首页 > 最新文献

medRxiv : the preprint server for health sciences最新文献

英文 中文
Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation. 普通人群脑疾病的神经成像AI内表型:走向脆弱性的维度系统。
Pub Date : 2024-09-25 DOI: 10.1101/2023.08.16.23294179
Junhao Wen, Ioanna Skampardoni, Ye Ella Tian, Zhijian Yang, Yuhan Cui, Guray Erus, Gyujoon Hwang, Erdem Varol, Aleix Boquet-Pujadas, Ganesh B Chand, Ilya Nasrallah, Theodore Satterthwaite, Haochang Shou, Li Shen, Arthur W Toga, Andrew Zalesky, Christos Davatzikos

Disease heterogeneity poses a significant challenge for precision diagnostics. Recent work leveraging artificial intelligence has offered promise to dissect this heterogeneity by identifying complex intermediate brain phenotypes, herein called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×10-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine/.

疾病异质性对临床和亚临床阶段的精确诊断提出了重大挑战。最近利用人工智能(AI)的工作有望通过识别复杂的中间表型(本文称为维度神经成像内表型(DNE))来剖析这种异质性,这些表型分型了各种神经和神经精神疾病。我们调查了在英国生物银行研究的39178名参与者的普通人群中,存在9种来自阿尔茨海默病(AD1-2)1、自闭症谱系障碍(ASD1-3)2、晚期抑郁症(LLD1-2)3和精神分裂症(SCZ1-2)4的独立但协调的研究的DNE。表型范围的关联揭示了九种DNE与大脑和其他人类器官系统相关表型之间的显著关联。这种表型景观与SNP表型全基因组关联一致,揭示了与9个DNE相关的31个基因组基因座(Bonferroni校正的P值<5×10-8/9)。DNE表现出显著的遗传相关性、共定位以及与多个人体器官系统和慢性疾病的因果关系。从以局灶性内侧颞叶萎缩为特征的AD2到AD,建立了因果效应(比值比=1.25[1.11,1.40],P值=8.72×1-4)。9个DNE及其多基因风险评分显著提高了14种系统性疾病类别和死亡率的预测准确性。这些发现强调了九种DNE在精确诊断的临床前阶段识别患有这四种脑部疾病的高风险个体的潜力。所有结果可在以下网站公开获取:http://labs.loni.usc.edu/medicine/.
{"title":"Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation.","authors":"Junhao Wen, Ioanna Skampardoni, Ye Ella Tian, Zhijian Yang, Yuhan Cui, Guray Erus, Gyujoon Hwang, Erdem Varol, Aleix Boquet-Pujadas, Ganesh B Chand, Ilya Nasrallah, Theodore Satterthwaite, Haochang Shou, Li Shen, Arthur W Toga, Andrew Zalesky, Christos Davatzikos","doi":"10.1101/2023.08.16.23294179","DOIUrl":"10.1101/2023.08.16.23294179","url":null,"abstract":"<p><p>Disease heterogeneity poses a significant challenge for precision diagnostics. Recent work leveraging artificial intelligence has offered promise to dissect this heterogeneity by identifying complex intermediate brain phenotypes, herein called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)<sup>1</sup>, autism spectrum disorder (ASD1-3)<sup>2</sup>, late-life depression (LLD1-2)<sup>3</sup>, and schizophrenia (SCZ1-2)<sup>4</sup>, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10<sup>-8</sup>/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×10<sup>-4</sup>) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine/.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/98/fa/nihpp-2023.08.16.23294179v1.PMC10473785.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10210814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. 不同癫痫的共同和独特的超罕见遗传风险:一项对54423个不同遗传祖先个体的全外显子组测序研究。
Pub Date : 2024-09-20 DOI: 10.1101/2023.02.22.23286310
Siwei Chen, Bassel W Abou-Khalil, Zaid Afawi, Quratulain Zulfiqar Ali, Elisabetta Amadori, Alison Anderson, Joe Anderson, Danielle M Andrade, Grazia Annesi, Mutluay Arslan, Pauls Auce, Melanie Bahlo, Mark D Baker, Ganna Balagura, Simona Balestrini, Eric Banks, Carmen Barba, Karen Barboza, Fabrice Bartolomei, Nick Bass, Larry W Baum, Tobias H Baumgartner, Betül Baykan, Nerses Bebek, Felicitas Becker, Caitlin A Bennett, Ahmad Beydoun, Claudia Bianchini, Francesca Bisulli, Douglas Blackwood, Ilan Blatt, Ingo Borggräfe, Christian Bosselmann, Vera Braatz, Harrison Brand, Knut Brockmann, Russell J Buono, Robyn M Busch, S Hande Caglayan, Laura Canafoglia, Christina Canavati, Barbara Castellotti, Gianpiero L Cavalleri, Felecia Cerrato, Francine Chassoux, Christina Cherian, Stacey S Cherny, Ching-Lung Cheung, I-Jun Chou, Seo-Kyung Chung, Claire Churchhouse, Valentina Ciullo, Peggy O Clark, Andrew J Cole, Mahgenn Cosico, Patrick Cossette, Chris Cotsapas, Caroline Cusick, Mark J Daly, Lea K Davis, Peter De Jonghe, Norman Delanty, Dieter Dennig, Chantal Depondt, Philippe Derambure, Orrin Devinsky, Lidia Di Vito, Faith Dickerson, Dennis J Dlugos, Viola Doccini, Colin P Doherty, Hany El-Naggar, Colin A Ellis, Leon Epstein, Meghan Evans, Annika Faucon, Yen-Chen Anne Feng, Lisa Ferguson, Thomas N Ferraro, Izabela Ferreira Da Silva, Lorenzo Ferri, Martha Feucht, Madeline C Fields, Mark Fitzgerald, Beata Fonferko-Shadrach, Francesco Fortunato, Silvana