首页 > 最新文献

Mini reviews in medicinal chemistry最新文献

英文 中文
Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties. 喹喔啉衍生物的合成方法及其潜在的抗炎特性。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-06-20 DOI: 10.2174/0113895575307480240610055622
Anjali -, Payal Kamboj, Mohammad Amir

Quinoxaline molecule has gathered a great attention in medicinal chemistry due to its vide spectrum of biological activities and emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises bicyclic ring of benzopyrazine and displays a range of pharmacological properties including antibacterial, antifungal, antiviral, anticancer and anti-inflammatory. This review summarizes the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better anti-inflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) and p38 mitogen activated protein kinase (p38 MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this review may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profile.

.

喹喔啉分子因其广泛的生物活性而在药物化学领域备受关注,并成为药物发现和开发中的多功能药层。它的结构由苯并吡嗪的双环组成,具有抗菌、抗真菌、抗病毒、抗癌和抗炎等一系列药理特性。本综述总结了合成喹喔啉类化合物的不同策略及其通过不同机制发挥作用的抗炎特性。此外,还讨论了结构活性关系,以确定结构修饰对抗炎潜力的影响。这些分析揭示了最佳活性所需的关键结构特征,从而推动了具有更好抗炎活性的新喹喔啉类似物的设计和合成。喹喔啉类化合物的抗炎特性归因于它们对几种炎症调节因子表达的抑制作用,如环氧化酶、细胞因子、活化 B 细胞的核因子卡帕-轻链-增强因子(NFB)和 p38 丝裂原活化蛋白激酶(p38 MAPK)。此外,还讨论了核因子红细胞 2 相关因子 2(NRF2)的激活剂以及对阿片受体的激动作用。因此,本综述可为今后设计和开发通过不同分子靶点发挥作用的新型喹喔啉衍生物提供模板,使其成为具有更好疗效和安全性的潜在抗炎药物。.
{"title":"Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties.","authors":"Anjali -, Payal Kamboj, Mohammad Amir","doi":"10.2174/0113895575307480240610055622","DOIUrl":"https://doi.org/10.2174/0113895575307480240610055622","url":null,"abstract":"<p><p>Quinoxaline molecule has gathered a great attention in medicinal chemistry due to its vide spectrum of biological activities and emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises bicyclic ring of benzopyrazine and displays a range of pharmacological properties including antibacterial, antifungal, antiviral, anticancer and anti-inflammatory. This review summarizes the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better anti-inflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) and p38 mitogen activated protein kinase (p38 MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this review may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profile. </p>.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of the Protective Effects of Alkaloids Against Alpha-synuclein toxicity in Parkinson's disease. 回顾生物碱对帕金森病阿尔法-突触核蛋白毒性的保护作用
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-06-13 DOI: 10.2174/0113895575306884240604065754
Behjat Javadi, Mahdi Khodadadi

Background: Alpha-synuclein (α-syn) aggregation products may cause neural injury and several neurodegenerative disorders (NDs) known as α-synucleinopathies. Alkaloids are secondary metabolites present in a variety of plant species and may positively affect human health, particularly α-synucleinopathy-associated NDs.

Aim: To summarize the latest scientific data on the inhibitory properties of alkaloids in α- synucleinopathies, especially in Parkinson's disease.

Methods: Literature search was performed using web-based databases including Web of Science, PubMed, and Scopus up to January 2024, in the English language.

Results: Harmala alkaloids, caffein, lycorine, piperin, acetylcorynoline, berberin, papaverine, squalamine, trodusquemine and nicotin have been found to be the most active natural alkaloids against synucleinopathy. The underlying mechanisms that contribute to this effect would be the inhibition of α-syn aggregation; elimination of formed aggregates; improvement in autophagy activation; promotion of the activity and expression of antioxidative enzymes; and prevention of oxidative injury and apoptosis in dopaminergic neurons.

Conclusion: The findings of the present study highlight the inhibitory activities of alkaloids against synucleinopathy. However, no clinical data supports the reported activities in humans, which calls attention to the need for conducting clinical trials to elucidate the efficacy, safety, proper dosage, unwanted effects and pharmacokinetics aspects of alkaloids in humans.

