首页 > 最新文献

Mini reviews in medicinal chemistry最新文献

英文 中文
Copper Dyshomeostasis And Diabetic Complications: Chelation Strategies For Management. 铜失衡与糖尿病并发症:螯合治疗策略。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-09-26 DOI: 10.2174/0113895575308206240911104945
Jahnavi Subramaniam, Aarya Aditi, Kishore Arumugam, Sathya Sri, Subramaniam Rajesh Bharathidevi, Kunka Mohanram Ramkumar

Cuproptosis, An Emerging Concept In The Field Of Diabetes Research, Presents A Novel And Promising Perspective For The Effective Management Of Diabetes Mellitus And Its Associated Complications. Diabetes, Characterized By Chronic Hyperglycemia, Poses A Substantial Global Health Burden, With An Increasing Prevalence Worldwide. Despite Significant Progress In Our Understanding Of This Complex Metabolic Disorder, Optimal Therapeutic Strategies Still Remain Elusive. The Advent Of Cuproptosis, A Term Coined To Describe Copper-Induced Cellular Cell Death And Its Pivotal Role In Diabetes Pathogenesis, Opens New Avenues For Innovative Interventions. Copper, An Indispensable Trace Element, Plays A Pivotal Role In A Myriad Of Vital Biological Processes, Encompassing Energy Production, Bolstering Antioxidant Defenses, And Altered Cellular Signaling. However, In The Context Of Diabetes, This Copper Homeostasis Is Perturbed, Driven By A Combination Of Genetic Predisposition, Dietary Patterns, And Environmental Factors. Excessive Copper Levels Act As Catalysts For Oxidative Stress, Sparking Intricate Intracellular Signaling Cascades That Further Exacerbate Metabolic Dysfunction. In This Review, We Aim To Explore The Interrelationship Between Copper And Diabetes Comprehensively, Shedding Light On The Intricate Mechanisms Underpinning Cuproptosis. By Unraveling The Roles Of Copper Transporters, Copper-Dependent Enzymes, And Cuproptotic Signaling Pathways, We Seek To Elucidate Potential Therapeutic Strategies That Harness The Power Of Copper Modulation In Diabetes Management. This Insight Sets The Stage For A Targeted Approach To Challenge The Complex Hurdles Posed By Diabetes, Potentially Transforming Our Therapeutic Strategies In The Ongoing Fight Against This Pervasive Global Health Concern.

Cuproptosis 是糖尿病研究领域的一个新兴概念,它为有效控制糖尿病及其相关并发症提供了一个新颖而有前景的视角。以慢性高血糖为特征的糖尿病给全球健康带来了沉重负担,其发病率在全球范围内不断上升。尽管我们对这种复杂代谢紊乱的认识取得了重大进展,但最佳治疗策略仍然遥遥无期。Cuproptosis(铜诱导的细胞死亡及其在糖尿病发病机制中的关键作用)的出现为创新干预开辟了新途径。铜是一种不可或缺的微量元素,在无数重要的生物过程中发挥着关键作用,包括能量生产、加强抗氧化防御和改变细胞信号传导。然而,在糖尿病的背景下,铜的平衡受到了干扰,这是遗传倾向、饮食模式和环境因素共同作用的结果。过高的铜含量会成为氧化应激的催化剂,引发错综复杂的细胞内信号级联,进一步加剧代谢功能障碍。在这篇综述中,我们旨在全面探讨铜与糖尿病之间的相互关系,揭示支撑铜氧化的复杂机制。通过揭示铜转运体、铜依赖酶和铜氧化酶信号通路的作用,我们试图阐明利用铜调节在糖尿病治疗中的作用的潜在治疗策略。这一洞察力为我们采用有针对性的方法挑战糖尿病带来的复杂障碍奠定了基础,并有可能改变我们的治疗策略,从而与这一普遍存在的全球健康问题作斗争。
{"title":"Copper Dyshomeostasis And Diabetic Complications: Chelation Strategies For Management.","authors":"Jahnavi Subramaniam, Aarya Aditi, Kishore Arumugam, Sathya Sri, Subramaniam Rajesh Bharathidevi, Kunka Mohanram Ramkumar","doi":"10.2174/0113895575308206240911104945","DOIUrl":"https://doi.org/10.2174/0113895575308206240911104945","url":null,"abstract":"<p><p>Cuproptosis, An Emerging Concept In The Field Of Diabetes Research, Presents A Novel And Promising Perspective For The Effective Management Of Diabetes Mellitus And Its Associated Complications. Diabetes, Characterized By Chronic Hyperglycemia, Poses A Substantial Global Health Burden, With An Increasing Prevalence Worldwide. Despite Significant Progress In Our Understanding Of This Complex Metabolic Disorder, Optimal Therapeutic Strategies Still Remain Elusive. The Advent Of Cuproptosis, A Term Coined To Describe Copper-Induced Cellular Cell Death And Its Pivotal Role In Diabetes Pathogenesis, Opens New Avenues For Innovative Interventions. Copper, An Indispensable Trace Element, Plays A Pivotal Role In A Myriad Of Vital Biological Processes, Encompassing Energy Production, Bolstering Antioxidant Defenses, And Altered Cellular Signaling. However, In The Context Of Diabetes, This Copper Homeostasis Is Perturbed, Driven By A Combination Of Genetic Predisposition, Dietary Patterns, And Environmental Factors. Excessive Copper Levels Act As Catalysts For Oxidative Stress, Sparking Intricate Intracellular Signaling Cascades That Further Exacerbate Metabolic Dysfunction. In This Review, We Aim To Explore The Interrelationship Between Copper And Diabetes Comprehensively, Shedding Light On The Intricate Mechanisms Underpinning Cuproptosis. By Unraveling The Roles Of Copper Transporters, Copper-Dependent Enzymes, And Cuproptotic Signaling Pathways, We Seek To Elucidate Potential Therapeutic Strategies That Harness The Power Of Copper Modulation In Diabetes Management. This Insight Sets The Stage For A Targeted Approach To Challenge The Complex Hurdles Posed By Diabetes, Potentially Transforming Our Therapeutic Strategies In The Ongoing Fight Against This Pervasive Global Health Concern.