首页 > 最新文献

Mini reviews in medicinal chemistry最新文献

英文 中文
Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review. 将 CDK 抑制剂重新用作宿主靶向抗病毒药物:微型综述。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2025-01-01 DOI: 10.2174/0113895575311618240820103549
Miao Liu, Wei Peng, Xingyue Ji

Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.

市场上的大多数抗病毒药物都是直接针对病毒蛋白设计的。一般认为,这些药物对人类使用是安全的。然而,它们也存在一些固有的局限性,特别是抗病毒谱狭窄和容易产生耐药性。抗病毒药物开发的另一种策略是针对病毒生命周期不同阶段高度参与的宿主因素。与直接作用的抗病毒药物相比,以宿主为靶点的抗病毒药物通常具有广谱抗病毒的特性,而且抗药性的基因屏障要高得多。细胞周期蛋白依赖性激酶(CDK)就是这样一种宿主因子。在这篇综述中,我们总结了一些具有不同化学架构并已证明具有抗病毒活性的 CDK 抑制剂(CDKIs)。我们还讨论了将 CDKIs 重新用作抗病毒药物所面临的挑战和问题。
{"title":"Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review.","authors":"Miao Liu, Wei Peng, Xingyue Ji","doi":"10.2174/0113895575311618240820103549","DOIUrl":"10.2174/0113895575311618240820103549","url":null,"abstract":"<p><p>Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"178-189"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Overview of Pyridazinone Analogs: Chemical and Pharmacological Potential. 哒嗪酮类似物概述:化学和药理潜力。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2025-01-01 DOI: 10.2174/0113895575287746240528072330
Youness Boukharsa, Khalid Karrouchi, Houda Attjioui, M'Hammed Ansar

Pyridazinones are classical molecules that occupy an important place in heterocyclic chemistry, and since their discovery, they have been widely developed. The introduction of new functional groups into pyridazinone structures has enabled the synthesis of a large diversity of compounds. The pharmacological and agrochemical importance of pyridazinone derivatives has aroused the interest of chemists and directed their research toward the synthesis of new compounds with the aim of improving their biological effectiveness. In this review, we have compiled and discussed the different synthetic routes, reactivity, and pharmacological and agrochemical applications of the pyridazinone ring.

哒嗪酮是一种经典分子,在杂环化学中占有重要地位,自发现以来得到了广泛的发展。通过在哒嗪酮结构中引入新的官能团,可以合成多种多样的化合物。哒嗪酮衍生物在药理学和农用化学品方面的重要性引起了化学家们的兴趣,并将他们的研究方向引向了合成新化合物,以提高其生物有效性。在这篇综述中,我们汇编并讨论了哒嗪酮环的不同合成路线、反应活性以及药理和农用化学品应用。
{"title":"An Overview of Pyridazinone Analogs: Chemical and Pharmacological Potential.","authors":"Youness Boukharsa, Khalid Karrouchi, Houda Attjioui, M'Hammed Ansar","doi":"10.2174/0113895575287746240528072330","DOIUrl":"10.2174/0113895575287746240528072330","url":null,"abstract":"<p><p>Pyridazinones are classical molecules that occupy an important place in heterocyclic chemistry, and since their discovery, they have been widely developed. The introduction of new functional groups into pyridazinone structures has enabled the synthesis of a large diversity of compounds. The pharmacological and agrochemical importance of pyridazinone derivatives has aroused the interest of chemists and directed their research toward the synthesis of new compounds with the aim of improving their biological effectiveness. In this review, we have compiled and discussed the different synthetic routes, reactivity, and pharmacological and agrochemical applications of the pyridazinone ring.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"3-26"},"PeriodicalIF":3.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold. 共享氨基甲酸酯支架的内源性大麻素降解酶的有望抑制剂。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-25 DOI: 10.2174/0113895575328120241107061303
Shivani Jaiswal, Senthil Raja Ayyannan

Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge. In this review, we highlight the therapeutic potential of carbamate inhibitors of endocannabinoid degrading enzymes as a breakthrough in discovering neurotherapeutic drugs. We discuss the design strategies and medicinal chemistry aspects involved in developing carbamate-based molecular architectures that modulate the endocannabinoid signaling pathway by interfering with fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and α/β-Hydrolase domain-containing 6 (ABHD6). Additionally, we highlight the dual activity profile of carbamates against FAAH and MAGL, FAAH and cholinesterase, and FAAH and TRPV1 channels. Furthermore, we illustrate the pharmacophores of O-functionalized carbamates and N-cyclic carbamates that are crucial for FAAH and MAGL inhibitory activities, respectively.

