Background: Marine actinomycetes, especially Streptomyces, are recognized as excellent producers of diverse and bioactive secondary metabolites on account of the multiplicity of marine habitations and unique ecological conditions, which are yet to be explored in terms of taxonomy, ecology, and functional activity. Isolation, culture and genome analysis of novel species of Streptomyces to explore their potential for discovering bioactive compounds is an important approach in natural product research.
Results: A marine actinobacteria, designated strain SCSIO 75703 T, was isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity assays. The phylogenetic, phenotypic and chemotaxonomic analyses indicate that strain SCSIO 75703 T represents a novel species in genus Streptomyces, for which the name Streptomyces sediminicola sp. nov. is proposed. Genome analysis revealed the presence of 25 secondary metabolite biosynthetic gene clusters. The screening for antibacterial activity reveals the potential to produce bioactive metabolites, highlighting its value for in-depth exploration of chemical constituents. Seven compounds (1-7) were separated from the fractions guided by antibacterial activities, including three indole alkaloids (1-3), three polyketide derivatives (4-6), and 4-(dimethylamino)benzoic acid (7). These primarily antibacterial components were identified as anthracimycin (4), 2-epi-anthracimycin (5) and β-rubromycin (6), presenting strong antibacterial activities against Gram-positive bacteria with the MIC value ranged from 0.125 to 16 μg/mL. Additionally,, monaprenylindole A (1) and 3-cyanomethyl-6-prenylindole (2) displayed moderate inhibitory activities against α-glucosidase with the IC50 values of 83.27 and 86.21 μg/mL, respectively.
Conclusion: Strain SCSIO 75703 T was isolated from marine sediment and identified as a novel species within the genus Streptomyces. Based on genomic analysis, compounds isolation and bioactivity studies, seven compounds were identified, with anthracimycin and β-rubromycin showing significant biological activity and promising potential for further applications.
背景:海洋放线菌,尤其是链霉菌,因其在海洋中栖息的多样性和独特的生态条件,被认为是多种多样、具有生物活性的次生代谢物的优秀生产者。对新型链霉菌进行分离、培养和基因组分析,探索其发现生物活性化合物的潜力,是天然产物研究的重要方法:结果:分离出一种海洋放线菌,命名为 SCSIO 75703 T 菌株,并根据基因组挖掘、化合物检测和抗菌活性测定评估了其发现生物活性天然产物的潜力。系统发生学、表型学和化学分类学分析表明,菌株 SCSIO 75703 T 代表链霉菌属中的一个新物种,并将其命名为 Streptomyces sediminicola sp.基因组分析显示,该菌株存在 25 个次级代谢物生物合成基因簇。抗菌活性筛选揭示了其产生生物活性代谢物的潜力,凸显了其深入探索化学成分的价值。通过抗菌活性筛选,从馏分中分离出 7 种化合物(1-7),包括 3 种吲哚生物碱(1-3)、3 种多酮衍生物(4-6)和 4-(二甲基氨基)苯甲酸(7)。这些主要抗菌成分被鉴定为蒽霉素(4)、2-表蒽霉素(5)和β-红霉素(6),对革兰氏阳性菌具有很强的抗菌活性,其 MIC 值介于 0.125 至 16 μg/mL 之间。此外,单壬基吲哚 A(1)和 3-氰甲基-6-壬基吲哚(2)对α-葡萄糖苷酶具有中等程度的抑制活性,IC50 值分别为 83.27 和 86.21 μg/mL:从海洋沉积物中分离出的菌株 SCSIO 75703 T 被鉴定为链霉菌属中的一个新物种。根据基因组分析、化合物分离和生物活性研究,确定了 7 种化合物,其中蒽霉素和β-红霉素显示出显著的生物活性和进一步应用的潜力。
{"title":"Investigation on taxonomy, secondary metabolites and antibacterial activity of Streptomyces sediminicola sp. nov., a novel marine sediment-derived Actinobacteria.","authors":"Kun Zhang, Wenping Ding, Chenghui Han, Lijuan Long, Hao Yin, Jianping Yin","doi":"10.1186/s12934-024-02558-z","DOIUrl":"10.1186/s12934-024-02558-z","url":null,"abstract":"<p><strong>Background: </strong>Marine actinomycetes, especially Streptomyces, are recognized as excellent producers of diverse and bioactive secondary metabolites on account of the multiplicity of marine habitations and unique ecological conditions, which are yet to be explored in terms of taxonomy, ecology, and functional activity. Isolation, culture and genome analysis of novel species of Streptomyces to explore their potential for discovering bioactive compounds is an important approach in natural product research.