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace Elements in Medicinal Metallomics. 药用金属组学中的微量元素。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-09-25 DOI: 10.2174/0113895575333766240912162252
Marina Orlova, Stepan Kalmykov, Tatiana Trofimova, Dmitry Kuznetsov

This analytical mini-review focuses on the effects of trace elements, which includes Cu, Mn, Zn, and Se, as well as some rarer microelements, on the regulation of oxidative stress in the body and of certain diseases associated with it. Synergism and competition between certain microelements have been considered a hot topic in the applied molecular pharmacology of these specific bio-effects. Some ideas for further possible directions of research are expressed. Noteworthy, metal coordinating catalytical sites of certain enzymes function as pharmacophore-forming and connecting nanostructures. These sites can be regarded as targets for various effectors, making them pharmacologically significant contributors to biocatalysis.

这篇分析性微型综述的重点是微量元素(包括铜、锰、锌和硒以及一些罕见的微量元素)对调节体内氧化应激和某些相关疾病的影响。某些微量元素之间的协同作用和竞争作用一直被认为是这些特定生物效应的应用分子药理学的热门话题。本文就进一步可能的研究方向提出了一些想法。值得注意的是,某些酶的金属配位催化位点具有药理形成和连接纳米结构的功能。这些位点可被视为各种效应物的靶点,使其在生物催化方面具有重要的药理作用。
{"title":"Trace Elements in Medicinal Metallomics.","authors":"Marina Orlova, Stepan Kalmykov, Tatiana Trofimova, Dmitry Kuznetsov","doi":"10.2174/0113895575333766240912162252","DOIUrl":"https://doi.org/10.2174/0113895575333766240912162252","url":null,"abstract":"<p><p>This analytical mini-review focuses on the effects of trace elements, which includes Cu, Mn, Zn, and Se, as well as some rarer microelements, on the regulation of oxidative stress in the body and of certain diseases associated with it. Synergism and competition between certain microelements have been considered a hot topic in the applied molecular pharmacology of these specific bio-effects. Some ideas for further possible directions of research are expressed. Noteworthy, metal coordinating catalytical sites of certain enzymes function as pharmacophore-forming and connecting nanostructures. These sites can be regarded as targets for various effectors, making them pharmacologically significant contributors to biocatalysis.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies in Taxol development. A review. 紫杉醇开发战略。综述。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-09-25 DOI: 10.2174/0113895575300365240828065816
Justyna Żwawiak, Lucjusz Zaprutko, Anna Pawełczyk

Taxol is a compound with a rigid, tetracyclic structure of diterpene, which is characterized by significant antitumor properties. Firstly, Taxol has been isolated by extraction from the bark of the yew tree. However, the low level of availability obligated the researchers' world to uncover alternative techniques of Taxol obtainment. In the last few years, many synthetic and semi-synthetic methodologies have been elaborated. Nowadays, many novel biotechnological approaches using cell suspension cultures and biotransformation are initiated and expanded. These processes are very beneficial. The reason is that both the final product and the yield of the process have high levels. Such approaches are very distinctive and they help achieve significant quantities of natural compounds, which often exist in small amounts in plants. Moreover, a very important aspect of Taxol development is nanotechnology. The use of this method has many benefits - the retention time is protracted and the concentration of a drug in tumor tissue is raised. This is due to the specific targeting of nanomolecules. What is essential for patients is that systemic side effects are reduced and the healthy biological systems and tissues do not damage. Also, the paper presents new directions with the application of Artificial Intelligence methods. Every year, new concepts are created for obtaining Taxol and developing methods to significantly increase its bioavailability.

