1 at 1.2 ml deposition. These findings highlight the efficacy of CTAB in achieving high-purity green luminescence, aligning with BT.2020 display colour standards and paving the way for advanced optoelectronic applications. The successful synthesis and improved performance of MAPbBr3-CTAB NCs underscore their potential as a promising material for future optoelectronic and photovoltaic technologies.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"27 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1088/2053-1591/ad6820
Wei Zhang, Xi Qiu, Mingyang Zhou and Jijun Yang
The high-temperature lead-bismuth eutectic (LBE) corrosion resistance and ring compression performance of the Fe15Cr11Al2Si, Fe15Cr11Al0.5Y, and Fe15Cr11Al2Si0.5Y coatings were investigated. Even if the corrosion test temperature reaches 800 °C, all these coatings can effectively protect the steel cladding tube. After the corrosion test temperature exceeded 660 °C, an obvious Al-rich oxide layer was formed on the surface of the coating, and Al element enrichment occurred at the interface between the coating and the substrate. After the corrosion test at 800 °C, holes appeared in the thick interface layer of the Fe15Cr11Al2Si0.5Y coating. The Fe15Cr11Al2Si coating cracked after the ring compression test with a deformation rate of 3%, and the coating peeled off after the deformation rate reached 5%. When the deformation rate reached 5%, there was still no cracking in the Fe15Cr11Al0.5Y coating. When the deformation rate reached 30%, the coating cracked, but the cracked coating was still tightly bonded with the substrate. The Fe15Cr11Al2Si0.5Y coating has the worst compression performance, even if the deformation rate is 1%, the coating still peels off obviously. The underlying mechanism for the evolution of corrosion resistance and compression performance was discussed.
{"title":"Investigation and evaluation of high-temperature lead-bismuth eutectic (LBE) corrosion resistance and compression performance of the FeCrAl-based coatings","authors":"Wei Zhang, Xi Qiu, Mingyang Zhou and Jijun Yang","doi":"10.1088/2053-1591/ad6820","DOIUrl":"https://doi.org/10.1088/2053-1591/ad6820","url":null,"abstract":"The high-temperature lead-bismuth eutectic (LBE) corrosion resistance and ring compression performance of the Fe15Cr11Al2Si, Fe15Cr11Al0.5Y, and Fe15Cr11Al2Si0.5Y coatings were investigated. Even if the corrosion test temperature reaches 800 °C, all these coatings can effectively protect the steel cladding tube. After the corrosion test temperature exceeded 660 °C, an obvious Al-rich oxide layer was formed on the surface of the coating, and Al element enrichment occurred at the interface between the coating and the substrate. After the corrosion test at 800 °C, holes appeared in the thick interface layer of the Fe15Cr11Al2Si0.5Y coating. The Fe15Cr11Al2Si coating cracked after the ring compression test with a deformation rate of 3%, and the coating peeled off after the deformation rate reached 5%. When the deformation rate reached 5%, there was still no cracking in the Fe15Cr11Al0.5Y coating. When the deformation rate reached 30%, the coating cracked, but the cracked coating was still tightly bonded with the substrate. The Fe15Cr11Al2Si0.5Y coating has the worst compression performance, even if the deformation rate is 1%, the coating still peels off obviously. The underlying mechanism for the evolution of corrosion resistance and compression performance was discussed.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"14 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2053-1591/ad695a
Sheng Lei, Ling Zhang, Kai Wang, Chunbo Liu, Xianyi Li, Zhongqiu Tang and Lingxiang Jiang
Molecular dynamics and mass transportation in porous structures provide a basis for us to understand catalysis, energy storage and generation, and biological processes in porous confinements. While conventional methods extract macroscopic information in an ensemble-averaged manner, we intend to follow the journey of individual particles and molecules in porous structures relevant to cigarette filters by tracking the single-object dynamics in real space and real time. Nanoparticles of various sizes are embedded in fibrous frameworks of agarose where small particles (50 nm) can explore pores and their connections, locally mapping out the porous structure, middle-sized particles (100 nm) are trapped in single pores to fluctuate within, and large particles (500 nm) are fully immobilized by surrounding fibers. This model system is relevant to the retention and filtration of tar particles or other kinds of particulate matters by fibrous cellulose frequently used in cigarette filters. A molecular tracer is loaded to zeolite-based porous structures, where the majority are fixated in space by adsorption or micropore trapping, exhibiting localized trajectories within a 10-nm radius, and the minority are mobile to scout macropores. This molecular system may elucidate on how aromatic molecules like PAHs are adsorbed and transported in a matrix of mixed micro-, meso-, and macropores.