氨基甲酸酯在近代药物发现中被广泛用作支架,也是许多已批准药物的常见结构基团。氨基甲酸酯分子独特的酰胺酯杂化(-O-CO-NH-)特征为设计特定的药物-靶点相互作用提供了可能。尽管发现了许多作用于内源性大麻素系统(ECS)的氨基甲酸酯衍生物,但开发临床有效的氨基甲酸酯药物仍是一项挑战。在这篇综述中,我们强调了氨基甲酸酯类内源性大麻素降解酶抑制剂的治疗潜力,认为这是发现神经治疗药物的一个突破口。我们讨论了通过干扰脂肪酸酰胺水解酶(FAAH)、单酰甘油脂肪酶(MAGL)和含α/β-水解酶结构域的6(ABHD6)来调节内源性大麻素信号通路的氨基甲酸酯类分子结构的设计策略和药物化学方面的问题。此外,我们还强调了氨基甲酸酯类药物对 FAAH 和 MAGL、FAAH 和胆碱酯酶以及 FAAH 和 TRPV1 通道的双重活性特征。此外,我们还说明了 O-官能化氨基甲酸酯和 N-环氨基甲酸酯的药理作用,它们分别对 FAAH 和 MAGL 的抑制活性至关重要。
{"title":"Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold.","authors":"Shivani Jaiswal, Senthil Raja Ayyannan","doi":"10.2174/0113895575328120241107061303","DOIUrl":"https://doi.org/10.2174/0113895575328120241107061303","url":null,"abstract":"<p><p>Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge. In this review, we highlight the therapeutic potential of carbamate inhibitors of endocannabinoid degrading enzymes as a breakthrough in discovering neurotherapeutic drugs. We discuss the design strategies and medicinal chemistry aspects involved in developing carbamate-based molecular architectures that modulate the endocannabinoid signaling pathway by interfering with fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and α/β-Hydrolase domain-containing 6 (ABHD6). Additionally, we highlight the dual activity profile of carbamates against FAAH and MAGL, FAAH and cholinesterase, and FAAH and TRPV1 channels. Furthermore, we illustrate the pharmacophores of O-functionalized carbamates and N-cyclic carbamates that are crucial for FAAH and MAGL inhibitory activities, respectively.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonated Penta-Galloyl Glucose (SPGG): The Pharmacological Effects of Promiscuous Glycosaminoglycan Small Molecule Mimetic. 磺化五缩水甘油葡萄糖(SPGG):杂交氨基葡聚糖小分子模拟物的药理作用。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-08 DOI: 10.2174/0113895575332248241030033106
Rami A Al-Horani

Sulfated glycosaminoglycans (SGAGs), such as heparin, are complex linear polysaccharides attached to core proteins via covalent bonds to form proteoglycans. SGAGs are crucial in assembling extracellular matrix, the regulation of cell signaling and cell behavior, hemostasis, development, and various diseases, including thrombosis, cancer, infectious diseases, and neurodegenerative disorders, through their binding with diverse proteins. Despite the abundant SGAG-protein interactions provided by nature, the development of small SGAG-like molecules remains underexplored. However, sulfonated penta-galloyl glucose (SPGG) represents a promising, easily synthesized, small-molecule mimetic of SGAGs, capable of harnessing these interactions. This minireview discusses the chemical synthesis and characterization of SPGG, along with its pharmacological effects derived from modulating the SGAG-protein interface.