紫杉醇是一种具有刚性四环结构的二萜化合物,具有显著的抗肿瘤特性。Taxol 最初是从紫杉树皮中提取分离出来的。然而,由于紫杉醇的可获得性较低,研究人员不得不探索其他获取紫杉醇的技术。在过去的几年里,许多合成和半合成的方法都得到了发展。如今,许多使用细胞悬浮培养和生物转化的新型生物技术方法已开始使用并得到推广。这些过程非常有益。原因是,最终产品和工艺的产量都很高。这些方法非常独特,有助于获得大量天然化合物,而植物中通常只有少量天然化合物。此外,开发 Taxol 的一个非常重要的方面是纳米技术。使用这种方法有很多好处--保留时间延长,肿瘤组织中的药物浓度提高。这是由于纳米分子的特殊靶向性。对患者来说,最重要的是减少了全身副作用,而且不会损害健康的生物系统和组织。此外,论文还提出了应用人工智能方法的新方向。每年都有新的概念用于获取紫杉醇和开发大幅提高其生物利用率的方法。
{"title":"Strategies in Taxol development. A review.","authors":"Justyna Żwawiak, Lucjusz Zaprutko, Anna Pawełczyk","doi":"10.2174/0113895575300365240828065816","DOIUrl":"https://doi.org/10.2174/0113895575300365240828065816","url":null,"abstract":"<p><p>Taxol is a compound with a rigid, tetracyclic structure of diterpene, which is characterized by significant antitumor properties. Firstly, Taxol has been isolated by extraction from the bark of the yew tree. However, the low level of availability obligated the researchers' world to uncover alternative techniques of Taxol obtainment. In the last few years, many synthetic and semi-synthetic methodologies have been elaborated. Nowadays, many novel biotechnological approaches using cell suspension cultures and biotransformation are initiated and expanded. These processes are very beneficial. The reason is that both the final product and the yield of the process have high levels. Such approaches are very distinctive and they help achieve significant quantities of natural compounds, which often exist in small amounts in plants. Moreover, a very important aspect of Taxol development is nanotechnology. The use of this method has many benefits - the retention time is protracted and the concentration of a drug in tumor tissue is raised. This is due to the specific targeting of nanomolecules. What is essential for patients is that systemic side effects are reduced and the healthy biological systems and tissues do not damage. Also, the paper presents new directions with the application of Artificial Intelligence methods. Every year, new concepts are created for obtaining Taxol and developing methods to significantly increase its bioavailability.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potental of Quinolin-2H-one Hybrids as Anticancer Agents. 喹啉-2H-酮混合物作为抗癌剂的治疗潜力。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-09-25 DOI: 10.2174/0113895575305597240912192037
Naik Soniya, Vasu Soumya, Mamle Desai Shivlingrao, M Manickavasagam, Chellappan Manickavasagam Meeramol

The statistical data related to cancer in recent years has shown a great increase in the number of cases and is likely to further increase in the future. Even after seeking thorough knowledge on the aetiology of cancer and related disorders and attempting to cure it by various methods like gene therapy, T cell therapy, chemotherapy, surgery, hormone therapy, and photodynamic therapy, there has always been disappointment concerning the survival rate. Hence, there is still a great urge for the discovery of novel drugs for the treatment of cancer. Chemotherapy being one of the widely used methods, several drug entities possessing anticancer properties are already in the market but none of them is known to show good efficacy which necessitates researchers to design newer drugs for the treatment of cancer. The urge to synthesize novel anticancer entities directed researchers towards molecular hybridization as one of the novel methods for designing newer drugs. Literature reveals wide research carried out on quinolin-2-one hybrids, possessing anticancer properties through different mechanisms. Tipifarnib and Dovitinib are quinolin-2-one hybrids used to treat cancer, possessing imidazole and benzimidazole heterocyclic rings. Different heterocyclic scaffolds such as pyrone, pyrrole, pyrimidine, pyridine, thiazole, and pyrazole in combination with heterocyclic quinolin-2-one have shown high potential to become lead for newer anticancer agents with better and wider therapeutic properties and lesser side effects. The current review presents information on the different quinolin-2-one hybrids and their effect on different cancer cell lines. It also imparts knowledge of the structural requirements for designing novel anticancer agents.