Franceschetti, Jacqueline A French, Elena Freri, Jack M Fu, Stacey Gabriel, Monica Gagliardi, Antonio Gambardella, Laura Gauthier, Tania Giangregorio, Tommaso Gili, Tracy A Glauser, Ethan Goldberg, Alica Goldman, David B Goldstein, Tiziana Granata, Riley Grant, David A Greenberg, Renzo Guerrini, Aslı Gundogdu-Eken, Namrata Gupta, Kevin Haas, Hakon Hakonarson, Garen Haryanyan, Martin Häusler, Manu Hegde, Erin L Heinzen, Ingo Helbig, Christian Hengsbach, Henrike Heyne, Shinichi Hirose, Edouard Hirsch, Chen-Jui Ho, Olivia Hoeper, Daniel P Howrigan, Donald Hucks, Po-Chen Hung, Michele Iacomino, Yushi Inoue, Luciana Midori Inuzuka, Atsushi Ishii, Lara Jehi, Michael R Johnson, Mandy Johnstone, Reetta Kälviäinen, Moien Kanaan, Bulent Kara, Symon M Kariuki, Josua Kegele, Yeşim Kesim, Nathalie Khoueiry-Zgheib, Jean Khoury, Chontelle King, Karl Martin Klein, Gerhard Kluger, Susanne Knake, Fernando Kok, Amos D Korczyn, Rudolf Korinthenberg, Andreas Koupparis, Ioanna Kousiappa, Roland Krause, Martin Krenn, Heinz Krestel, Ilona Krey, Wolfram S Kunz, Gerhard Kurlemann, Ruben I Kuzniecky, Patrick Kwan, Maite La Vega-Talbott, Angelo Labate, Austin Lacey, Dennis Lal, Petra Laššuthová, Stephan Lauxmann, Charlotte Lawthom, Stephanie L Leech, Anna-Elina Lehesjoki, Johannes R Lemke, Holger Lerche, Gaetan Lesca, Costin Leu, Naomi Lewin, David Lewis-Smith, Gloria Hoi-Yee Li, Calwing Liao, Laura Licchetta, Chih-Hsiang Lin, Kuang-Lin Lin, Tarja Linnankivi, Warren Lo, Daniel H Lowenstein, Chelsea Lowther, Laura Lubbers, Colin H T Lui, Lucia Inês Macedo-Souza, Rene Madeleyn, Francesca Madia, Stefania Magri, Louis Maillard, Lara Marcuse, Paula Marques, Anthony G Marson, Abigail G Matthews, Patrick May, Thomas Mayer, Wendy McArdle, Steven M McCarroll, Patricia McGoldrick, Christopher M McGraw, Andrew McIntosh, Andrew McQuillan, Kimford J Meador, Davide Mei, Véronique Michel, John J Millichap, Raffaella Minardi, Martino Montomoli, Barbara Mostacci, Lorenzo Muccioli, Hiltrud Muhle, Karen Müller-Schlüter, Imad M Najm, Wassim Nasreddine, Samuel Neaves, Bernd A Neubauer, Charles R J C Newton, Jeffrey L Noebels, Kate Northstone, Sam Novod, Terence J O'Brien, Seth Owusu-Agyei, Çiğdem Özkara, Aarno Palotie, Savvas S Papacostas, Elena Parrini, Carlos Pato, Michele Pato, Manuela Pendziwiat, Page B Pennell, Slavé Petrovski, William O Pickrell, Rebecca Pinsky, Dalila Pinto, Tommaso Pippucci, Fabrizio Piras, Federica Piras, Annapurna Poduri, Federica Pondrelli, Danielle Posthuma, Robert H W Powell, Michael Privitera, Annika Rademacher, Francesca Ragona, Byron Ramirez-Hamouz, Sarah Rau, Hillary R Raynes, Mark I Rees, Brigid M Regan, Andreas Reif, Eva Reinthaler, Sylvain Rheims, Susan M Ring, Antonella Riva, Enrique Rojas, Felix Rosenow, Philippe Ryvlin, Anni Saarela, Lynette G Sadleir, Barış Salman, Andrea Salmon, Vincenzo Salpietro, Ilaria Sammarra, Marcello Scala, Steven Schachter, André Schaller, Christoph J Schankin, Ingrid E Scheffer, Natascha Schneider, Susanne Schubert-Bast, Andreas Schulze-Bonhage, Paolo Scudieri, Lucie Sedláčková, Catherine Shain, Pak C Sham, Beth R Shiedley, S Anthony Siena, Graeme J Sills, Sanjay M Sisodiya, Jordan W Smoller, Matthew Solomonson, Gianfranco Spalletta, Kathryn R Sparks, Michael R Sperling, Hannah Stamberger, Bernhard J Steinhoff, Ulrich Stephani, Katalin Štěrbová, William C Stewart, Carlotta Stipa, Pasquale Striano, Adam Strzelczyk, Rainer Surges, Toshimitsu Suzuki, Mariagrazia Talarico, Michael E Talkowski, Randip S Taneja, George A Tanteles, Oskari Timonen, Nicholas John Timpson, Paolo Tinuper, Marian Todaro, Pınar Topaloglu, Meng-Han Tsai, Birute Tumiene, Dilsad Turkdogan, Sibel Uğur-İşeri, Algirdas Utkus, Priya Vaidiswaran, Luc Valton, Andreas van Baalen, Maria Stella Vari, Annalisa Vetro, Markéta Vlčková, Sophie von Brauchitsch, Sarah von Spiczak, Ryan G Wagner, Nick Watts, Yvonne G Weber, Sarah Weckhuysen, Peter Widdess-Walsh, Samuel Wiebe, Steven M Wolf, Markus Wolff, Stefan Wolking, Isaac Wong, Randi von Wrede, David Wu, Kazuhiro Yamakawa, Zuhal Yapıcı, Uluc Yis, Robert Yolken, Emrah Yücesan, Sara Zagaglia, Felix Zahnert, Federico Zara, Fritz Zimprich, Milena Zizovic, Gábor Zsurka, Benjamin M Neale, Samuel F Berkovic

Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.