背景:α-突触核蛋白(α-syn)的聚集产物可能导致神经损伤和多种神经退行性疾病(NDs),这些疾病被称为α-突触核蛋白病。生物碱是存在于多种植物物种中的次级代谢产物,可能对人类健康产生积极影响,尤其是与α-突触核蛋白病相关的NDs。目的:总结生物碱在α-突触核蛋白病(尤其是帕金森病)中的抑制特性的最新科学数据:方法:使用网络数据库(包括 Web of Science、PubMed 和 Scopus)对截至 2024 年 1 月的英文文献进行检索:结果:研究发现,Harmala 生物碱、咖啡碱、番荔枝碱、哌啶、乙酰毛果芸香碱、小檗碱、木瓜碱、角鲨胺、trodusquemine 和烟碱是对突触核素病最有效的天然生物碱。产生这种作用的基本机制是抑制α-syn的聚集;消除已形成的聚集体;改善自噬激活;促进抗氧化酶的活性和表达;防止氧化损伤和多巴胺能神经元的凋亡:本研究结果突出了生物碱对突触核蛋白病的抑制作用。结论:本研究结果突出了生物碱对突触核蛋白病的抑制活性,但没有临床数据支持所报告的人体活性,因此需要进行临床试验,以阐明生物碱对人体的疗效、安全性、适当剂量、副作用和药代动力学等方面。
{"title":"A Review of the Protective Effects of Alkaloids Against Alpha-synuclein toxicity in Parkinson's disease.","authors":"Behjat Javadi, Mahdi Khodadadi","doi":"10.2174/0113895575306884240604065754","DOIUrl":"https://doi.org/10.2174/0113895575306884240604065754","url":null,"abstract":"<p><strong>Background: </strong>Alpha-synuclein (α-syn) aggregation products may cause neural injury and several neurodegenerative disorders (NDs) known as α-synucleinopathies. Alkaloids are secondary metabolites present in a variety of plant species and may positively affect human health, particularly α-synucleinopathy-associated NDs.</p><p><strong>Aim: </strong>To summarize the latest scientific data on the inhibitory properties of alkaloids in α- synucleinopathies, especially in Parkinson's disease.</p><p><strong>Methods: </strong>Literature search was performed using web-based databases including Web of Science, PubMed, and Scopus up to January 2024, in the English language.</p><p><strong>Results: </strong>Harmala alkaloids, caffein, lycorine, piperin, acetylcorynoline, berberin, papaverine, squalamine, trodusquemine and nicotin have been found to be the most active natural alkaloids against synucleinopathy. The underlying mechanisms that contribute to this effect would be the inhibition of α-syn aggregation; elimination of formed aggregates; improvement in autophagy activation; promotion of the activity and expression of antioxidative enzymes; and prevention of oxidative injury and apoptosis in dopaminergic neurons.</p><p><strong>Conclusion: </strong>The findings of the present study highlight the inhibitory activities of alkaloids against synucleinopathy. However, no clinical data supports the reported activities in humans, which calls attention to the need for conducting clinical trials to elucidate the efficacy, safety, proper dosage, unwanted effects and pharmacokinetics aspects of alkaloids in humans.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemistry, Analysis, and Biological Aspects of Daprodustat, A New Hypoxia Inducible Factor Prolyl Hydroxylase Inhibitor: A Comprehensive Review 一种新的缺氧诱导因子脯氨酰羟化酶抑制剂--达泊司他(Daprodustat)的化学、分析和生物学方面:全面综述
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-30 DOI: 10.2174/0113895575293447240424052516
Roshani Patil, Sanjay Sharma
Background: The National Health and Nutrition Examination Survey (NHANES) carried out a survey between 2007-10 and found that as compared to the general population, the prevalence of anemia in chronic kidney disease (CKD) patients was twice high. Daprodustat is an investigational novel drug for the treatment of renal anemia. Objective: The objective of this study is to provide a comprehensive review of chemistry, synthesis, pharmacology, pharmacokinetic, and bioanalytical methods for the analysis of Daprodustat. Methods: To improve understanding, a review was carried out by creating a database of