近年来,与癌症有关的统计数据显示,癌症病例数量大幅增加,而且今后还可能进一步增加。即使人们对癌症及相关疾病的病因有了深入的了解,并尝试通过基因疗法、T 细胞疗法、化疗、手术、激素疗法和光动力疗法等各种方法来治疗癌症,但存活率始终令人失望。因此,人们仍然迫切希望发现治疗癌症的新型药物。化疗是广泛使用的方法之一,目前市场上已有多种具有抗癌特性的药物实体,但没有一种药物显示出良好的疗效,这就要求研究人员设计出治疗癌症的新药物。合成新型抗癌实体的迫切愿望引导研究人员将分子杂交作为设计新型药物的新方法之一。文献显示,人们对喹啉-2-酮杂交体进行了广泛的研究,这些杂交体通过不同的机制具有抗癌特性。替法尼(Tipifarnib)和多威替尼(Dovitinib)是用于治疗癌症的喹啉-2-酮杂交化合物,具有咪唑和苯并咪唑杂环。不同的杂环支架,如吡酮、吡咯、嘧啶、吡啶、噻唑和吡唑与杂环喹啉-2-酮的结合显示出巨大的潜力,有望成为具有更好、更广泛治疗特性和更小副作用的新型抗癌药物的先导。本综述介绍了不同的喹啉-2-酮混合物及其对不同癌细胞系的作用。它还介绍了设计新型抗癌药物的结构要求。
{"title":"Therapeutic Potental of Quinolin-2H-one Hybrids as Anticancer Agents.","authors":"Naik Soniya, Vasu Soumya, Mamle Desai Shivlingrao, M Manickavasagam, Chellappan Manickavasagam Meeramol","doi":"10.2174/0113895575305597240912192037","DOIUrl":"https://doi.org/10.2174/0113895575305597240912192037","url":null,"abstract":"<p><p>The statistical data related to cancer in recent years has shown a great increase in the number of cases and is likely to further increase in the future. Even after seeking thorough knowledge on the aetiology of cancer and related disorders and attempting to cure it by various methods like gene therapy, T cell therapy, chemotherapy, surgery, hormone therapy, and photodynamic therapy, there has always been disappointment concerning the survival rate. Hence, there is still a great urge for the discovery of novel drugs for the treatment of cancer. Chemotherapy being one of the widely used methods, several drug entities possessing anticancer properties are already in the market but none of them is known to show good efficacy which necessitates researchers to design newer drugs for the treatment of cancer. The urge to synthesize novel anticancer entities directed researchers towards molecular hybridization as one of the novel methods for designing newer drugs. Literature reveals wide research carried out on quinolin-2-one hybrids, possessing anticancer properties through different mechanisms. Tipifarnib and Dovitinib are quinolin-2-one hybrids used to treat cancer, possessing imidazole and benzimidazole heterocyclic rings. Different heterocyclic scaffolds such as pyrone, pyrrole, pyrimidine, pyridine, thiazole, and pyrazole in combination with heterocyclic quinolin-2-one have shown high potential to become lead for newer anticancer agents with better and wider therapeutic properties and lesser side effects. The current review presents information on the different quinolin-2-one hybrids and their effect on different cancer cell lines. It also imparts knowledge of the structural requirements for designing novel anticancer agents.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemicals and Nanotechnology: A Powerful Combination against Breast Cancer. 植物化学物质与纳米技术:抗击乳腺癌的强大组合。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-09-13 DOI: 10.2174/0113895575297312240903055926
Sadat Shafi, Faraha Ahmed, Ayesha Waheed, Syed Sufiyan Ahmad, Sana Khan, Mohammad Ahmed Khan, Faheem Hyder Pottoo, Syed Arman Rabbani, Shailja Singh, Abul Kalam Najmi

Considerable advancements have been made in breast cancer therapeutics in the past few decades. However, the advent of chemo-resistance and adverse drug reactions coupled with tumor metastasis and recurrence posed a serious threat to combat this lethal disease. Novel anti-cancer agents, as well as new therapeutic strategies, are needed to complement conventional breast cancer therapies. The quest for developing novel anti-cancer drugs caused an upsurge in exploring and harnessing natural compounds, especially phytochemicals. Various research groups have explored and documented the anti-cancer potential of wide variety of phytochemical groups including flavonoids (curcumin, kaempferol, myricetin, quercetin, naringenin, apigenin, genistein epigallocatechin gallate), stilbenes (resveratrol), carotenoids (crocin, lycopene, lutein), and anthraquinone (Emodin). However, low chemical stability, poor water solubility, and short systemic half-life impede their clinical utility. The implication of