硫酸化糖胺聚糖(SGAGs),如肝素,是一种复杂的线性多糖,通过共价键与核心蛋白质相连,形成蛋白聚糖。SGAGs 通过与不同的蛋白质结合,在组装细胞外基质、调节细胞信号和细胞行为、止血、发育和各种疾病(包括血栓形成、癌症、传染病和神经退行性疾病)中发挥着至关重要的作用。尽管自然界提供了丰富的 SGAG 蛋白相互作用,但对类似 SGAG 的小分子的开发仍然缺乏探索。不过,磺化五碳酰葡萄糖(SPGG)是一种很有前景、易于合成的 SGAGs 小分子模拟物,能够利用这些相互作用。本小视图讨论了 SPGG 的化学合成和表征,以及它通过调节 SGAG 蛋白界面而产生的药理作用。
{"title":"Sulfonated Penta-Galloyl Glucose (SPGG): The Pharmacological Effects of Promiscuous Glycosaminoglycan Small Molecule Mimetic.","authors":"Rami A Al-Horani","doi":"10.2174/0113895575332248241030033106","DOIUrl":"https://doi.org/10.2174/0113895575332248241030033106","url":null,"abstract":"<p><p>Sulfated glycosaminoglycans (SGAGs), such as heparin, are complex linear polysaccharides attached to core proteins via covalent bonds to form proteoglycans. SGAGs are crucial in assembling extracellular matrix, the regulation of cell signaling and cell behavior, hemostasis, development, and various diseases, including thrombosis, cancer, infectious diseases, and neurodegenerative disorders, through their binding with diverse proteins. Despite the abundant SGAG-protein interactions provided by nature, the development of small SGAG-like molecules remains underexplored. However, sulfonated penta-galloyl glucose (SPGG) represents a promising, easily synthesized, small-molecule mimetic of SGAGs, capable of harnessing these interactions. This minireview discusses the chemical synthesis and characterization of SPGG, along with its pharmacological effects derived from modulating the SGAG-protein interface.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Insight into Green Synthesis Approaches, Structural Activity Relationship, and Therapeutic Potential of Pyrazolic Chalcone Derivative. 全面透视吡唑啉酮衍生物的绿色合成方法、结构活性关系和治疗潜力。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-11-07 DOI: 10.2174/0113895575327555241024111038
Samyak Bajaj, Akanksha Gupta, Priyanshu Nema, Rashmi Rawal, Varsha Kashaw, Sushil Kumar Kashaw

Pyrazolic chalcone exhibits diverse therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, antitumor, and anti-diabetic properties. Structural activity relationship (SAR) studies play a crucial role in understanding the molecular aspects governing their biological effects, guiding the rational design of derivatives with enhanced efficacy and reduced side effects. This review provides an overview of pyrazolic chalcone derivatives, emphasizing their synthesis through both conventional and green methods. In comparison, conventional synthesis methods have been widely employed in the past for the production of pyrazolic chalcones, often relying on traditional chemical processes that may involve the use of hazardous reagents and generate significant waste. On the other hand, green synthesis methods, in harmony with the growing emphasis on sustainable practices in drug discovery, offer a more environmentally friendly alternative. Green synthesis typically involves the use of eco-friendly reagents, solvents, and energy-efficient processes, resulting in reduced environmental impact and improved resource efficiency. Overall, pyrazolic chalcone derivatives represent a promising class of compounds with significant potential for therapeutic applications.