</p><p><strong>Results: </strong>A marine actinobacteria, designated strain SCSIO 75703<sup> T</sup>, was isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity assays. The phylogenetic, phenotypic and chemotaxonomic analyses indicate that strain SCSIO 75703<sup> T</sup> represents a novel species in genus Streptomyces, for which the name Streptomyces sediminicola sp. nov. is proposed. Genome analysis revealed the presence of 25 secondary metabolite biosynthetic gene clusters. The screening for antibacterial activity reveals the potential to produce bioactive metabolites, highlighting its value for in-depth exploration of chemical constituents. Seven compounds (1-7) were separated from the fractions guided by antibacterial activities, including three indole alkaloids (1-3), three polyketide derivatives (4-6), and 4-(dimethylamino)benzoic acid (7). These primarily antibacterial components were identified as anthracimycin (4), 2-epi-anthracimycin (5) and β-rubromycin (6), presenting strong antibacterial activities against Gram-positive bacteria with the MIC value ranged from 0.125 to 16 μg/mL. Additionally,, monaprenylindole A (1) and 3-cyanomethyl-6-prenylindole (2) displayed moderate inhibitory activities against α-glucosidase with the IC<sub>50</sub> values of 83.27 and 86.21 μg/mL, respectively.</p><p><strong>Conclusion: </strong>Strain SCSIO 75703<sup> T</sup> was isolated from marine sediment and identified as a novel species within the genus Streptomyces. Based on genomic analysis, compounds isolation and bioactivity studies, seven compounds were identified, with anthracimycin and β-rubromycin showing significant biological activity and promising potential for further applications.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"285"},"PeriodicalIF":4.3,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1186/s12934-024-02521-y
Eman A Karam, Mohamed E Hassan, Nouran A Elattal, Amany L Kansoh, Mona A Esawy
Background: Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use.
Result: The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca2+ alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese.
Conclusions: The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.
{"title":"Cell immobilization for enhanced milk clotting enzyme production from Bacillus amyloliquefacien and cheese quality.","authors":"Eman A Karam, Mohamed E Hassan, Nouran A Elattal, Amany L Kansoh, Mona A Esawy","doi":"10.1186/s12934-024-02521-y","DOIUrl":"https://doi.org/10.1186/s12934-024-02521-y","url":null,"abstract":"<p><strong>Background: </strong>Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use.</p><p><strong>Result: </strong>The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca<sup>2+</sup> alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese.</p><p><strong>Conclusions: </strong>The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"283"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency. Quantitative analysis demonstrated that SP-mediated secretion was markedly higher compared to controls, albeit with lower total expression levels. Further exploration into SP-mediated ERAD pathway activation showed increased expression of BiP and other ERAD-associated genes (PDI, UFD1, S1P, and ASK1), correlating with higher SP-driven protein expression levels. RNA interference (RNAi) experiments elucidated that knockdown of ERAD-associated genes enhances both the secretion efficiency of SP-guided proteins and the infectivity of BmNPV. Particularly, interference with BiP demonstrated the most pronounced effect on protein secretion enhancement. Viral infection experiments further supported these findings, showing upregulated ERAD-associated genes during BmNPV infection, indicating their role in viral protein processing and infectivity. In conclusion, this study elucidates the complex interplay between SP-mediated protein secretion, ERAD pathway activation, and viral infectivity in BmNPV-infected cells. These insights suggest strategies for optimizing recombinant protein production and viral protein processing in baculovirus expression systems, with potential implications for biotechnological and biomedical applications. Further research could refine our understanding and manipulation of protein secretion pathways in insect cell-based expression systems.