nano-technological approaches to decode the pharmacokinetic challenges associated with phytochemical usage, as well as selective drug targeting, have markedly enhanced the pre-clinical anti-cancer activity, thus aiding in their clinical translation. This review documented the recent advances in utilizing phytochemicals for breast cancer prevention and lipidbased nanotechnological approaches for circumventing their pharmacokinetic concerns to enhance their systemic availability, cytotoxicity, and targeted delivery against breast cancer alone as well as in combination with conventional therapeutic agents.

过去几十年来,乳腺癌疗法取得了长足的进步。然而,化疗耐药性和药物不良反应的出现,以及肿瘤转移和复发,对抗击这一致命疾病构成了严重威胁。我们需要新型抗癌药物和新的治疗策略来补充传统的乳腺癌疗法。为开发新型抗癌药物,对天然化合物,尤其是植物化学物质的探索和利用急剧增加。不同的研究小组已经探索并记录了多种植物化学物质的抗癌潜力,包括类黄酮(姜黄素、山柰酚、杨梅素、槲皮素、柚皮素、芹菜素、表没食子儿茶素没食子酸酯)、二苯乙烯类(白藜芦醇)、类胡萝卜素(黄霉素、番茄红素、叶黄素)和蒽醌(大黄素)。然而,它们的化学稳定性低、水溶性差、体内半衰期短,阻碍了它们在临床上的应用。利用纳米技术破解与植物化学物质使用相关的药代动力学难题,以及选择性药物靶向,显著提高了临床前抗癌活性,从而有助于其临床转化。本综述记录了利用植物化学物预防乳腺癌的最新进展,以及规避其药代动力学问题的脂基纳米技术方法,从而提高其全身可用性、细胞毒性,以及单独或与传统治疗药物联合靶向输送乳腺癌药物的情况。
{"title":"Phytochemicals and Nanotechnology: A Powerful Combination against Breast Cancer.","authors":"Sadat Shafi, Faraha Ahmed, Ayesha Waheed, Syed Sufiyan Ahmad, Sana Khan, Mohammad Ahmed Khan, Faheem Hyder Pottoo, Syed Arman Rabbani, Shailja Singh, Abul Kalam Najmi","doi":"10.2174/0113895575297312240903055926","DOIUrl":"https://doi.org/10.2174/0113895575297312240903055926","url":null,"abstract":"<p><p>Considerable advancements have been made in breast cancer therapeutics in the past few decades. However, the advent of chemo-resistance and adverse drug reactions coupled with tumor metastasis and recurrence posed a serious threat to combat this lethal disease. Novel anti-cancer agents, as well as new therapeutic strategies, are needed to complement conventional breast cancer therapies. The quest for developing novel anti-cancer drugs caused an upsurge in exploring and harnessing natural compounds, especially phytochemicals. Various research groups have explored and documented the anti-cancer potential of wide variety of phytochemical groups including flavonoids (curcumin, kaempferol, myricetin, quercetin, naringenin, apigenin, genistein epigallocatechin gallate), stilbenes (resveratrol), carotenoids (crocin, lycopene, lutein), and anthraquinone (Emodin). However, low chemical stability, poor water solubility, and short systemic half-life impede their clinical utility. The implication of nano-technological approaches to decode the pharmacokinetic challenges associated with phytochemical usage, as well as selective drug targeting, have markedly enhanced the pre-clinical anti-cancer activity, thus aiding in their clinical translation. This review documented the recent advances in utilizing phytochemicals for breast cancer prevention and lipidbased nanotechnological approaches for circumventing their pharmacokinetic concerns to enhance their systemic availability, cytotoxicity, and targeted delivery against breast cancer alone as well as in combination with conventional therapeutic agents.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress and Perspectives in Sodium-Glucose Co-transporter 1/2 Inhibitors. 钠-葡萄糖共转运体 1/2抑制剂的最新进展和前景。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 DOI: 10.2174/0113895575325210240805092741
Cahit Demirkiran, Seniz Demiryürek, Abdullah Tuncay Demiryürek

Sodium-Glucose Co-transporter-1/2 (SGLT1/2) inhibitors (also called glifozins) are a class of glucose-decreasing drugs in adults with Type 2 Diabetes (T2D). SGLT2 inhibitors diminish sodium and glucose reabsorption in the renal proximal convoluted tubule. Recent clinical trials have revealed that SGLT2 inhibitors might be beneficial for treating diseases other than diabetes, including chronic renal disease and Heart Failure (HF). Currently, SGLT2 inhibitors are recommended not only for the glycemic management of T2D but also for cardiovascular protection. SGLT2 inhibitors have become one of the foundational drugs for HF with reduced Ejection Fraction (HFrEF) treatment and the first medications with proven prognostic benefit in HF with preserved Ejection Fraction (HFpEF). At present, 11 SGLT1/2 inhibitors have been approved for clinical use in different countries. Beyond their anti-hyperglycemic effect, these inhibitors have shown clear cardio- and nephroprotective properties. A growing body of research studies suggests that SGLT1/2 inhibitors may provide potential clinical benefits in metabolic as well as oncological, hematological, and neurological disorders.