识别癫痫等高度异质性疾病的遗传风险因素仍然具有挑战性。在这里,我们介绍了迄今为止最大的癫痫全外显子组测序研究,以研究导致一系列癫痫综合征风险的罕见变异。我们的样本量空前,超过54000个人类外显子组,由20979名癫痫深表型患者和33444名对照组组成,我们在外显子区范围内复制了以前的基因发现;使用无假设的方法,我们确定了潜在的新关联。大多数发现都是针对特定的癫痫亚型的,突出了不同癫痫的不同基因贡献。结合罕见单核苷酸/短链、拷贝数和常见变异的证据,我们发现不同的遗传风险因素在单个基因水平上是一致的。与其他外显子组测序研究进一步比较,我们发现癫痫和其他神经发育障碍之间存在共同的罕见变异风险。我们的研究还证明了合作测序和深入表型研究的价值,这将继续揭示癫痫异质性背后的复杂遗传结构。
{"title":"Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes.","authors":"Siwei Chen, Bassel W Abou-Khalil, Zaid Afawi, Quratulain Zulfiqar Ali, Elisabetta Amadori, Alison Anderson, Joe Anderson, Danielle M Andrade, Grazia Annesi, Mutluay Arslan, Pauls Auce, Melanie Bahlo, Mark D Baker, Ganna Balagura, Simona Balestrini, Eric Banks, Carmen Barba, Karen Barboza, Fabrice Bartolomei, Nick Bass, Larry W Baum, Tobias H Baumgartner, Betül Baykan, Nerses Bebek, Felicitas Becker, Caitlin A Bennett, Ahmad Beydoun, Claudia Bianchini, Francesca Bisulli, Douglas Blackwood, Ilan Blatt, Ingo Borggräfe, Christian Bosselmann, Vera Braatz, Harrison Brand, Knut Brockmann, Russell J Buono, Robyn M Busch, S Hande Caglayan, Laura Canafoglia, Christina Canavati, Barbara Castellotti, Gianpiero L Cavalleri, Felecia Cerrato, Francine Chassoux, Christina Cherian, Stacey S Cherny, Ching-Lung Cheung, I-Jun Chou, Seo-Kyung Chung, Claire Churchhouse, Valentina Ciullo, Peggy O Clark, Andrew J Cole, Mahgenn Cosico, Patrick Cossette, Chris Cotsapas, Caroline Cusick, Mark J Daly, Lea K Davis, Peter De Jonghe, Norman Delanty, Dieter Dennig, Chantal Depondt, Philippe Derambure, Orrin Devinsky, Lidia Di Vito, Faith Dickerson, Dennis J Dlugos, Viola Doccini, Colin P Doherty, Hany El-Naggar, Colin A Ellis, Leon Epstein, Meghan Evans, Annika Faucon, Yen-Chen Anne Feng, Lisa Ferguson, Thomas N Ferraro, Izabela Ferreira Da Silva, Lorenzo Ferri, Martha Feucht, Madeline C Fields, Mark Fitzgerald, Beata Fonferko-Shadrach, Francesco Fortunato, Silvana Franceschetti, Jacqueline A French, Elena Freri, Jack M Fu, Stacey Gabriel, Monica Gagliardi, Antonio Gambardella, Laura Gauthier, Tania Giangregorio, Tommaso Gili, Tracy A Glauser, Ethan Goldberg, Alica Goldman, David B Goldstein, Tiziana Granata, Riley Grant, David A Greenberg, Renzo Guerrini, Aslı Gundogdu-Eken, Namrata Gupta, Kevin Haas, Hakon Hakonarson, Garen Haryanyan, Martin Häusler, Manu Hegde, Erin L Heinzen, Ingo Helbig, Christian Hengsbach, Henrike Heyne, Shinichi Hirose, Edouard Hirsch, Chen-Jui Ho, Olivia Hoeper, Daniel P Howrigan, Donald Hucks, Po-Chen Hung, Michele Iacomino, Yushi Inoue, Luciana Midori Inuzuka, Atsushi Ishii, Lara Jehi, Michael R Johnson, Mandy Johnstone, Reetta Kälviäinen, Moien Kanaan, Bulent Kara, Symon M Kariuki, Josua Kegele, Yeşim Kesim, Nathalie Khoueiry-Zgheib, Jean Khoury, Chontelle King, Karl Martin Klein, Gerhard Kluger, Susanne Knake, Fernando Kok, Amos D Korczyn, Rudolf Korinthenberg, Andreas Koupparis, Ioanna Kousiappa, Roland Krause, Martin Krenn, Heinz Krestel, Ilona Krey, Wolfram S Kunz, Gerhard Kurlemann, Ruben I Kuzniecky, Patrick Kwan, Maite La Vega-Talbott, Angelo Labate, Austin Lacey, Dennis Lal, Petra Laššuthová, Stephan Lauxmann, Charlotte Lawthom, Stephanie L Leech, Anna-Elina Lehesjoki, Johannes R Lemke, Holger Lerche, Gaetan Lesca, Costin Leu, Naomi Lewin, David Lewis-Smith, Gloria Hoi-Yee Li, Calwing Liao, Laura Licchetta, Chih-Hsiang Lin, Kuang-Lin Lin, Tarja Linnankivi, Warren Lo, Daniel H Lowenstein, Chelsea Lowther, Laura Lubbers, Colin H T Lui, Lucia Inês Macedo-Souza, Rene Madeleyn, Francesca Madia, Stefania Magri, Louis Maillard, Lara Marcuse, Paula Marques, Anthony G Marson, Abigail G Matthews, Patrick May, Thomas Mayer, Wendy McArdle, Steven M McCarroll, Patricia McGoldrick, Christopher M McGraw, Andrew McIntosh, Andrew McQuillan, Kimford J Meador, Davide Mei, Véronique Michel, John J Millichap, Raffaella Minardi, Martino Montomoli, Barbara Mostacci, Lorenzo Muccioli, Hiltrud Muhle, Karen Müller-Schlüter, Imad M Najm, Wassim Nasreddine, Samuel Neaves, Bernd A Neubauer, Charles R J C Newton, Jeffrey L Noebels, Kate Northstone, Sam Novod, Terence J O'Brien, Seth Owusu-Agyei, Çiğdem Özkara, Aarno Palotie, Savvas S Papacostas, Elena Parrini, Carlos Pato, Michele Pato, Manuela Pendziwiat, Page B Pennell, Slavé Petrovski, William O Pickrell, Rebecca Pinsky, Dalila Pinto, Tommaso Pippucci, Fabrizio Piras, Federica Piras, Annapurna Poduri, Federica Pondrelli, Danielle Posthuma, Robert H W Powell, Michael Privitera, Annika Rademacher, Francesca Ragona, Byron Ramirez-Hamouz, Sarah Rau, Hillary R Raynes, Mark I Rees, Brigid M Regan, Andreas Reif, Eva Reinthaler, Sylvain Rheims, Susan M Ring, Antonella Riva, Enrique Rojas, Felix Rosenow, Philippe Ryvlin, Anni Saarela, Lynette G Sadleir, Barış Salman, Andrea Salmon, Vincenzo Salpietro, Ilaria Sammarra, Marcello Scala, Steven Schachter, André Schaller, Christoph J Schankin, Ingrid E Scheffer, Natascha Schneider, Susanne Schubert-Bast, Andreas Schulze-Bonhage, Paolo Scudieri, Lucie Sedláčková, Catherine Shain, Pak C Sham, Beth R Shiedley, S Anthony Siena, Graeme J Sills, Sanjay M Sisodiya, Jordan W Smoller, Matthew Solomonson, Gianfranco Spalletta, Kathryn R Sparks, Michael R Sperling, Hannah Stamberger, Bernhard J Steinhoff, Ulrich Stephani, Katalin Štěrbová, William C Stewart, Carlotta Stipa, Pasquale Striano, Adam Strzelczyk, Rainer Surges, Toshimitsu Suzuki, Mariagrazia Talarico, Michael E Talkowski, Randip S Taneja, George A Tanteles, Oskari Timonen, Nicholas John Timpson, Paolo Tinuper, Marian Todaro, Pınar Topaloglu, Meng-Han Tsai, Birute Tumiene, Dilsad Turkdogan, Sibel Uğur-İşeri, Algirdas Utkus, Priya Vaidiswaran, Luc Valton, Andreas van Baalen, Maria Stella Vari, Annalisa Vetro, Markéta Vlčková, Sophie von Brauchitsch, Sarah von Spiczak, Ryan G Wagner, Nick Watts, Yvonne G Weber, Sarah Weckhuysen, Peter Widdess-Walsh, Samuel Wiebe, Steven M Wolf, Markus Wolff, Stefan Wolking, Isaac Wong, Randi von Wrede, David Wu, Kazuhiro Yamakawa, Zuhal Yapıcı, Uluc Yis, Robert Yolken, Emrah Yücesan, Sara Zagaglia, Felix Zahnert, Federico Zara, Fritz Zimprich, Milena Zizovic, Gábor Zsurka, Benjamin M Neale, Samuel F Berkovic","doi":"10.1101/2023.02.22.23286310","DOIUrl":"10.1101/2023.02.22.23286310","url":null,"abstract":"<p><p>Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9466375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic association studies using disease liabilities from deep neural networks. 利用深度神经网络的疾病责任进行遗传关联研究。
Pub Date : 2024-09-08 DOI: 10.1101/2023.01.18.23284383
Lu Yang, Marie C Sadler, Russ B Altman