relevant prior research from electronic sources such as ScienceDirect and PubMed. The methodology is shown in the flowchart of the literature selection process. Results: The drug was approved in 2020 for therapeutic purposes in Japan. It is a novel drug approved for the treatment of anemia in chronic kidney disease for oral administration. It is intended for adults who have undergone dialysis for a minimum of four months and are experiencing anemia as a result of chronic kidney disease. Conclusion: This review examines therapeutic, pharmacological, and analytical aspects related to the novel drug Daprodustat.
背景:美国国家健康与营养调查(NHANES)在 2007-10 年间进行了一项调查,发现与普通人群相比,慢性肾脏病(CKD)患者的贫血患病率高出一倍。达泊司他(Daprodustat)是一种治疗肾性贫血的试验性新药。研究目的本研究旨在对达普渡他的化学、合成、药理学、药动学和生物分析方法进行全面综述。研究方法为了加深理解,我们从 ScienceDirect 和 PubMed 等电子资源中创建了一个相关先前研究的数据库,从而进行了综述。方法见文献选择流程图。结果:该药物于 2020 年在日本获批用于治疗目的。它是一种新型药物,获准用于治疗慢性肾病贫血,口服给药。该药物适用于接受至少四个月透析并因慢性肾病而出现贫血的成人。结论本综述探讨了与新型药物达普洛司他相关的治疗、药理和分析方面的问题。
{"title":"Chemistry, Analysis, and Biological Aspects of Daprodustat, A New Hypoxia Inducible Factor Prolyl Hydroxylase Inhibitor: A Comprehensive Review","authors":"Roshani Patil, Sanjay Sharma","doi":"10.2174/0113895575293447240424052516","DOIUrl":"https://doi.org/10.2174/0113895575293447240424052516","url":null,"abstract":"Background: The National Health and Nutrition Examination Survey (NHANES) carried out a survey between 2007-10 and found that as compared to the general population, the prevalence of anemia in chronic kidney disease (CKD) patients was twice high. Daprodustat is an investigational novel drug for the treatment of renal anemia. Objective: The objective of this study is to provide a comprehensive review of chemistry, synthesis, pharmacology, pharmacokinetic, and bioanalytical methods for the analysis of Daprodustat. Methods: To improve understanding, a review was carried out by creating a database of relevant prior research from electronic sources such as ScienceDirect and PubMed. The methodology is shown in the flowchart of the literature selection process. Results: The drug was approved in 2020 for therapeutic purposes in Japan. It is a novel drug approved for the treatment of anemia in chronic kidney disease for oral administration. It is intended for adults who have undergone dialysis for a minimum of four months and are experiencing anemia as a result of chronic kidney disease. Conclusion: This review examines therapeutic, pharmacological, and analytical aspects related to the novel drug Daprodustat.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"43 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing 评估褪黑素及其纳米结构对皮肤疾病的影响,重点关注伤口愈合
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-30 DOI: 10.2174/0113895575299255240422055203
Seyedeh Mohaddeseh Mousavi, Leila Etemad, Davood Yari, Maryam Hashemi, Zahra Salmasi
: Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin’s effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
:皮肤是人体最大的器官,是抵御各种有害环境因素的最原始的防御屏障。然而,皮肤会因不同的伤害而受损,如不同的伤口、烧伤和皮肤癌,这些伤害会通过炎症、氧化、凝血问题、感染等导致内脏器官和人体重要机制的破坏。褪黑素是松果体的主要激素,具有很强的抗氧化和抗炎功能,还具有理想的抗凋亡、抗癌和抗生素特性,因此对皮肤疾病也很有效。然而,由于褪黑素的水溶性、半衰期和稳定性有限,其特性需要改进。纳米载体系统的应用可以改善褪黑素的溶解性、渗透性和效率,并抑制其降解和提高光稳定性。本综述的主要目的是探讨褪黑素和含褪黑素的纳米载体在皮肤疾病(主要是伤口)中可能发挥的作用。此外,我们还考虑了褪黑素在再生医学中的作用及其作为皮肤损伤伤口敷料的结构。