钠-葡萄糖协同转运体-1/2(SGLT1/2)抑制剂(又称格列酮嗪)是一类用于治疗成人 2 型糖尿病(T2D)的降糖药物。SGLT2 抑制剂可减少肾近曲小管对钠和葡萄糖的重吸收。最近的临床试验显示,SGLT2 抑制剂可能有益于治疗糖尿病以外的疾病,包括慢性肾病和心力衰竭(HF)。目前,SGLT2 抑制剂不仅被推荐用于 T2D 的血糖管理,还被推荐用于心血管保护。SGLT2 抑制剂已成为治疗射血分数降低型心力衰竭(HFrEF)的基础药物之一,也是首批被证实对射血分数保留型心力衰竭(HFpEF)的预后有益的药物。目前,已有 11 种 SGLT1/2 抑制剂在不同国家获准用于临床。除了降糖作用外,这些抑制剂还具有明显的心血管和肾脏保护作用。越来越多的研究表明,SGLT1/2 抑制剂可为代谢性疾病、肿瘤、血液病和神经系统疾病带来潜在的临床益处。
{"title":"Recent Progress and Perspectives in Sodium-Glucose Co-transporter 1/2 Inhibitors.","authors":"Cahit Demirkiran, Seniz Demiryürek, Abdullah Tuncay Demiryürek","doi":"10.2174/0113895575325210240805092741","DOIUrl":"https://doi.org/10.2174/0113895575325210240805092741","url":null,"abstract":"<p><p>Sodium-Glucose Co-transporter-1/2 (SGLT1/2) inhibitors (also called glifozins) are a class of glucose-decreasing drugs in adults with Type 2 Diabetes (T2D). SGLT2 inhibitors diminish sodium and glucose reabsorption in the renal proximal convoluted tubule. Recent clinical trials have revealed that SGLT2 inhibitors might be beneficial for treating diseases other than diabetes, including chronic renal disease and Heart Failure (HF). Currently, SGLT2 inhibitors are recommended not only for the glycemic management of T2D but also for cardiovascular protection. SGLT2 inhibitors have become one of the foundational drugs for HF with reduced Ejection Fraction (HFrEF) treatment and the first medications with proven prognostic benefit in HF with preserved Ejection Fraction (HFpEF). At present, 11 SGLT1/2 inhibitors have been approved for clinical use in different countries. Beyond their anti-hyperglycemic effect, these inhibitors have shown clear cardio- and nephroprotective properties. A growing body of research studies suggests that SGLT1/2 inhibitors may provide potential clinical benefits in metabolic as well as oncological, hematological, and neurological disorders.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemistry, Analysis, and Biological Aspects of Daprodustat, A New Hypoxia Inducible Factor Prolyl Hydroxylase Inhibitor: A Comprehensive Review 一种新的缺氧诱导因子脯氨酰羟化酶抑制剂--达泊司他(Daprodustat)的化学、分析和生物学方面:全面综述
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-30 DOI: 10.2174/0113895575293447240424052516
Roshani Patil, Sanjay Sharma
Background: The National Health and Nutrition Examination Survey (NHANES) carried out a survey between 2007-10 and found that as compared to the general population, the prevalence of anemia in chronic kidney disease (CKD) patients was twice high. Daprodustat is an investigational novel drug for the treatment of renal anemia. Objective: The objective of this study is to provide a comprehensive review of chemistry, synthesis, pharmacology, pharmacokinetic, and bioanalytical methods for the analysis of Daprodustat. Methods: To improve understanding, a review was carried out by creating a database of relevant prior research from electronic sources such as ScienceDirect and PubMed. The methodology is shown in the flowchart of the literature selection process. Results: The drug was approved in 2020 for therapeutic purposes in Japan. It is a novel drug approved for the treatment of anemia in chronic kidney disease for oral administration. It is intended for adults who have undergone dialysis for a minimum of four months and are experiencing anemia as a result of chronic kidney disease. Conclusion: This review examines therapeutic, pharmacological, and analytical aspects related to the novel drug Daprodustat.