The case-control study is a widely used method for investigating the genetic underpinnings of binary traits. However, long-term, prospective cohort studies often grapple with absent or evolving health-related outcomes. Here, we propose two methods, liability and meta, for conducting genome-wide association study (GWAS) that leverage disease liabilities calculated from deep patient phenotyping. Analyzing 38 common traits in ~300,000 UK Biobank participants, we identified an increased number of loci compared to the conventional case-control approach, with high replication rates in larger external GWAS. Further analyses confirmed the disease-specificity of the genetic architecture with the meta method demonstrating higher robustness when phenotypes were imputed with low accuracy. Additionally, polygenic risk scores based on disease liabilities more effectively predicted newly diagnosed cases in the 2022 dataset, which were controls in the earlier 2019 dataset. Our findings demonstrate that integrating high-dimensional phenotypic data into deep neural networks enhances genetic association studies while capturing disease-relevant genetic architecture.

病例对照研究是研究二元性状遗传景观的一种广泛使用的方法。然而,在英国生物库等长期前瞻性队列研究中,参与者的健康相关结果或疾病状况可能会发生变化。在这里,我们开发了一种基因关联研究的方法,利用从深度患者表型框架计算的疾病责任(基于人工智能的责任)。通过分析来自英国生物库的261807名参与者的44个常见特征,与传统的病例对照(CC)关联研究相比,我们确定了新的基因座。我们的结果表明,在检测不同疾病的独立遗传基因座方面,将责任评分与CC状态相结合比CC-GWAS更有效。统计能力的提高进一步反映在基于SNP的遗传力估计值的增加中。此外,根据基于人工智能的负债计算的多基因风险评分在2022年发布的英国生物库中更好地识别了新确诊病例,该数据库在2019年版本中作为对照(平均百分位数增加6.2%)。这些发现证明了深度神经网络的实用性,该网络能够根据大规模人群队列中的高维表型数据对疾病责任进行建模。我们与疾病责任的全基因组关联研究可以应用于其他具有丰富表型和基因型数据的生物库。
{"title":"Genetic association studies using disease liabilities from deep neural networks.","authors":"Lu Yang, Marie C Sadler, Russ B Altman","doi":"10.1101/2023.01.18.23284383","DOIUrl":"10.1101/2023.01.18.23284383","url":null,"abstract":"<p><p>The case-control study is a widely used method for investigating the genetic underpinnings of binary traits. However, long-term, prospective cohort studies often grapple with absent or evolving health-related outcomes. Here, we propose two methods, <i>liability</i> and <i>meta</i>, for conducting genome-wide association study (GWAS) that leverage disease liabilities calculated from deep patient phenotyping. Analyzing 38 common traits in ~300,000 UK Biobank participants, we identified an increased number of loci compared to the conventional case-control approach, with high replication rates in larger external GWAS. Further analyses confirmed the disease-specificity of the genetic architecture with the meta method demonstrating higher robustness when phenotypes were imputed with low accuracy. Additionally, polygenic risk scores based on disease liabilities more effectively predicted newly diagnosed cases in the 2022 dataset, which were controls in the earlier 2019 dataset. Our findings demonstrate that integrating high-dimensional phenotypic data into deep neural networks enhances genetic association studies while capturing disease-relevant genetic architecture.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9147804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing patterns of diffusion tensor imaging variance in aging brains. 衰老大脑DTI变异模式的表征。
Pub Date : 2024-09-04 DOI: 10.1101/2023.08.22.23294381
Chenyu Gao, Qi Yang, Michael E Kim, Nazirah Mohd Khairi, Leon Y Cai, Nancy R Newlin, Praitayini Kanakaraj, Lucas W Remedios, Aravind R Krishnan, Xin Yu, Tianyuan Yao, Panpan Zhang, Kurt G Schilling, Daniel Moyer, Derek B Archer, Susan M Resnick, Bennett A Landman

Purpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions.

Approach: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, including baseline age, time from the baseline (referred to as "interval"), motion, sex, and whether it is the first scan or the second scan in the session.

Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively related ( p 0.001 ) to FA variance in the cuneus and occipital gyrus, but negatively ( p 0.001 ) in the caudate nucleus. Males show significantly ( p 0.001 ) higher FA variance in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is associated ( p < 0.05 ) with a decrease in FA variance. Head motion increases during the rescan of DTI ( Δ μ = 0.045 millimeters per volume).

Conclusions: The effects of each covariate on DTI variance, and their relationships across ROIs are complex. Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations in metric variance.

目的:随着大型分析合并各个站点的数据,深入了解数据来源的统计评估差异对于有效分析至关重要。扩散张量成像(DTI)表现出空间变化和相关的噪声,因此必须注意分布假设。在这里,我们描述了生理学、受试者依从性以及受试者与扫描仪的相互作用在理解方差中的作用。方法:我们分析了巴尔的摩老龄化纵向研究(BLSA)中1035名受试者的DTI数据,年龄从22.4岁到103岁不等。对于每个受试者,最多进行12次纵向治疗。在每个会话中,对DTI进行扫描和重新扫描。我们评估了由四种分割方法定义的感兴趣区域(ROI)内DTI标量的方差,并研究了方差与协变量之间的关系,包括基线年龄、距基线的时间(称为“间隔”)、运动、性别和扫描-重新扫描对。结果:在ROI中,协变量效应是异质的且双侧对称的。楔状回和枕回的FA变化与间期呈正相关,而尾状核的FA变化则与间期呈负相关。雄性在右侧壳核、丘脑、胼胝体体和扣带回表现出较高的FA变异。在某些ROI中,运动的增加与FA方差的减少有关。在DTI的重新扫描过程中,头部运动增加。结论:每个协变量对DTI方差的影响及其在ROI之间的关系是复杂的。最终,我们鼓励研究人员在共享数据时包括方差估计,并在分析中考虑异方差模型。
{"title":"Characterizing patterns of diffusion tensor imaging variance in aging brains.","authors":"Chenyu Gao, Qi Yang, Michael E Kim, Nazirah Mohd Khairi, Leon Y Cai, Nancy R Newlin, Praitayini Kanakaraj, Lucas W Remedios, Aravind R Krishnan, Xin Yu, Tianyuan Yao, Panpan Zhang, Kurt G Schilling, Daniel Moyer, Derek B Archer, Susan M Resnick, Bennett A Landman","doi":"10.1101/2023.08.22.23294381","DOIUrl":"10.1101/2023.08.22.23294381","url":null,"abstract":"<p><strong>Purpose: </strong>As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions.</p><p><strong>Approach: </strong>We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, including baseline age, time from the baseline (referred to as \"interval\"), motion, sex, and whether it is the first scan or the second scan in the session.</p><p><strong>Results: </strong>Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively related ( <math><mi>p</mi> <mo>≪</mo> <mn>0.001</mn></math> ) to FA variance in the cuneus and occipital gyrus, but negatively ( <math><mi>p</mi> <mo>≪</mo> <mn>0.001</mn></math> ) in the caudate nucleus. Males show significantly ( <math><mi>p</mi> <mo>≪</mo> <mn>0.001</mn></math> ) higher FA variance in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is associated ( <math><mi>p</mi> <mo><</mo> <mn>0.05</mn></math> ) with a decrease in FA variance. Head motion increases during the rescan of DTI ( <math><mi>Δ</mi> <mi>μ</mi> <mo>=</mo> <mn>0.045</mn></math> millimeters per volume).</p><p><strong>Conclusions: </strong>The effects of each covariate on DTI variance, and their relationships across ROIs are complex. Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations in metric variance.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/aa/nihpp-2023.08.22.23294381v1.PMC10473788.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10577254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity. 50多种不同细胞类型的3D基因组特征揭示了儿童肥胖的基因组结构。
Pub Date : 2024-08-13 DOI: 10.1101/2023.08.30.23294092
Khanh B Trang, Matthew C Pahl, James A Pippin, Chun Su, Sheridan H Littleton, Prabhat Sharma, Nikhil N Kulkarni, Louis R Ghanem, Natalie A Terry, Joan M O'Brien, Yadav Wagley, Kurt D Hankenson, Ashley Jermusyk, Jason W Hoskins, Laufey T Amundadottir, Mai Xu, Kevin M Brown, Stewart A Anderson, Wenli Yang, Paul M Titchenell, Patrick Seale, Laura Cook, Megan K Levings, Babette S Zemel, Alessandra Chesi, Andrew D Wells, Struan F A Grant