吡唑查尔酮具有多种治疗活性,包括抗炎、抗氧化、抗菌、抗肿瘤和抗糖尿病等特性。结构活性关系(SAR)研究在了解制约其生物效应的分子方面起着至关重要的作用,并指导着提高疗效和减少副作用的衍生物的合理设计。本综述概述了吡唑并查尔酮衍生物,重点介绍通过传统方法和绿色方法合成这些衍生物。相比之下,传统合成方法在过去被广泛用于吡唑查尔酮的生产,这些方法通常依赖于传统的化学工艺,可能涉及使用有害试剂并产生大量废物。另一方面,绿色合成方法与药物发现领域日益重视可持续发展的趋势相一致,提供了一种更加环保的替代方法。绿色合成通常涉及使用环保试剂、溶剂和节能工艺,从而减少对环境的影响并提高资源效率。总之,吡唑查尔酮衍生物是一类前景广阔的化合物,具有巨大的治疗应用潜力。
{"title":"Comprehensive Insight into Green Synthesis Approaches, Structural Activity Relationship, and Therapeutic Potential of Pyrazolic Chalcone Derivative.","authors":"Samyak Bajaj, Akanksha Gupta, Priyanshu Nema, Rashmi Rawal, Varsha Kashaw, Sushil Kumar Kashaw","doi":"10.2174/0113895575327555241024111038","DOIUrl":"https://doi.org/10.2174/0113895575327555241024111038","url":null,"abstract":"<p><p>Pyrazolic chalcone exhibits diverse therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, antitumor, and anti-diabetic properties. Structural activity relationship (SAR) studies play a crucial role in understanding the molecular aspects governing their biological effects, guiding the rational design of derivatives with enhanced efficacy and reduced side effects. This review provides an overview of pyrazolic chalcone derivatives, emphasizing their synthesis through both conventional and green methods. In comparison, conventional synthesis methods have been widely employed in the past for the production of pyrazolic chalcones, often relying on traditional chemical processes that may involve the use of hazardous reagents and generate significant waste. On the other hand, green synthesis methods, in harmony with the growing emphasis on sustainable practices in drug discovery, offer a more environmentally friendly alternative. Green synthesis typically involves the use of eco-friendly reagents, solvents, and energy-efficient processes, resulting in reduced environmental impact and improved resource efficiency. Overall, pyrazolic chalcone derivatives represent a promising class of compounds with significant potential for therapeutic applications.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olaparib: A Chemosensitizer for the Treatment of Glioblastoma. 奥拉帕利治疗胶质母细胞瘤的化疗增敏剂。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-10-23 DOI: 10.2174/0113895575318854241014101928
Naresh Dhanavath, Priya Bisht, Mohini Santosh Jamadade, Krishna Murti, Pranay Wal, Nitesh Kumar

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6- Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism via which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.

胶质母细胞瘤(GBM)是最常见、最致命的原发性脑肿瘤。目前治疗 GBM 的方法包括替莫唑胺(TMZ)辅助化疗、放射治疗和手术切除肿瘤。但仍存在一个问题,即50%接受替莫唑胺治疗的GBM患者因对替莫唑胺产生耐药性而导致生存率低下。碱基切除修复(BER)、DNA 错配修复(MMR)和 O-6- 甲基鸟嘌呤-DNA 甲基转移酶(MGMT)等 DNA 修复机制的激活是 TMZ 产生耐药性的主要机制。锌指DNA结合酶多(ADP-核糖)聚合酶-1(PARP1)通过与DNA断裂结合而被激活,影响MGMT、BER和MMR途径缺陷的激活,从而导致GBM的TMZ耐药。最近研究发现,PARP 抑制剂可作为增敏药物提高 TMZ 的效力。第一个被发现的 PARP 抑制剂家族成员是 Olaparib。它能抑制 PARP1 和 PARP2,从而导致癌细胞凋亡和 DNA 链断裂。除了作为单药使用外,奥拉帕利目前还被研究用作放射和/或化疗增敏剂,因为它可以增强其他治疗方法的细胞毒性作用。本综述探讨了奥拉帕利及其在治疗 GBM 中 TMZ 耐药性方面的意义。
{"title":"Olaparib: A Chemosensitizer for the Treatment of Glioblastoma.","authors":"Naresh Dhanavath, Priya Bisht, Mohini Santosh Jamadade, Krishna Murti, Pranay Wal, Nitesh Kumar","doi":"10.2174/0113895575318854241014101928","DOIUrl":"https://doi.org/10.2174/0113895575318854241014101928","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor. The current treatment for GBM includes adjuvant chemotherapy with temozolomide (TMZ), radiation therapy, and surgical tumor excision. There is still an issue because 50% of patients with GBM who get TMZ have low survival rates due to TMZ resistance. The activation of several DNA repair mechanisms, such as Base Excision Repair (BER), DNA Mismatch Repair (MMR), and O-6- Methylguanine-DNA Methyltransferase (MGMT), is the main mechanism via which TMZ resistance develops. The zinc-finger DNA-binding enzyme poly (ADP-ribose) polymerase-1 (PARP1), which is activated by binding to DNA breaks, affects the activation of the MGMT, BER, and MMR pathway deficiency, which results in TMZ resistance in GBM. PARP inhibitors have been studied recently as sensitizing medications to increase TMZ potency. The first member of the PARP inhibitor family to be identified was Olaparib. It inhibits PARP1 and PARP2, which causes apoptosis in cancer cells and DNA strand break. Olaparib is currently investigated as a radio- and/or chemo-sensitizer in addition to being used as a single agent because it may increase the cytotoxic effects of other treatments. This review addresses Olaparib and its significance in treating TMZ resistance in GBM.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ From That of Actual Human Tumors. 实验癌细胞模型的能量代谢行为和对微环境因素的反应与实际人类肿瘤不同
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-10-15 DOI: 10.2174/0113895575322436240924101642
Rafael Moreno-Sanchez, Jorge Luis Vargas-Navarro, Joaquín Alberto Padilla-Flores, Diana Xochiquetzal Robledo-Cadena, Juan Carlos Granados-Rivas, Rutt Taba, Anton Terasmaa, Giuseppe Leonardo Auditano, Tuuli Kaambre, Sara Rodríguez-Enríquez