背景:美国国家健康与营养调查(NHANES)在 2007-10 年间进行了一项调查,发现与普通人群相比,慢性肾脏病(CKD)患者的贫血患病率高出一倍。达泊司他(Daprodustat)是一种治疗肾性贫血的试验性新药。研究目的本研究旨在对达普渡他的化学、合成、药理学、药动学和生物分析方法进行全面综述。研究方法为了加深理解,我们从 ScienceDirect 和 PubMed 等电子资源中创建了一个相关先前研究的数据库,从而进行了综述。方法见文献选择流程图。结果:该药物于 2020 年在日本获批用于治疗目的。它是一种新型药物,获准用于治疗慢性肾病贫血,口服给药。该药物适用于接受至少四个月透析并因慢性肾病而出现贫血的成人。结论本综述探讨了与新型药物达普洛司他相关的治疗、药理和分析方面的问题。
{"title":"Chemistry, Analysis, and Biological Aspects of Daprodustat, A New Hypoxia Inducible Factor Prolyl Hydroxylase Inhibitor: A Comprehensive Review","authors":"Roshani Patil, Sanjay Sharma","doi":"10.2174/0113895575293447240424052516","DOIUrl":"https://doi.org/10.2174/0113895575293447240424052516","url":null,"abstract":"Background: The National Health and Nutrition Examination Survey (NHANES) carried out a survey between 2007-10 and found that as compared to the general population, the prevalence of anemia in chronic kidney disease (CKD) patients was twice high. Daprodustat is an investigational novel drug for the treatment of renal anemia. Objective: The objective of this study is to provide a comprehensive review of chemistry, synthesis, pharmacology, pharmacokinetic, and bioanalytical methods for the analysis of Daprodustat. Methods: To improve understanding, a review was carried out by creating a database of relevant prior research from electronic sources such as ScienceDirect and PubMed. The methodology is shown in the flowchart of the literature selection process. Results: The drug was approved in 2020 for therapeutic purposes in Japan. It is a novel drug approved for the treatment of anemia in chronic kidney disease for oral administration. It is intended for adults who have undergone dialysis for a minimum of four months and are experiencing anemia as a result of chronic kidney disease. Conclusion: This review examines therapeutic, pharmacological, and analytical aspects related to the novel drug Daprodustat.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"43 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing 评估褪黑素及其纳米结构对皮肤疾病的影响,重点关注伤口愈合
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-30 DOI: 10.2174/0113895575299255240422055203
Seyedeh Mohaddeseh Mousavi, Leila Etemad, Davood Yari, Maryam Hashemi, Zahra Salmasi
: Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin’s effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
:皮肤是人体最大的器官,是抵御各种有害环境因素的最原始的防御屏障。然而,皮肤会因不同的伤害而受损,如不同的伤口、烧伤和皮肤癌,这些伤害会通过炎症、氧化、凝血问题、感染等导致内脏器官和人体重要机制的破坏。褪黑素是松果体的主要激素,具有很强的抗氧化和抗炎功能,还具有理想的抗凋亡、抗癌和抗生素特性,因此对皮肤疾病也很有效。然而,由于褪黑素的水溶性、半衰期和稳定性有限,其特性需要改进。纳米载体系统的应用可以改善褪黑素的溶解性、渗透性和效率,并抑制其降解和提高光稳定性。本综述的主要目的是探讨褪黑素和含褪黑素的纳米载体在皮肤疾病(主要是伤口)中可能发挥的作用。此外,我们还考虑了褪黑素在再生医学中的作用及其作为皮肤损伤伤口敷料的结构。
{"title":"Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing","authors":"Seyedeh Mohaddeseh Mousavi, Leila Etemad, Davood Yari, Maryam Hashemi, Zahra Salmasi","doi":"10.2174/0113895575299255240422055203","DOIUrl":"https://doi.org/10.2174/0113895575299255240422055203","url":null,"abstract":": Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin’s effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"10 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle-based Gene Therapy for Neurodegenerative Disorders 基于纳米粒子的神经退行性疾病基因疗法