{"title":"The signal peptide of BmNPV GP64 activates the ERAD pathway to regulate heterogeneous secretory protein expression.","authors":"Na Liu, Ying Xu, Luping Sun, Mengmeng Li, Jinshan Huang, Bifang Hao","doi":"10.1186/s12934-024-02534-7","DOIUrl":"https://doi.org/10.1186/s12934-024-02534-7","url":null,"abstract":"<p><p>As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency. Quantitative analysis demonstrated that SP-mediated secretion was markedly higher compared to controls, albeit with lower total expression levels. Further exploration into SP-mediated ERAD pathway activation showed increased expression of BiP and other ERAD-associated genes (PDI, UFD1, S1P, and ASK1), correlating with higher SP-driven protein expression levels. RNA interference (RNAi) experiments elucidated that knockdown of ERAD-associated genes enhances both the secretion efficiency of SP-guided proteins and the infectivity of BmNPV. Particularly, interference with BiP demonstrated the most pronounced effect on protein secretion enhancement. Viral infection experiments further supported these findings, showing upregulated ERAD-associated genes during BmNPV infection, indicating their role in viral protein processing and infectivity. In conclusion, this study elucidates the complex interplay between SP-mediated protein secretion, ERAD pathway activation, and viral infectivity in BmNPV-infected cells. These insights suggest strategies for optimizing recombinant protein production and viral protein processing in baculovirus expression systems, with potential implications for biotechnological and biomedical applications. Further research could refine our understanding and manipulation of protein secretion pathways in insect cell-based expression systems.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"284"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12934-024-02548-1
Jing Chong Tan, Qitiao Hu, Nigel S Scrutton
Background: Achieving cost-competitiveness remains challenging for industrial biomanufacturing. With whole-cell biocatalysis, inefficiency presents when individual cells vary in their production levels. The problem exacerbates when the basis for such production heterogeneity is heritable. Here, evolution selects for the low- and non-producers, as they have lowered/abolished the cost of bioproduction to fitness. With the scale of population expansion required for industrial bioproduction, the asymmetrical enrichment can be severe enough to compromise the performance, and hence commercial viability of the bioprocess. Clearly, addressing production heterogeneity is crucial, especially in improving the stability of bioproduction across the cell generations. In this respect, we designed a growth-coupling strategy for terpenoid bioproduction in Escherichia coli. By knocking out the native 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and introducing the heterologous mevalonate pathway, we created a chassis that relies solely on the latter for synthesis of all terpenoids. We hypothesise that the need to sustain the biosynthesis of endogenous life-sustaining terpenoids will impose a minimum level of productivity, which concomitantly improves the bioproduction of our target terpenoid.
Results: Following the confirmation of lethality of a dxr knockout, we challenged the strains with a continuous plasmid-based bioproduction of linalool. The Δdxr strain achieved an improved productivity profile in the first three days post-inoculation when compared to the parental strain. Productivity of the Δdxr strain remained observable near the end of 12 days, and after a disruption in nutrient and oxygen supply in a separate run. Unlike the parental strain, the Δdxr strain did not evolve the same deleterious mutations in the mevalonate pathway, nor a viable subgroup that had lost its resistance to the antibiotic selection pressure (a plausible plasmid loss event). We believe that this divergence in the evolution trajectories is indicative of a successful growth-coupling.
Conclusion: We have demonstrated a proof of concept of a growth-coupling strategy that improves the performance, and stability of terpenoid bioproduction across cell generations. The strategy is relatively broad in scope, and easy to implement in the background as a 'fail-safe' against a fall in productivity below the imposed minimum. We thus believe this work will find widespread utility in our collective effort towards industrial bioproduction.
{"title":"A growth-coupling strategy for improving the stability of terpenoid bioproduction in Escherichia coli.","authors":"Jing Chong Tan, Qitiao Hu, Nigel S Scrutton","doi":"10.1186/s12934-024-02548-1","DOIUrl":"https://doi.org/10.1186/s12934-024-02548-1","url":null,"abstract":"<p><strong>Background: </strong>Achieving cost-competitiveness remains challenging for industrial biomanufacturing. With whole-cell biocatalysis, inefficiency presents when individual cells vary in their production levels. The problem exacerbates when the basis for such production heterogeneity is heritable. Here, evolution selects for the low- and non-producers, as they have lowered/abolished the cost of bioproduction to fitness. With the scale of population expansion required for industrial bioproduction, the asymmetrical enrichment can be severe enough to compromise the performance, and hence commercial viability of the bioprocess. Clearly, addressing production heterogeneity is crucial, especially in improving the stability of bioproduction across the cell generations. In this respect, we designed a growth-coupling strategy for terpenoid bioproduction in Escherichia coli. By knocking out the native 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and introducing the heterologous mevalonate pathway, we created a chassis that relies solely on the latter for synthesis of all terpenoids. We hypothesise that the need to sustain the biosynthesis of endogenous life-sustaining terpenoids will impose a minimum level of productivity, which concomitantly improves the bioproduction of our target terpenoid.