Analysis of the biochemical differences in the energy metabolism among bi-dimensional (2D) and tri-dimensional (3D) cultured cancer cell models and actual human tumors was undertaken. In 2D cancer cells, the oxidative phosphorylation (OxPhos) fluxes range is 2.5-19 nmol O2/min/mg cellular protein. Hypoxia drastically decreased OxPhos flux by 2-3 times in 2D models, similar to what occurs in mature multicellular tumor spheroids (MCTS), a representative 3D cancer cell model. However, mitochondrial protein contents and enzyme activities were significantly different between both models. Moreover, glycolytic fluxes were also significantly different between 2D and MCTS. The glycolytic flux range in 2D models is 1-34 nmol lactate/min/mg cellular protein, whereas in MCTS the range of glycolysis fluxes is 60-80 nmol lactate/min/mg cellular. In addition, sensitivity to anticancer canonical and metabolic drugs was greater in MCTS than in 2D. Actual solid human tumor samples show lower (1.6-4.5 times) OxPhos fluxes compared to normoxic 2D cancer cell cultures. These observations indicate that tridimensional organization provides a unique microenvironment affecting tumor physiology, which has not been so far faithfully reproduced by the 2D environment. Thus, the analysis of the resemblances and differences among cancer cell models undertaken in the present study raises caution on the interpretation of results derived from 2D cultured cancer cells when they are extended to clinical settings. It also raises awareness about detecting which biological and environmental factors are missing in 2D and 3D cancer cell models to be able to reproduce the actual human tumor behavior.

研究人员分析了二维(2D)和三维(3D)培养癌细胞模型与实际人类肿瘤在能量代谢方面的生化差异。在二维癌细胞中,氧化磷酸化(OxPhos)通量范围为 2.5-19 nmol O2/min/mg细胞蛋白。缺氧会使二维模型中的 OxPhos 通量急剧下降 2-3 倍,这与成熟的多细胞肿瘤球(MCTS)(一种代表性的三维癌细胞模型)中的情况相似。但是,两种模型的线粒体蛋白质含量和酶活性有显著差异。此外,2D 和 MCTS 的糖酵解通量也有显著差异。二维模型的糖酵解通量范围为 1-34 nmol lactate/min/mg细胞蛋白,而 MCTS 的糖酵解通量范围为 60-80 nmol lactate/min/mg细胞蛋白。此外,MCTS 对抗癌药物和代谢药物的敏感性也高于二维模型。与常氧二维癌细胞培养物相比,实际的实体人类肿瘤样本显示出更低的(1.6-4.5 倍)OxPhos 通量。这些观察结果表明,三维组织提供了影响肿瘤生理学的独特微环境,而二维环境迄今尚未忠实地再现这种微环境。因此,本研究对不同癌细胞模型之间的相似性和差异性进行了分析,提醒人们在解释从二维培养的癌细胞中得出的结果并将其推广到临床环境时要谨慎。它还提高了人们对检测二维和三维癌细胞模型中缺少哪些生物和环境因素以重现实际人类肿瘤行为的认识。
{"title":"Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ From That of Actual Human Tumors.","authors":"Rafael Moreno-Sanchez, Jorge Luis Vargas-Navarro, Joaquín Alberto Padilla-Flores, Diana Xochiquetzal Robledo-Cadena, Juan Carlos Granados-Rivas, Rutt Taba, Anton Terasmaa, Giuseppe Leonardo Auditano, Tuuli Kaambre, Sara Rodríguez-Enríquez","doi":"10.2174/0113895575322436240924101642","DOIUrl":"https://doi.org/10.2174/0113895575322436240924101642","url":null,"abstract":"<p><p>Analysis of the biochemical differences in the energy metabolism among bi-dimensional (2D) and tri-dimensional (3D) cultured cancer cell models and actual human tumors was undertaken. In 2D cancer cells, the oxidative phosphorylation (OxPhos) fluxes range is 2.5-19 nmol O2/min/mg cellular protein. Hypoxia drastically decreased OxPhos flux by 2-3 times in 2D models, similar to what occurs in mature multicellular tumor spheroids (MCTS), a representative 3D cancer cell model. However, mitochondrial protein contents and enzyme activities were significantly different between both models. Moreover, glycolytic fluxes were also significantly different between 2D and MCTS. The glycolytic flux range in 2D models is 1-34 nmol lactate/min/mg cellular protein, whereas in MCTS the range of glycolysis fluxes is 60-80 nmol lactate/min/mg cellular. In addition, sensitivity to anticancer canonical and metabolic drugs was greater in MCTS than in 2D. Actual solid human tumor samples show lower (1.6-4.5 times) OxPhos fluxes compared to normoxic 2D cancer cell cultures. These observations indicate that tridimensional organization provides a unique microenvironment affecting tumor physiology, which has not been so far faithfully reproduced by the 2D environment. Thus, the analysis of the resemblances and differences among cancer cell models undertaken in the present study raises caution on the interpretation of results derived from 2D cultured cancer cells when they are extended to clinical settings. It also raises awareness about detecting which biological and environmental factors are missing in 2D and 3D cancer cell models to be able to reproduce the actual human tumor behavior.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment. 用吲哚支架靶向 Bcl-2:治疗癌症的新兴药物设计策略》。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-10-08 DOI: 10.2174/0113895575306176240925094457
Pouria Zarrin, Zeynep Ates-Alagoz