{"title":"Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing","authors":"Seyedeh Mohaddeseh Mousavi, Leila Etemad, Davood Yari, Maryam Hashemi, Zahra Salmasi","doi":"10.2174/0113895575299255240422055203","DOIUrl":"https://doi.org/10.2174/0113895575299255240422055203","url":null,"abstract":": Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin’s effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"10 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle-based Gene Therapy for Neurodegenerative Disorders 基于纳米粒子的神经退行性疾病基因疗法
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-27 DOI: 10.2174/0113895575301011240407082559
Nelofer Ereej, Huma Hameed, Mahtab Ahmad Khan, Saleha Faheem, Anam Hameed
:: Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
::由于大脑面临错综复杂的障碍以及基因干预的多面性,神经系统疾病给现代医学带来了严峻的挑战。这篇综述文章深入探讨了基于纳米粒子的基因疗法这一前景广阔的领域,将其作为解决错综复杂的神经系统疾病的一种创新方法。纳米颗粒(NPs)为治疗基因的传递提供了一个多用途平台,具有精确靶向、增强稳定性等独特性能,并有可能绕过血脑屏障(BBB)的限制。本报告全面探讨了纳米粒子介导的神经系统疾病基因疗法的现状,重点介绍了最新进展和突破。文章讨论了用各种材料合成纳米粒子并将其与治疗基因连接的过程,强调了设计的灵活性有助于实现特定组织靶向。摘要还讨论了这些纳米颗粒的低免疫原性及其在循环中的稳定性,这些都是成功传递基因的关键因素。虽然基于 NP 的神经系统疾病基因疗法潜力巨大,但挑战和知识差距依然存在。由于缺乏广泛的临床试验,有关安全性和潜在副作用的问题仍未得到解答。因此,本摘要强调有必要开展进一步研究,以验证 NP 介导的基因疗法的治疗应用,并解决纳米安全性问题。总之,基于纳米粒子的基因疗法在寻求神经系统疾病的有效治疗方法方面前景广阔。本摘要主张继续开展研究工作,弥补现有的知识差距,充分挖掘这种创新方法的潜力,为神经系统健康领域的变革性解决方案铺平道路。
{"title":"Nanoparticle-based Gene Therapy for Neurodegenerative Disorders","authors":"Nelofer Ereej, Huma Hameed, Mahtab Ahmad Khan, Saleha Faheem, Anam Hameed","doi":"10.2174/0113895575301011240407082559","DOIUrl":"https://doi.org/10.2174/0113895575301011240407082559","url":null,"abstract":":: Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"54 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-property Relationships Reported for the New Drugs Approved in 2023 2023 年获批新药的结构-性质关系报告
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-27 DOI: 10.2174/0113895575308674240415074629
Kihang Choi
: Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure–property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structure-property relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure-property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure–property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure– property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.
:类药物特性在药物吸附、分布、代谢、排泄和毒性方面起着关键作用。因此,有效优化这些性质对于成功开发新型疗法至关重要。了解临床批准药物的结构-性质关系可为药物设计和优化策略提供宝贵的见解。2023 年美国批准的新药包括 31 种小分子药物,在这些药物中,有 9 种药物的结构-性质关系是从药物化学文献中整理出来的,这些文献不仅报道了最终药物的药代动力学和/或理化性质的详细信息,还报道了药物开发过程中产生的关键类似物的信息。本文总结了九种新批准药物的结构-性质关系,包括三种激酶抑制剂和三种 G 蛋白偶联受体拮抗剂。几种优化策略,如生物异构替代和立体柄安装,成功地开发出了具有更好理化和药代动力学特性的临床候选药物。总结出的结构-性质关系表明,适当的结构修饰可以有效改善药物的整体类似性质。对临床批准药物的结构-性质关系的不断探索有望为未来药物的开发提供有价值的指导。
{"title":"Structure-property Relationships Reported for the New Drugs Approved in 2023","authors":"Kihang Choi","doi":"10.2174/0113895575308674240415074629","DOIUrl":"https://doi.org/10.2174/0113895575308674240415074629","url":null,"abstract":": Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure–property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structure-property relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure-property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure–property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure– property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"7 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aloe-emodin: Progress in Pharmacological Activity, Safety, and Pharmaceutical Formulation Applications 芦荟大黄素:药理活性、安全性和药物制剂应用方面的进展
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-19 DOI: 10.2174/0113895575298364240409064833