{"title":"Revealing the journey of molecules and particles in heterogeneous, porous materials for cigarette filters","authors":"Sheng Lei, Ling Zhang, Kai Wang, Chunbo Liu, Xianyi Li, Zhongqiu Tang and Lingxiang Jiang","doi":"10.1088/2053-1591/ad695a","DOIUrl":"https://doi.org/10.1088/2053-1591/ad695a","url":null,"abstract":"Molecular dynamics and mass transportation in porous structures provide a basis for us to understand catalysis, energy storage and generation, and biological processes in porous confinements. While conventional methods extract macroscopic information in an ensemble-averaged manner, we intend to follow the journey of individual particles and molecules in porous structures relevant to cigarette filters by tracking the single-object dynamics in real space and real time. Nanoparticles of various sizes are embedded in fibrous frameworks of agarose where small particles (50 nm) can explore pores and their connections, locally mapping out the porous structure, middle-sized particles (100 nm) are trapped in single pores to fluctuate within, and large particles (500 nm) are fully immobilized by surrounding fibers. This model system is relevant to the retention and filtration of tar particles or other kinds of particulate matters by fibrous cellulose frequently used in cigarette filters. A molecular tracer is loaded to zeolite-based porous structures, where the majority are fixated in space by adsorption or micropore trapping, exhibiting localized trajectories within a 10-nm radius, and the minority are mobile to scout macropores. This molecular system may elucidate on how aromatic molecules like PAHs are adsorbed and transported in a matrix of mixed micro-, meso-, and macropores.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"3 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2053-1591/ad68cf
Asad Ullah, Ubaid Ur Rehman, Riaz Ahmad and Fazal Rahman
Nanotechnology focuses on materials at the molecular and atomic levels, with sizes ranging from 0.1 to 100 nm. This study explores the synthesis and characterization of copper oxide (CuO), nickel oxide (NiO), and hybrid nanoparticles using an aqueous seed extract from Myristica fragrans. The nanomaterials underwent comprehensive characterization employing various techniques: UV analysis, FTIR spectroscopy, XRD, TGA, EDX and SEM. We explored their biological applications through antioxidant and antibacterial assays. UV analysis determined the optical absorption spectra values for CuO, NiO and hybrid nanoparticles. FTIR analysis confirmed functional groups in the plant extract responsible for capping and reducing the reaction medium. XRD and SEM analysis demonstrated the crystalline nature and morphology of the nanoparticles. CuO nanoparticles exhibited polyhedral morphology, while NiO nanoparticles were primarily spherical with some agglomeration. The CuO-NiO hybrid nanoparticles showed a wurtzite morphology with significant agglomeration and larger mean size than CuO and NiO nanoparticles. EDX indicated higher quantities of Cu and Ni. XRD spectra revealed the average particle sizes of nanoparticles. TGA indicated the thermal stability of the nanoparticles, with hybrid nanoparticles being the most stable. The nanoparticles exhibited excellent antioxidant activity, with hybrid nanoparticles showing the highest values in measuring total antioxidant capacity, total reducing power (TRP), ABTS assay, and DPPH-free radical scavenging assay at 400 μg/mg. Antibacterial assays against multidrug-resistant bacterial strains demonstrated that antibiotics-coated hybrid nanoparticles exhibited potent antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In conclusion, CuO, NiO, and CuO-NiO hybrid nanoparticles mediated by Myristica fragrans showcase promising characteristics for various applications, especially in biomedical and clinical settings. The nanoparticles eco-friendly synthesis and biocompatible nature make them attractive candidates for future research and development.