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-27 DOI: 10.2174/0113895575301011240407082559
Nelofer Ereej, Huma Hameed, Mahtab Ahmad Khan, Saleha Faheem, Anam Hameed
:: Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
::由于大脑面临错综复杂的障碍以及基因干预的多面性,神经系统疾病给现代医学带来了严峻的挑战。这篇综述文章深入探讨了基于纳米粒子的基因疗法这一前景广阔的领域,将其作为解决错综复杂的神经系统疾病的一种创新方法。纳米颗粒(NPs)为治疗基因的传递提供了一个多用途平台,具有精确靶向、增强稳定性等独特性能,并有可能绕过血脑屏障(BBB)的限制。本报告全面探讨了纳米粒子介导的神经系统疾病基因疗法的现状,重点介绍了最新进展和突破。文章讨论了用各种材料合成纳米粒子并将其与治疗基因连接的过程,强调了设计的灵活性有助于实现特定组织靶向。摘要还讨论了这些纳米颗粒的低免疫原性及其在循环中的稳定性,这些都是成功传递基因的关键因素。虽然基于 NP 的神经系统疾病基因疗法潜力巨大,但挑战和知识差距依然存在。由于缺乏广泛的临床试验,有关安全性和潜在副作用的问题仍未得到解答。因此,本摘要强调有必要开展进一步研究,以验证 NP 介导的基因疗法的治疗应用,并解决纳米安全性问题。总之,基于纳米粒子的基因疗法在寻求神经系统疾病的有效治疗方法方面前景广阔。本摘要主张继续开展研究工作,弥补现有的知识差距,充分挖掘这种创新方法的潜力,为神经系统健康领域的变革性解决方案铺平道路。
{"title":"Nanoparticle-based Gene Therapy for Neurodegenerative Disorders","authors":"Nelofer Ereej, Huma Hameed, Mahtab Ahmad Khan, Saleha Faheem, Anam Hameed","doi":"10.2174/0113895575301011240407082559","DOIUrl":"https://doi.org/10.2174/0113895575301011240407082559","url":null,"abstract":":: Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"54 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-property Relationships Reported for the New Drugs Approved in 2023 2023 年获批新药的结构-性质关系报告
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-27 DOI: 10.2174/0113895575308674240415074629
Kihang Choi
: Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure–property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structure-property relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure-property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure–property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure– property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.
:类药物特性在药物吸附、分布、代谢、排泄和毒性方面起着关键作用。因此,有效优化这些性质对于成功开发新型疗法至关重要。了解临床批准药物的结构-性质关系可为药物设计和优化策略提供宝贵的见解。2023 年美国批准的新药包括 31 种小分子药物,在这些药物中,有 9 种药物的结构-性质关系是从药物化学文献中整理出来的,这些文献不仅报道了最终药物的药代动力学和/或理化性质的详细信息,还报道了药物开发过程中产生的关键类似物的信息。本文总结了九种新批准药物的结构-性质关系,包括三种激酶抑制剂和三种 G 蛋白偶联受体拮抗剂。几种优化策略,如生物异构替代和立体柄安装,成功地开发出了具有更好理化和药代动力学特性的临床候选药物。总结出的结构-性质关系表明,适当的结构修饰可以有效改善药物的整体类似性质。对临床批准药物的结构-性质关系的不断探索有望为未来药物的开发提供有价值的指导。
{"title":"Structure-property Relationships Reported for the New Drugs Approved in 2023","authors":"Kihang Choi","doi":"10.2174/0113895575308674240415074629","DOIUrl":"https://doi.org/10.2174/0113895575308674240415074629","url":null,"abstract":": Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure–property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structure-property relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure-property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure–property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure– property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"7 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mini reviews in medicinal chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1