Haimeng Luoa, Xiaoyun Jia, Mengyu Zhanga, Yaoyao Renb, Rui Tana, Hezhong Jianga, Xiaoqing Wua
: Aloe-emodin (AE) is an anthraquinone derivative and a biologically active component sourced from various plants, including Rheum palmatum L. and Aloe vera. Known chemically as 1,8-dihydroxy-3-hydroxymethyl-anthraquinone, AE has a rich history in traditional medicine and is esteemed for its accessibility, safety, affordability, and effectiveness. AE boasts multiple biochemical and pharmacological properties, such as strong antibacterial, antioxidant, and antitumor effects. Despite its array of benefits, AE's identity as an anthraquinone derivative raises concerns about its potential for liver and kidney toxicity. Nevertheless, AE is considered a promising drug candidate due to its significant bioactivities and cost efficiency. Recent research has highlighted that nanoformulated AE may enhance drug delivery, biocompatibility, and pharmacological benefits, offering a novel approach to drug design. This review delves into AE's pharmacological impacts, mechanisms, pharmacokinetics, and safety profile, incorporating insights from studies on its nanoformulations. The goal is to outline the burgeoning research in this area and to support the ongoing development and utilization of AE-based therapies.
:芦荟大黄素(AE)是一种蒽醌衍生物,是从大黄和芦荟等多种植物中提取的生物活性成分。AE 的化学名称为 1,8-二羟基-3-羟甲基-蒽醌,在传统医学中有着悠久的历史,因其易得性、安全性、经济性和有效性而备受推崇。AE 具有多种生化和药理特性,如强大的抗菌、抗氧化和抗肿瘤作用。尽管 AE 具有一系列优点,但其蒽醌衍生物的特性使人们担心它可能会对肝脏和肾脏产生毒性。然而,AE 因其显著的生物活性和成本效益而被认为是一种很有前途的候选药物。最近的研究强调,纳米制剂 AE 可增强药物输送、生物相容性和药理作用,为药物设计提供了一种新方法。本综述深入探讨了 AE 的药理作用、机制、药代动力学和安全性,并纳入了对其纳米制剂研究的见解。其目的是概述该领域的新兴研究,并为基于 AE 的疗法的持续开发和利用提供支持。
{"title":"Aloe-emodin: Progress in Pharmacological Activity, Safety, and Pharmaceutical Formulation Applications","authors":"Haimeng Luoa, Xiaoyun Jia, Mengyu Zhanga, Yaoyao Renb, Rui Tana, Hezhong Jianga, Xiaoqing Wua","doi":"10.2174/0113895575298364240409064833","DOIUrl":"https://doi.org/10.2174/0113895575298364240409064833","url":null,"abstract":": Aloe-emodin (AE) is an anthraquinone derivative and a biologically active component sourced from various plants, including Rheum palmatum L. and Aloe vera. Known chemically as 1,8-dihydroxy-3-hydroxymethyl-anthraquinone, AE has a rich history in traditional medicine and is esteemed for its accessibility, safety, affordability, and effectiveness. AE boasts multiple biochemical and pharmacological properties, such as strong antibacterial, antioxidant, and antitumor effects. Despite its array of benefits, AE's identity as an anthraquinone derivative raises concerns about its potential for liver and kidney toxicity. Nevertheless, AE is considered a promising drug candidate due to its significant bioactivities and cost efficiency. Recent research has highlighted that nanoformulated AE may enhance drug delivery, biocompatibility, and pharmacological benefits, offering a novel approach to drug design. This review delves into AE's pharmacological impacts, mechanisms, pharmacokinetics, and safety profile, incorporating insights from studies on its nanoformulations. The goal is to outline the burgeoning research in this area and to support the ongoing development and utilization of AE-based therapies.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"36 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma 多酚调节参与胶质母细胞瘤的 miRNAs 表达