{"title":"Bioinspired green synthesis of copper, nickel, and hybrid nanoparticles using Myristica Fragrans seeds: Biomedical applications and beyond","authors":"Asad Ullah, Ubaid Ur Rehman, Riaz Ahmad and Fazal Rahman","doi":"10.1088/2053-1591/ad68cf","DOIUrl":"https://doi.org/10.1088/2053-1591/ad68cf","url":null,"abstract":"Nanotechnology focuses on materials at the molecular and atomic levels, with sizes ranging from 0.1 to 100 nm. This study explores the synthesis and characterization of copper oxide (CuO), nickel oxide (NiO), and hybrid nanoparticles using an aqueous seed extract from Myristica fragrans. The nanomaterials underwent comprehensive characterization employing various techniques: UV analysis, FTIR spectroscopy, XRD, TGA, EDX and SEM. We explored their biological applications through antioxidant and antibacterial assays. UV analysis determined the optical absorption spectra values for CuO, NiO and hybrid nanoparticles. FTIR analysis confirmed functional groups in the plant extract responsible for capping and reducing the reaction medium. XRD and SEM analysis demonstrated the crystalline nature and morphology of the nanoparticles. CuO nanoparticles exhibited polyhedral morphology, while NiO nanoparticles were primarily spherical with some agglomeration. The CuO-NiO hybrid nanoparticles showed a wurtzite morphology with significant agglomeration and larger mean size than CuO and NiO nanoparticles. EDX indicated higher quantities of Cu and Ni. XRD spectra revealed the average particle sizes of nanoparticles. TGA indicated the thermal stability of the nanoparticles, with hybrid nanoparticles being the most stable. The nanoparticles exhibited excellent antioxidant activity, with hybrid nanoparticles showing the highest values in measuring total antioxidant capacity, total reducing power (TRP), ABTS assay, and DPPH-free radical scavenging assay at 400 μg/mg. Antibacterial assays against multidrug-resistant bacterial strains demonstrated that antibiotics-coated hybrid nanoparticles exhibited potent antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In conclusion, CuO, NiO, and CuO-NiO hybrid nanoparticles mediated by Myristica fragrans showcase promising characteristics for various applications, especially in biomedical and clinical settings. The nanoparticles eco-friendly synthesis and biocompatible nature make them attractive candidates for future research and development.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"16 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2053-1591/ad68ce
Zhen Wang, Wei He, Xin Li, Tao Lu, Shengguo Chen, Dingyu Li and Hengwei Zheng
This paper established a fatigue fracture phase-field model (PFM) to evaluate fatigue damage evolution and crack propagation in oil and gas pipeline. To address inaccuracies in damage evolution, a threshold of the elastic-plastic fracture energy was introduced in the proposed PFM. Using the finite element method, the PFM was applied to simulate fatigue crack growth. Results from compact tension (CT) specimen of the X56 gas pipeline steel demonstrated that the da/dN-ΔK curve from the current PFM, accounting for plasticity, aligned more closely with experimental results than the elastic PFM. The fatigue crack propagation and fatigue life of the X80 gas pipeline with different defects of the same depth were also analyzed. The results indicated that triangular defects significantly impacted the fatigue life of the X80 gas pipeline. Finally, a model of X60 pipeline with various initial defects was developed to validate the effectiveness of the proposed PFM for full-scale pipeline fatigue fracture by comparing it to experimental a-N curves. The simulation results indicated that the distance and angle between two initial defects in the pipeline significantly influenced the propagation of fatigue cracks and the pipeline’s service life. These findings of this paper can serve as a reference for estimating the service life of gas and oil pipelines.