</p><p><strong>Results: </strong>Following the confirmation of lethality of a dxr knockout, we challenged the strains with a continuous plasmid-based bioproduction of linalool. The Δdxr strain achieved an improved productivity profile in the first three days post-inoculation when compared to the parental strain. Productivity of the Δdxr strain remained observable near the end of 12 days, and after a disruption in nutrient and oxygen supply in a separate run. Unlike the parental strain, the Δdxr strain did not evolve the same deleterious mutations in the mevalonate pathway, nor a viable subgroup that had lost its resistance to the antibiotic selection pressure (a plausible plasmid loss event). We believe that this divergence in the evolution trajectories is indicative of a successful growth-coupling.</p><p><strong>Conclusion: </strong>We have demonstrated a proof of concept of a growth-coupling strategy that improves the performance, and stability of terpenoid bioproduction across cell generations. The strategy is relatively broad in scope, and easy to implement in the background as a 'fail-safe' against a fall in productivity below the imposed minimum. We thus believe this work will find widespread utility in our collective effort towards industrial bioproduction.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"279"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12934-024-02538-3
Mohamed I Selim, Fatma I Sonbol, Tarek E El-Banna, Walaa A Negm, Engy Elekhnawy
Carbapenem-resistant Acinetobacter baumannii denotes a significant menace to public health, and it mandates an urgent development of new effective medications. Here, we aimed to estimate the efficiency of the zinc oxide nanoparticles (ZnO NP) biosynthesized from Arthrospira maxima (Spirulina) both in vitro and in vivo. Carbapenem-resistant A. baumannii isolates were collected, identified, tested for their antibiotic susceptibility, and then subjected to PCR to detect carbapenemase-producing genes. The most predominant carbapenemase resistance gene was blaKPC. The biosynthesized ZnO NP were characterized using UV, FTIR, XRD, SEM, and TEM. The prepared ZnO NP was then tested against A. baumannii isolates to determine the minimum inhibitory concentration (MIC), which ranged from 250 to 1000 μg/ml. Burn wound was persuaded in twenty rats and inoculated with carbapenem-resistant A. baumannii isolate. Rats were allocated into four groups: a negative control group, a positive control group treated with topical 0.9% saline, a test treatment group that received topical ZnO NP, and a standard treatment group. All groups received treatment for 15 consecutive days and then euthanized. Skin samples were harvested and then subjected to histopathological and immunochemical investigations. ZnO NP revealed a comparable antibacterial activity to colistin as it revealed a lower level of fibrosis, mature surface epithelization with keratinization, and restoration of the normal skin architecture. In addition, it significantly decreased the immunoreactivity of the studied inflammatory markers. Thus, ZnO NP synthesized by A. maxima could be considered a promising, safe, and biocompatible alternative to traditional antibiotics in the therapy of carbapenem-resistant A. baumannii infections.
{"title":"Antibacterial and wound healing potential of biosynthesized zinc oxide nanoparticles against carbapenem-resistant Acinetobacter baumannii: an in vitro and in vivo study.","authors":"Mohamed I Selim, Fatma I Sonbol, Tarek E El-Banna, Walaa A Negm, Engy Elekhnawy","doi":"10.1186/s12934-024-02538-3","DOIUrl":"https://doi.org/10.1186/s12934-024-02538-3","url":null,"abstract":"<p><p>Carbapenem-resistant Acinetobacter baumannii denotes a significant menace to public health, and it mandates an urgent development of new effective medications. Here, we aimed to estimate the efficiency of the zinc oxide nanoparticles (ZnO NP) biosynthesized from Arthrospira maxima (Spirulina) both in vitro and in vivo. Carbapenem-resistant A. baumannii isolates were collected, identified, tested for their antibiotic susceptibility, and then subjected to PCR to detect carbapenemase-producing genes. The most predominant carbapenemase resistance gene was bla<sub>KPC</sub>. The biosynthesized ZnO NP were characterized using UV, FTIR, XRD, SEM, and TEM. The prepared ZnO NP was then tested against A. baumannii isolates to determine the minimum inhibitory concentration (MIC), which ranged from 250 to 1000 μg/ml. Burn wound was persuaded in twenty rats and inoculated with carbapenem-resistant A. baumannii isolate. Rats were allocated into four groups: a negative control group, a positive control group treated with topical 0.9% saline, a test treatment group that received topical ZnO NP, and a standard treatment group. All groups received treatment for 15 consecutive days and then euthanized. Skin samples were harvested and then subjected to histopathological and immunochemical investigations. ZnO NP revealed a comparable antibacterial activity to colistin as it revealed a lower level of fibrosis, mature surface epithelization with keratinization, and restoration of the normal skin architecture. In addition, it significantly decreased the immunoreactivity of the studied inflammatory markers. Thus, ZnO NP synthesized by A. maxima could be considered a promising, safe, and biocompatible alternative to traditional antibiotics in the therapy of carbapenem-resistant A. baumannii infections.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"281"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12934-024-02554-3
Minami Ogawa, Jaime Moreno-García, Tyler J Barzee
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
{"title":"Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives.","authors":"Minami Ogawa, Jaime Moreno-García, Tyler J Barzee","doi":"10.1186/s12934-024-02554-3","DOIUrl":"https://doi.org/10.1186/s12934-024-02554-3","url":null,"abstract":"<p><p>Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"280"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12934-024-02502-1
Marcus Vinícius Dias-Souza, Andrea Lima Alves, Sérgio Pagnin, Andrea Azevedo Veiga, Ihtisham Ul Haq, Wadi B Alonazi, Vera Lúcia Dos Santos
Background: Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems.