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-19 DOI: 10.2174/0113895575304605240408105201
Maede Rezaie, Mohammad Nasehi, Mohammad Shimia, Mohamad Ebrahimnezhad, Bahman Yousefi, Maryam Majidinia
: Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes
:多形性胶质母细胞瘤(GBM)是一种由星形胶质细胞发展而来的实体瘤,是侵袭性最强的脑癌之一。虽然治疗多形性胶质母细胞瘤的疗效有所改善,但仍存在许多问题,尤其是传统治疗方法。因此,最近的研究广泛关注于开发新型治疗药物来对抗胶质母细胞瘤。天然多酚具有抗氧化、抗炎、细胞毒性、抗肿瘤和免疫调节等多种活性,因此被研究用于化学预防和化学治疗。这些天然化合物被认为是通过调节细胞内的各种大分子(包括在分子环境中发挥关键作用的微小核糖核酸(miRNA))而发挥作用的。在本文中,我们将重点讨论多酚如何通过影响调控致癌基因和抑癌基因的关键 miRNA 的表达来抑制肿瘤的生长。
{"title":"Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma","authors":"Maede Rezaie, Mohammad Nasehi, Mohammad Shimia, Mohamad Ebrahimnezhad, Bahman Yousefi, Maryam Majidinia","doi":"10.2174/0113895575304605240408105201","DOIUrl":"https://doi.org/10.2174/0113895575304605240408105201","url":null,"abstract":": Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"8 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schiff Bases: A Captivating Scaffold with Potential Anticonvulsant Activity 希夫碱:具有潜在抗惊厥活性的迷人支架
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-17 DOI: 10.2174/0113895575302197240408121537
Rakesh Sahu, Kamal Shah
:: One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.
::最重要的有机化合物之一,又称希夫碱、亚胺或偶氮甲胺,与多种生物过程有关。该基团是天然或合成化学品的组成部分,在合成治疗活性物质的过程中既是前体也是中间体。本综述重点介绍了各种非金属希夫碱的结构-活性关系(SAR)研究、一般模型、对接以及抗惊厥作用的设计方法。根据多项研究结果,希夫碱可作为许多合成化合物的连接物,具有多种活性。因此,本综述将使读者全面了解不同研究人员就希夫碱的抗惊厥特性提出的主要观点。对于那些计划合成含有希夫碱作为药基或生物活性分子的新抗惊厥分子的人来说,本综述将是一个宝贵的信息来源。
{"title":"Schiff Bases: A Captivating Scaffold with Potential Anticonvulsant Activity","authors":"Rakesh Sahu, Kamal Shah","doi":"10.2174/0113895575302197240408121537","DOIUrl":"https://doi.org/10.2174/0113895575302197240408121537","url":null,"abstract":":: One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"75 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis SLC16A1 和 SLC16A1-AS1 在癌症进展中的关键功能:分子发病机制和预后
IF 3.8 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-04-15 DOI: 10.2174/0113895575284780240327103039
Yunxi Zhou, Fangshun Tan, Zhuowei Wang, Gang Zhou, Chengfu Yuan
: More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- as1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.
:300 多种膜组成了 SLC 转运体家族,它们利用离子梯度或电化学电位差将底物移过生物膜。SLC16 基因家族包含 14 个成员。SLC16A1 基因家族编码的转运体 MCT1 可促进单羧酸盐的质子连接运输。糖酵解在癌细胞中会持续上调,由此产生的乳酸量与预后相关。此外,越来越多的证据表明,SLC16A1 在控制肿瘤的生长和扩散方面起着至关重要的作用。此外,LncRNA 是产生超过 200 个核苷酸的 RNA 转录本但不转化为蛋白质的所有基因的总称。随着分子生物学相关技术的进步,它已稳步发展成为一个研究中心,为肿瘤研究提供了一种创新方法。随着研究的不断深入,我们发现了 SLC16A1-AS1,它是一种与 SLC16A1 反义的 RNA,而 SLC16A1 在各种癌症中都有错误表达。因此,我们汇编了有关 SLC16A1 和 LncRNA SLC16A1-AS1 在肿瘤发生发展过程中的生理功能和潜在过程的最新信息,以探讨它们对癌症治疗和预后的影响。我们汇编了有关 SLC16A1 和 LncRNA SLC16A1-AS1 在肿瘤发生发展过程中的生理功能和基本过程的最新信息,以探讨它们对癌症治疗和预后的影响。我们通过 PubMed 系统检索并收集了相关研究。确定SLC16A1和SLC16A1-AS1为研究对象后,通过对研究文章的分析,我们发现SLC16A1与肿瘤发生的密切关系以及影响因素。SLC16A1调控乳酸趋化,而SLC16A1- as1是一种反义RNA,通过多种途径发挥作用;它们影响肿瘤细胞的新陈代谢,并对各种癌症患者的预后产生影响。
{"title":"The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis","authors":"Yunxi Zhou, Fangshun Tan, Zhuowei Wang, Gang Zhou, Chengfu Yuan","doi":"10.2174/0113895575284780240327103039","DOIUrl":"https://doi.org/10.2174/0113895575284780240327103039","url":null,"abstract":": More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- as1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":"11 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mini reviews in medicinal chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1