{"title":"Phase field modelling of elastic-plastic fatigue fracture of oil and gas pipeline","authors":"Zhen Wang, Wei He, Xin Li, Tao Lu, Shengguo Chen, Dingyu Li and Hengwei Zheng","doi":"10.1088/2053-1591/ad68ce","DOIUrl":"https://doi.org/10.1088/2053-1591/ad68ce","url":null,"abstract":"This paper established a fatigue fracture phase-field model (PFM) to evaluate fatigue damage evolution and crack propagation in oil and gas pipeline. To address inaccuracies in damage evolution, a threshold of the elastic-plastic fracture energy was introduced in the proposed PFM. Using the finite element method, the PFM was applied to simulate fatigue crack growth. Results from compact tension (CT) specimen of the X56 gas pipeline steel demonstrated that the da/dN-ΔK curve from the current PFM, accounting for plasticity, aligned more closely with experimental results than the elastic PFM. The fatigue crack propagation and fatigue life of the X80 gas pipeline with different defects of the same depth were also analyzed. The results indicated that triangular defects significantly impacted the fatigue life of the X80 gas pipeline. Finally, a model of X60 pipeline with various initial defects was developed to validate the effectiveness of the proposed PFM for full-scale pipeline fatigue fracture by comparing it to experimental a-N curves. The simulation results indicated that the distance and angle between two initial defects in the pipeline significantly influenced the propagation of fatigue cracks and the pipeline’s service life. These findings of this paper can serve as a reference for estimating the service life of gas and oil pipelines.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"17 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2053-1591/ad68d0
Waham Ashaier Laftah and Wan Aizan Wan Abdul Rahman
The purpose of this study is to evaluate the effect of volume fraction of continuous carbon fiber and sample length on buckling characteristics of polysilicon. A statistical design of 12 samples were formulated with constant cross-section area of 2500 mm2 using Design of Experiment software (DOE). The samples were sketched using ABAQUS 2019 software, and the total buckling force each sample was estimated. The estimated buckling forces were statically evaluated as a response using DOE. The estimated forces of 3.48776e07, 4.00652e07 and 5.78142e07 newton for the simulated samples of 100 mm in length and 0,15, and 25% volume fraction respectively, is an indication of positive effect of fiber volume fraction on the necessary force for buckling. In addition, similar tendency was found in other samples (the higher fiber volume fractions the higher buckling force). However, the estimated buckling force for each sample was negatively affected with length of the sample. The result indicated a value of 4.00652E+07, 5.00447E+06 and 1.80390E+06 newton at a constant fiber volume fraction and different length of 100, 300 and 500 mm respectively. The statistical analysis of the simulated buckling force showed a signification design, and the date of one factor effect is highly supported by the simulated buckling forces. The equation of a significant design can be used to estimate the buckling force at any fiber volume fraction and sample length.