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

重要性:世界范围内儿童肥胖的患病率正在增加,同时伴随着2型糖尿病和心血管疾病等相关的常见合并症。基于强大的遗传成分的证据,我们之前对儿童肥胖的全基因组关联研究(GWAS)揭示了19个独立的特征信号;然而,这些基因座的作用机制仍有待阐明。目的:为了对这些儿童肥胖基因座进行分子表征,我们试图在不同的细胞环境中确定潜在的因果变异和相应的效应基因。设计:将儿童肥胖GWAS汇总统计数据与我们现有的57种人类细胞类型的3D基因组数据集相结合,包括高分辨率启动子聚焦的Capture-C/Hi-C、ATAC-seq和RNA-seq,以应用分层LD评分回归,并计算可归因于细胞类型特异性特征的全基因组SNP遗传率的比例。随后对全基因组显著的儿童肥胖基因座及其连锁不平衡指标进行了基于染色质接触的精细定位,以暗示效应基因。结果:胰腺α细胞显示了儿童肥胖变异的最具统计学意义的富集。随后基于染色质接触的精细定位在骨骼肌肌管和胰腺β细胞系EndoC-BH1的BDNF、ADCY3、TMEM18和FTO基因座上产生了最丰富的候选变体和靶基因。在多种免疫细胞类型的关键TMEM18基因座上观察到一种新的相关效应基因ALKAL2,这是一种神经伤害感受器中的炎症反应基因。有趣的是,这一观察结果也得到了使用来自基因型组织表达(GTEx)数据集的表达定量特征基因座(eQTL)的共定位分析的支持,支持了儿童肥胖发病机制的炎症和神经成分。结论和相关性:我们对在无数不同细胞类型中生成的3D基因组数据集的全面评估为儿童肥胖发病机制提供了基因组见解。
{"title":"3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity.","authors":"Khanh B Trang, Matthew C Pahl, James A Pippin, Chun Su, Sheridan H Littleton, Prabhat Sharma, Nikhil N Kulkarni, Louis R Ghanem, Natalie A Terry, Joan M O'Brien, Yadav Wagley, Kurt D Hankenson, Ashley Jermusyk, Jason W Hoskins, Laufey T Amundadottir, Mai Xu, Kevin M Brown, Stewart A Anderson, Wenli Yang, Paul M Titchenell, Patrick Seale, Laura Cook, Megan K Levings, Babette S Zemel, Alessandra Chesi, Andrew D Wells, Struan F A Grant","doi":"10.1101/2023.08.30.23294092","DOIUrl":"10.1101/2023.08.30.23294092","url":null,"abstract":"<p><p>The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the <i>BDNF</i>, <i>ADCY3</i>, <i>TMEM18</i> and <i>FTO</i> loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, <i>ALKAL2</i> - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ce/c3/nihpp-2023.08.30.23294092v1.PMC10491377.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10358285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. 衡量恶性疟原虫普查人口规模的变化,以应对连续的疟疾控制干预措施。
Pub Date : 2024-07-31 DOI: 10.1101/2023.05.18.23290210
Kathryn E Tiedje, Qi Zhan, Shazia Ruybal-Pesantez, Gerry Tonkin-Hill, Qixin He, Mun Hua Tan, Dionne C Argyropoulos, Samantha L Deed, Anita Ghansah, Oscar Bangre, Abraham R Oduro, Kwadwo A Koram, Mercedes Pascual, Karen P Day

Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI var ), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOI var from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOI var in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOI var , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.

在这里,我们引入了一个新的终点“人口普查人口规模”来评估恶性疟原虫感染的流行病学和控制,其中寄生虫而不是受感染的人类宿主是测量单位。为了计算人口普查人口规模,我们基于var多基因家族的超多样性,对被称为感染多重性(MOIvar)的寄生虫变异进行了定义。我们提出了一种贝叶斯方法,通过测序和计数var基因的独特DBLα标签(或DBLα类型)的数量来估计MOIvar,并通过对人类群体中的MOIvar求和来推断人口规模。2012年至2017年,在加纳北部季节性疟疾传播率高的地区,我们通过室内残留喷洒(IRS)和季节性疟疾化学预防(SMC)的连续疟疾干预措施,跟踪了这种寄生虫种群规模和结构的变化。IRS将传播强度降低了>90%,寄生虫流行率降低了约40-50%,之后,在所有年龄段的约2000人中观察到var多样性、MOIvar和种群规模显著降低。这些变化与不同寄生虫基因组的损失一致,是短暂的,在IRS停止和SMC引入32个月后,除SMC靶向的年幼儿童(1-5岁)外,所有年龄组的var多样性和种群规模都有所回升。尽管IRS和SMC干预措施造成了重大干扰,但寄生虫种群仍然非常庞大,并保留了高传播系统的var种群遗传特征(高var多样性;低var库相似性),这表明恶性疟原虫在撒哈拉以南非洲高负担国家对短期干预措施的抵抗力。
{"title":"Measuring changes in <i>Plasmodium falciparum</i> census population size in response to sequential malaria control interventions.","authors":"Kathryn E Tiedje, Qi Zhan, Shazia Ruybal-Pesantez, Gerry Tonkin-Hill, Qixin He, Mun Hua Tan, Dionne C Argyropoulos, Samantha L Deed, Anita Ghansah, Oscar Bangre, Abraham R Oduro, Kwadwo A Koram, Mercedes Pascual, Karen P Day","doi":"10.1101/2023.05.18.23290210","DOIUrl":"10.1101/2023.05.18.23290210","url":null,"abstract":"<p><p>Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of <i>Plasmodium falciparum</i> infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI <sub><i>var</i></sub> ), based on the hyper-diversity of the <i>var</i> multigene family. We present a Bayesian approach to estimate MOI <sub><i>var</i></sub> from sequencing and counting the number of unique DBLα tags (or DBLα types) of <i>var</i> genes, and derive from it census population size by summation of MOI <sub><i>var</i></sub> in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in <i>var</i> diversity, MOI <sub><i>var</i></sub> , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, <i>var</i> diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the <i>var</i> population genetic characteristics of a high-transmission system (high <i>var</i> diversity; low <i>var</i> repertoire similarity) demonstrating the resilience of <i>P. falciparum</i> to short-term interventions in high-burden countries of sub-Saharan Africa.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/26/nihpp-2023.05.18.23290210v2.PMC10246142.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10371859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-cancer mutational signature analysis of 111,711 targeted sequenced tumors using SATS. SATS:靶向测序肿瘤的突变特征分析仪。
Pub Date : 2024-07-31 DOI: 10.1101/2023.05.18.23290188
Donghyuk Lee, Min Hua, Difei Wang, Lei Song, Tongwu Zhang, Xing Hua, Kai Yu, Xiaohong R Yang, Stephen J Chanock, Jianxin Shi, Maria Teresa Landi, Bin Zhu