The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.

B 细胞淋巴瘤-2(Bcl-2)蛋白家族在细胞凋亡过程中起着至关重要的调节作用。大量证据表明,在一些癌症细胞系和原始肿瘤组织样本中,抗凋亡 Bcl-2 蛋白的上调非常普遍。这一现象在使肿瘤细胞避免凋亡方面起着至关重要的作用,从而促进了抗化疗细胞的发展。因此,通过下调抗凋亡的 Bcl-2 蛋白,可以提高癌症化疗的成功率。此外,吲哚结构设计常见于各种天然物质和生物活性化合物中,尤其是那些具有抗癌特性的化合物。由于吲哚具有独特的物理化学和生物学特性,它一直被视为开发和生产抗癌药物的基本框架。因此,相当多的吲哚衍生物,包括天然存在的和已开发的化合物,已被确定为治疗癌症的潜在候选药物。其中一些衍生物已进入临床试验阶段,而另一些则已用于临床。这凸显了吲哚在抗癌疗法研发领域的重要作用。本研究概述了细胞凋亡和 Bcl-2 家族蛋白的结构特征,主要考察了在其结构中嵌入吲哚支架的 Bcl-2 抑制剂的现阶段和最新进展。
{"title":"Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment.","authors":"Pouria Zarrin, Zeynep Ates-Alagoz","doi":"10.2174/0113895575306176240925094457","DOIUrl":"https://doi.org/10.2174/0113895575306176240925094457","url":null,"abstract":"<p><p>The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Therapeutic Potential of Green Tea (Camellia sinensis L.) in Anti-Aging: A Comprehensive Review of Mechanisms and Findings. 探索绿茶(Camellia sinensis L.)在抗衰老方面的治疗潜力:机制和研究结果的全面回顾。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-10-04 DOI: 10.2174/0113895575331878240924035332
Bhagavathi Sundaram Sivamaruthi, Natarajan Sisubalan, Shucai Wang, Periyanaina Kesika, Chaiyavat Chaiyasut

Green tea (GT) is rich in Phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggested that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like C. elegans. Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transpersonal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrated significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes via the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.