Results: All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate.
Conclusion: The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.
{"title":"The activity of hydrolytic enzymes and antibiotics against biofilms of bacteria isolated from industrial-scale cooling towers.","authors":"Marcus Vinícius Dias-Souza, Andrea Lima Alves, Sérgio Pagnin, Andrea Azevedo Veiga, Ihtisham Ul Haq, Wadi B Alonazi, Vera Lúcia Dos Santos","doi":"10.1186/s12934-024-02502-1","DOIUrl":"https://doi.org/10.1186/s12934-024-02502-1","url":null,"abstract":"<p><strong>Background: </strong>Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems.</p><p><strong>Results: </strong>All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate.</p><p><strong>Conclusion: </strong>The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"282"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1186/s12934-024-02535-6
Mohamed M El-Zahed, Mohamed I Abou-Dobara, Marwa M El-Khodary, Mohamed M A Mousa
<p><strong>Background: </strong>The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health.</p><p><strong>Results: </strong>The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of th
{"title":"Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel.","authors":"Mohamed M El-Zahed, Mohamed I Abou-Dobara, Marwa M El-Khodary, Mohamed M A Mousa","doi":"10.1186/s12934-024-02535-6","DOIUrl":"https://doi.org/10.1186/s12934-024-02535-6","url":null,"abstract":"<p><strong>Background: </strong>The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health.</p><p><strong>Results: </strong>The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of th","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"278"},"PeriodicalIF":4.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1186/s12934-024-02556-1
Aileen Krüger, Janik Göddecke, Michael Osthege, Luis Navratil, Ulrike Weber, Marco Oldiges, Julia Frunzke
The iron-containing porphyrin heme is of high interest for the food industry for the production of artificial meat as well as for medical applications. Recently, the biotechnological platform strain Corynebacterium glutamicum has emerged as a promising host for animal-free heme production. Beyond engineering of complex heme biosynthetic pathways, improving heme export offers significant yet untapped potential for enhancing production strains. In this study, a growth-coupled biosensor was designed to impose a selection pressure on the increased expression of the hrtBA operon encoding an ABC-type heme exporter in C. glutamicum. For this purpose, the promoter region of the growth-regulating genes pfkA (phosphofructokinase) and aceE (pyruvate dehydrogenase) was replaced with that of PhrtB, creating biosensor strains with a selection pressure for hrtBA activation. Resulting sensor strains were used for plate-based selections and for a repetitive batch f(luorescent)ALE using a fully automated laboratory platform. Genome sequencing of isolated clones featuring increased hrtBA expression revealed three distinct mutational hotspots: (i) chrS, (ii) chrA, and (iii) cydD. Mutations in the genes of the ChrSA two-component system, which regulates hrtBA in response to heme levels, were identified as a promising target to enhance export activity. Furthermore, causal mutations within cydD, encoding an ABC-transporter essential for cytochrome bd oxidase assembly, were confirmed by the construction of a deletion mutant. Reversely engineered strains showed strongly increased hrtBA expression as well as increased cellular heme levels. These results further support the proposed role of CydDC as a heme transporter in bacteria. Mutations identified in this study therefore underline the potential of biosensor-based growth coupling and provide promising engineering targets to improve microbial heme production.