Tumor mutational signatures are informative for cancer diagnosis and treatment. However, targeted sequencing, commonly used in clinical settings, lacks specialized analytical tools and a dedicated catalogue of mutational signatures. Here, we introduce SATS, a scalable mutational signature analyzer for targeted sequencing data. SATS leverages tumor mutational burdens to identify and quantify signatures in individual tumors, overcoming the challenges of sparse mutations and variable gene panels. Validations across simulated data, pseudo-targeted sequencing data, and matched whole-genome and targeted sequencing samples show that SATS can accurately detect common mutational signatures and estimate their burdens. Applying SATS to 111,711 tumors from the AACR Project GENIE, we created a pan-cancer mutational signature catalogue specific to targeted sequencing. We further validated signatures in lung, breast and colorectal cancers using an additional 16,774 independent samples. This signature catalogue is a valuable resource for estimating signature burdens in individual targeted sequenced tumors, facilitating the integration of mutational signatures with clinical data.

肿瘤突变特征在临床决策中很重要,通常使用全外显子组或基因组测序(WES/WGS)进行分析。然而,靶向测序在临床环境中更为常用,由于突变数据稀疏和靶向基因组不重叠,对突变特征分析提出了挑战。我们介绍了SATS(靶向测序的特征分析器),这是一种分析方法,通过分析肿瘤突变负担和考虑不同的基因组来识别靶向测序肿瘤中的突变特征。我们通过模拟和伪靶向测序数据(通过下采样WES/WGS数据生成)证明,SATS可以准确检测具有不同特征的常见突变特征。使用SATS,我们通过分析来自AACR项目GENIE的100477个靶向测序肿瘤,创建了一个专门针对靶向测序的突变特征的泛癌目录。该目录允许SATS即使在单个样本中也能估计特征活动,为在临床环境中应用突变特征提供了新的机会。
{"title":"Pan-cancer mutational signature analysis of 111,711 targeted sequenced tumors using SATS.","authors":"Donghyuk Lee, Min Hua, Difei Wang, Lei Song, Tongwu Zhang, Xing Hua, Kai Yu, Xiaohong R Yang, Stephen J Chanock, Jianxin Shi, Maria Teresa Landi, Bin Zhu","doi":"10.1101/2023.05.18.23290188","DOIUrl":"10.1101/2023.05.18.23290188","url":null,"abstract":"<p><p>Tumor mutational signatures are informative for cancer diagnosis and treatment. However, targeted sequencing, commonly used in clinical settings, lacks specialized analytical tools and a dedicated catalogue of mutational signatures. Here, we introduce SATS, a scalable mutational signature analyzer for targeted sequencing data. SATS leverages tumor mutational burdens to identify and quantify signatures in individual tumors, overcoming the challenges of sparse mutations and variable gene panels. Validations across simulated data, pseudo-targeted sequencing data, and matched whole-genome and targeted sequencing samples show that SATS can accurately detect common mutational signatures and estimate their burdens. Applying SATS to 111,711 tumors from the AACR Project GENIE, we created a pan-cancer mutational signature catalogue specific to targeted sequencing. We further validated signatures in lung, breast and colorectal cancers using an additional 16,774 independent samples. This signature catalogue is a valuable resource for estimating signature burdens in individual targeted sequenced tumors, facilitating the integration of mutational signatures with clinical data.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327246/pdf/nihpp-2023.05.18.23290188v1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9807255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations of longitudinal BMI percentile classification patterns in early childhood with neighborhood-level social determinants of health. 儿童早期纵向BMI百分位数分类模式与社区水平的健康社会决定因素的相关性。
Pub Date : 2024-07-25 DOI: 10.1101/2023.06.08.23291145
Mehak Gupta, Thao-Ly T Phan, Félice Lê-Scherban, Daniel Eckrich, H Timothy Bunnell, Rahmatollah Beheshti

Background: Understanding social determinants of health (SDOH) that may be risk factors for childhood obesity is important to developing targeted interventions to prevent obesity. Prior studies have examined these risk factors, mostly examining obesity as a static outcome variable.

Methods: We extracted EHR data from 2012-2019 for a children's health system that includes 2 hospitals and wide network of outpatient clinics spanning 5 East Coast states in the US. Using data-driven and algorithmic clustering, we have identified distinct BMI-percentile classification groups in children from 0 to 7 years of age. We used two separate algorithmic clustering methods to confirm the robustness of the identified clusters. We used multinomial logistic regression to examine the associations between clusters and 27 neighborhood SDOHs and compared positive and negative SDOH characteristics separately.

Results: From the cohort of 36,910 children, five BMI-percentile classification groups emerged: always having obesity (n=429; 1.16%), overweight most of the time (n=15,006; 40.65%), increasing BMI-percentile (n=9,060; 24.54%), decreasing BMI-percentile (n=5,058; 13.70%), and always normal weight (n=7,357; 19.89%). Compared to children in the decreasing BMI-percentile and always normal weight groups, children in the other three groups were more likely to live in neighborhoods with higher poverty, unemployment, crowded households, single-parent households, and lower preschool enrollment.

Conclusions: Neighborhood-level SDOH factors have significant associations with children's BMI-percentile classification and changes in classification. This highlights the need to develop tailored obesity interventions for different groups to address the barriers faced by communities that can impact the weight and health of children living within them.

Impact statement: This study demonstrates the association between longitudinal BMI-percentile patterns and SDOH in early childhood. Five distinct clusters with different BMI-percentile trajectories are found and a strong association between these clusters and SDOH is observed. Our findings highlight the importance of targeted prevention and treatment interventions based on children's SDOH.