{"title":"Computational modeling and statistical analysis of buckling characteristics of polysilicon reinforced fiber","authors":"Waham Ashaier Laftah and Wan Aizan Wan Abdul Rahman","doi":"10.1088/2053-1591/ad68d0","DOIUrl":"https://doi.org/10.1088/2053-1591/ad68d0","url":null,"abstract":"The purpose of this study is to evaluate the effect of volume fraction of continuous carbon fiber and sample length on buckling characteristics of polysilicon. A statistical design of 12 samples were formulated with constant cross-section area of 2500 mm2 using Design of Experiment software (DOE). The samples were sketched using ABAQUS 2019 software, and the total buckling force each sample was estimated. The estimated buckling forces were statically evaluated as a response using DOE. The estimated forces of 3.48776e07, 4.00652e07 and 5.78142e07 newton for the simulated samples of 100 mm in length and 0,15, and 25% volume fraction respectively, is an indication of positive effect of fiber volume fraction on the necessary force for buckling. In addition, similar tendency was found in other samples (the higher fiber volume fractions the higher buckling force). However, the estimated buckling force for each sample was negatively affected with length of the sample. The result indicated a value of 4.00652E+07, 5.00447E+06 and 1.80390E+06 newton at a constant fiber volume fraction and different length of 100, 300 and 500 mm respectively. The statistical analysis of the simulated buckling force showed a signification design, and the date of one factor effect is highly supported by the simulated buckling forces. The equation of a significant design can be used to estimate the buckling force at any fiber volume fraction and sample length.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"57 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2053-1591/ad5c2e
Boyong Li, Guanglong Li, Dazheng Zhang, Ling Yan, Peng Zhang, Pengcheng Liu, Jiuhan Xiao, Xiangyu Qi, Xiaohang Wang and Jinyi Liu
V-N microalloying treatment is an important way to improve the service performance of non-quenched and tempered ship plate steel. Herein, the influence of V(C, N) on the evolution of microstructure and improvement of mechanical properties was studied. In addition, the relationship between microstructure and mechanical properties of V-N microalloyed high strength ship plate steel was revealed. The results showed that the composite addition of V and N not only formed a fine dispersed precipitated phase, but more importantly, significantly refined the ferrite/pearlite microstructure, promoted the formation of intragranular acicular ferrite, increased the proportion of high angle grain boundaries, and decreased the kernel average misorientation value. The optimization of microstructure brought about by V-N microalloying achieved synchronous improvement of strength and cryogenic toughness. The impact energy of V-N microalloying ship plate steel increased from 97 J of V-N-free ship plate steel to 239 J at −40 °C, and the impact fracture mode changed from brittle quasi-cleavage fracture to microvoid coalescence fracture with a large number of equiaxial dimples.
V-N 微合金化处理是提高非调质船板钢使用性能的重要方法。本文研究了 V(C,N)对微观组织演变和力学性能改善的影响。此外,还揭示了 V-N 微合金化高强度船板钢微观组织与力学性能之间的关系。结果表明,V 和 N 的复合添加不仅形成了细小分散的析出相,更重要的是显著细化了铁素体/珠光体的微观组织,促进了晶内针状铁素体的形成,增加了高角度晶界的比例,降低了晶核平均错位值。V-N 微合金化带来的微观结构优化实现了强度和低温韧性的同步提高。V-N 微合金化船板钢的冲击能从无 V-N 船板钢的 97 J 提高到了 -40 °C 时的 239 J,冲击断裂模式也从脆性准劈裂断裂转变为具有大量等轴窝的微空凝聚断裂。
{"title":"Relationship between microstructure and mechanical properties of V-N microalloyed high strength ship plate steel","authors":"Boyong Li, Guanglong Li, Dazheng Zhang, Ling Yan, Peng Zhang, Pengcheng Liu, Jiuhan Xiao, Xiangyu Qi, Xiaohang Wang and Jinyi Liu","doi":"10.1088/2053-1591/ad5c2e","DOIUrl":"https://doi.org/10.1088/2053-1591/ad5c2e","url":null,"abstract":"V-N microalloying treatment is an important way to improve the service performance of non-quenched and tempered ship plate steel. Herein, the influence of V(C, N) on the evolution of microstructure and improvement of mechanical properties was studied. In addition, the relationship between microstructure and mechanical properties of V-N microalloyed high strength ship plate steel was revealed. The results showed that the composite addition of V and N not only formed a fine dispersed precipitated phase, but more importantly, significantly refined the ferrite/pearlite microstructure, promoted the formation of intragranular acicular ferrite, increased the proportion of high angle grain boundaries, and decreased the kernel average misorientation value. The optimization of microstructure brought about by V-N microalloying achieved synchronous improvement of strength and cryogenic toughness. The impact energy of V-N microalloying ship plate steel increased from 97 J of V-N-free ship plate steel to 239 J at −40 °C, and the impact fracture mode changed from brittle quasi-cleavage fracture to microvoid coalescence fracture with a large number of equiaxial dimples.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"28 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}