{"title":"Biosensor-based growth-coupling as an evolutionary strategy to improve heme export in Corynebacterium glutamicum.","authors":"Aileen Krüger, Janik Göddecke, Michael Osthege, Luis Navratil, Ulrike Weber, Marco Oldiges, Julia Frunzke","doi":"10.1186/s12934-024-02556-1","DOIUrl":"https://doi.org/10.1186/s12934-024-02556-1","url":null,"abstract":"<p><p>The iron-containing porphyrin heme is of high interest for the food industry for the production of artificial meat as well as for medical applications. Recently, the biotechnological platform strain Corynebacterium glutamicum has emerged as a promising host for animal-free heme production. Beyond engineering of complex heme biosynthetic pathways, improving heme export offers significant yet untapped potential for enhancing production strains. In this study, a growth-coupled biosensor was designed to impose a selection pressure on the increased expression of the hrtBA operon encoding an ABC-type heme exporter in C. glutamicum. For this purpose, the promoter region of the growth-regulating genes pfkA (phosphofructokinase) and aceE (pyruvate dehydrogenase) was replaced with that of P<sub>hrtB</sub>, creating biosensor strains with a selection pressure for hrtBA activation. Resulting sensor strains were used for plate-based selections and for a repetitive batch f(luorescent)ALE using a fully automated laboratory platform. Genome sequencing of isolated clones featuring increased hrtBA expression revealed three distinct mutational hotspots: (i) chrS, (ii) chrA, and (iii) cydD. Mutations in the genes of the ChrSA two-component system, which regulates hrtBA in response to heme levels, were identified as a promising target to enhance export activity. Furthermore, causal mutations within cydD, encoding an ABC-transporter essential for cytochrome bd oxidase assembly, were confirmed by the construction of a deletion mutant. Reversely engineered strains showed strongly increased hrtBA expression as well as increased cellular heme levels. These results further support the proposed role of CydDC as a heme transporter in bacteria. Mutations identified in this study therefore underline the potential of biosensor-based growth coupling and provide promising engineering targets to improve microbial heme production.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"276"},"PeriodicalIF":4.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1186/s12934-024-02549-0
Agnieszka Strzałka, Jakub Mikołajczyk, Klaudia Kowalska, Michał Skurczyński, Neil A Holmes, Dagmara Jakimowicz
Background: Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far.
Results: In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production.
Conclusions: We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
背景:链霉菌是一种土壤孢子细菌,在次生代谢物的生物合成方面具有巨大潜力。管理 Streptomyces coelicolor 分化和次生代谢物生产的调控网络非常复杂,由从特定转录调控因子到 sigma 因子等众多调控蛋白组成。核糖体相关蛋白(NAPs)也被认为有助于基因表达的调控。与 DNA 结合后,这些蛋白质会影响 DNA 的可及性。在 NAPs 中,HU 蛋白最为广泛和丰富。与其他细菌不同,链霉菌基因组编码两种 HU 同源物:HupA 和 HupS,它们在结构和表达谱上有所不同。然而,这两种同源物的功能是否重叠仍不清楚。此外,虽然这两种蛋白都被证明能与染色体结合,但它们在转录调控中的作用至今尚未研究:在这项研究中,我们探讨了 HupA 和 HupS 是否会影响 S. coelicolor 在最佳和应激条件下的生长,以及它们是如何控制全局基因表达的。通过测试单突变体和双突变体,我们解决了两个 HU 同源物的互补性问题。我们发现,缺乏两个 Hup 基因会导致生长和孢子生成受抑制,以及孢子脆性增加。我们还证明,这两个HU同源基因可被视为全局转录调控因子,影响2%至6%的基因表达,这些基因编码的蛋白质与全局调控网络和次生代谢物的产生有关:我们发现了独立的 HupA 和 HupS 调节子,以及受 HupA 和 HupS 蛋白控制的基因。我们的数据表明,在 S. coelicolor 生长过程中,HupA 和 HupS 的功能存在部分重叠。HupA和HupS在链霉菌调控网络中发挥重要作用,并影响次生代谢物群。
{"title":"The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation.","authors":"Agnieszka Strzałka, Jakub Mikołajczyk, Klaudia Kowalska, Michał Skurczyński, Neil A Holmes, Dagmara Jakimowicz","doi":"10.1186/s12934-024-02549-0","DOIUrl":"https://doi.org/10.1186/s12934-024-02549-0","url":null,"abstract":"<p><strong>Background: </strong>Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far.</p><p><strong>Results: </strong>In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production.</p><p><strong>Conclusions: </strong>We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"275"},"PeriodicalIF":4.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}