绿茶(GT)富含表没食子儿茶素没食子酸酯(EGCG)、表没食子儿茶素(EGC)、表儿茶素没食子酸酯(ECG)、表儿茶素(EC)、儿茶素和单宁酸等植物活性化合物,这些化合物结合在一起会产生协同效应。临床前研究表明,GT 及其化合物可以减少活性氧(ROS),提高抗氧化能力,缓解与衰老有关的问题,如记忆力减退、认知能力下降和寿命缩短。临床试验证实,GT 外用制剂在改善肤色、质地和弹性以及减少皱纹方面具有功效。本手稿总结了 GT 抗衰老潜力及其可能机制的最新进展。文献调查表明,饮用 GT 与改善认知、降低抑郁水平以及激活模式生物(如秀丽隐杆线虫)的通路有关。此外,茶多酚还能增强成纤维细胞的有丝分裂,提高啮齿类动物海马突触的可塑性,缓解与年龄相关的认知能力衰退。此外,EGCG 还能减少 TNF 诱导的 MMP-1 表达,抑制 ERK 信号传导,抑制人真皮成纤维细胞中 MEK 和 Src 的磷酸化,从而具有抗衰老特性。在皮肤渗透和沉积方面,与普通EGCG相比,含有EGCG和透明质酸(HA)的优化换位配方(TF)显著提高了EGCG的皮肤渗透和沉积能力。此外,EGCG还能通过PPARγ途径保护心肌细胞,并通过miRNA-486-5p调控、AKT激活以及FoxO1a介导的MuRF1和Atrogin-1的表达来对抗与年龄相关的肌肉流失。总之,经常食用 GT 有助于促进身心健康、延缓大脑和皮肤衰老,并通过提高总抗氧化能力改善整体健康。
{"title":"Exploring the Therapeutic Potential of Green Tea (Camellia sinensis L.) in Anti-Aging: A Comprehensive Review of Mechanisms and Findings.","authors":"Bhagavathi Sundaram Sivamaruthi, Natarajan Sisubalan, Shucai Wang, Periyanaina Kesika, Chaiyavat Chaiyasut","doi":"10.2174/0113895575331878240924035332","DOIUrl":"https://doi.org/10.2174/0113895575331878240924035332","url":null,"abstract":"<p><p>Green tea (GT) is rich in Phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggested that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like C. elegans. Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transpersonal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrated significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes via the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer. 先进生物材料在癌症光动力疗法中的光药效最新趋势综述。
IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-10-03 DOI: 10.2174/0113895575320468240912093945
Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammed Naseer, Safia Hassan, Momin Khan, Amina Zulfiqar

Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O2]. The ability to absorb light in visible and nearinfrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.

光动力疗法(PDT)已成为一种高效、无创的癌症治疗方法,考虑到全球与癌症相关的死亡率很高,这一点至关重要。光动力疗法的有效性主要取决于所使用的光敏剂的质量。当受到适当的光照射时,这些光敏剂会吸收能量并过渡到激发态,最终将能量转移到附近的分子并产生活性氧(ROS),包括单线态氧[1O2]。卟啉及其衍生物能够吸收可见光和近红外线波长的光,因此是一种非常有用的光敏剂。卟啉由四个亚甲基连接的四吡咯结构组成,是典型的光敏剂。卟啉类光敏剂的水溶性和生物稳定性有限,且具有非特异性肿瘤靶向特性,这阻碍了光导放疗的有效性和临床应用。因此,人们采用了多种改性和功能化技术来最大限度地提高 PDT 的效率,并开发了多维卟啉基功能材料。本综述论文研究了卟啉基功能材料的最新进展,主要集中在两个方面:一是开发了可改善水溶性和生物相容性的卟啉双亲化合物;二是设计了卟啉基聚合物,包括共价键嵌段共聚物和非共价键超分子聚合物,为 PDT 应用提供了多功能平台。卟啉基功能材料的开发将为研究人员开辟新的机遇,从而大大扩展光导透射疗法在癌症治疗中的应用。有了这些创新,卟啉将克服自身的局限性,将光导放疗推向癌症治疗的前沿。
{"title":"A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer.","authors":"Nawab Ali, Liaqat Rasheed, Wajid Rehman, Muhammed Naseer, Safia Hassan, Momin Khan, Amina Zulfiqar","doi":"10.2174/0113895575320468240912093945","DOIUrl":"https://doi.org/10.2174/0113895575320468240912093945","url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O2]. The ability to absorb light in visible and nearinfrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mini reviews in medicinal chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1