背景:了解健康的社会决定因素(SDOH)可能是儿童肥胖的风险因素,对于制定有针对性的干预措施来预防肥胖很重要。先前的研究已经检查了这些风险因素,主要将肥胖作为一个静态的结果变量。目的:本研究旨在根据BMI百分位数分类或BMI百分位分类随时间的变化来确定不同的亚群,并探讨这些与0至7岁儿童社区水平SDOH因素的纵向关联。方法:使用潜在类别生长(混合)模型(LCGMM),我们在0至7岁的儿童中确定了不同的BMI%分类组。我们使用多项逻辑回归来研究SDOH因素与每个BMI%分类组之间的相关性。结果:在36910名儿童的研究队列中,出现了五个不同的BMI%分类组:始终肥胖(n=429;1.16%)、大多数时候超重(n=15006;40.65%)、增加BMI%(n=9060;24.54%)、减少BMI%,其他三组儿童更有可能生活在贫困率、失业率、拥挤家庭和单亲家庭较高、学前教育入学率较低的社区。结论:邻里水平的SDOH因素与儿童的BMI%分类和分类随时间的变化有显著相关性。这突出了为不同群体制定量身定制的肥胖干预措施的必要性,以解决社区面临的可能影响其内儿童体重和健康的障碍。
{"title":"Associations of longitudinal BMI percentile classification patterns in early childhood with neighborhood-level social determinants of health.","authors":"Mehak Gupta, Thao-Ly T Phan, Félice Lê-Scherban, Daniel Eckrich, H Timothy Bunnell, Rahmatollah Beheshti","doi":"10.1101/2023.06.08.23291145","DOIUrl":"10.1101/2023.06.08.23291145","url":null,"abstract":"<p><strong>Background: </strong>Understanding social determinants of health (SDOH) that may be risk factors for childhood obesity is important to developing targeted interventions to prevent obesity. Prior studies have examined these risk factors, mostly examining obesity as a static outcome variable.</p><p><strong>Methods: </strong>We extracted EHR data from 2012-2019 for a children's health system that includes 2 hospitals and wide network of outpatient clinics spanning 5 East Coast states in the US. Using data-driven and algorithmic clustering, we have identified distinct BMI-percentile classification groups in children from 0 to 7 years of age. We used two separate algorithmic clustering methods to confirm the robustness of the identified clusters. We used multinomial logistic regression to examine the associations between clusters and 27 neighborhood SDOHs and compared positive and negative SDOH characteristics separately.</p><p><strong>Results: </strong>From the cohort of 36,910 children, five BMI-percentile classification groups emerged: always having obesity (n=429; 1.16%), overweight most of the time (n=15,006; 40.65%), increasing BMI-percentile (n=9,060; 24.54%), decreasing BMI-percentile (n=5,058; 13.70%), and always normal weight (n=7,357; 19.89%). Compared to children in the decreasing BMI-percentile and always normal weight groups, children in the other three groups were more likely to live in neighborhoods with higher poverty, unemployment, crowded households, single-parent households, and lower preschool enrollment.</p><p><strong>Conclusions: </strong>Neighborhood-level SDOH factors have significant associations with children's BMI-percentile classification and changes in classification. This highlights the need to develop tailored obesity interventions for different groups to address the barriers faced by communities that can impact the weight and health of children living within them.</p><p><strong>Impact statement: </strong>This study demonstrates the association between longitudinal BMI-percentile patterns and SDOH in early childhood. Five distinct clusters with different BMI-percentile trajectories are found and a strong association between these clusters and SDOH is observed. Our findings highlight the importance of targeted prevention and treatment interventions based on children's SDOH.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cb/85/nihpp-2023.06.08.23291145v1.PMC10312866.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10122268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Large-Scale Proteomics Resource of Circulating Extracellular Vesicles for Biomarker Discovery in Pancreatic Cancer. 用于发现胰腺癌症生物标志物的循环细胞外小泡的大规模蛋白质组学资源。
Pub Date : 2024-07-19 DOI: 10.1101/2023.03.13.23287216
Bruno Bockorny, Lakshmi Muthuswamy, Ling Huang, Marco Hadisurya, Christine Maria Lim, Leo L Tsai, Ritu R Gill, Jesse L Wei, Andrea J Bullock, Joseph E Grossman, Robert J Besaw, Supraja Narasimhan, W Andy Tao, Sofia Perea, Mandeep S Sawhney, Steven D Freedman, Manuel Hidalgo, Anton Iliuk, Senthil K Muthuswamy

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12 and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2 and ANKAR were associated with metastasis, and those with CRP, RALB and CD55 correlated with poor clinical prognosis. Finally, we validated a 7-EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

癌症是所有常见肿瘤中预后最差的。早期诊断癌症可以提高存活率,更好地评估转移性疾病可以改善患者护理。因此,迫切需要开发生物标志物来早期诊断这种致命的恶性肿瘤。使用“液体活检”分析循环细胞外小泡(cEV)为诊断和监测疾病状态提供了一种有吸引力的方法。然而,重要的是区分胰腺导管腺癌(PDAC)患者与良性胰腺疾病(如慢性胰腺炎和导管内乳头状黏液瘤(IPMN))患者中富集的EV相关蛋白。为了满足这一需求,我们结合了从血浆中高效分离EVs的新型EVtrap方法,并对124名个体的样本进行了蛋白质组学分析,其中包括PDAC患者、良性胰腺疾病患者和对照组。平均每100μL血浆中鉴定出912种EV蛋白。与发现和验证队列中的良性疾病相比,含有高水平PDCD6IP、SERPINA12和RUVBL2的EV与PDAC相关。具有PSMB4、RUVBL2和ANKAR的EV与转移相关,具有CRP、RALB和CD55的EV与不良临床预后相关。最后,我们在良性胰腺疾病的背景下验证了7-EV蛋白PDAC特征,该特征对PDAC的诊断具有89%的预测准确率。据我们所知,我们的研究代表了有史以来在癌症中对循环EVs进行的最大规模的蛋白质组学分析,并为科学界提供了一个有价值的开源图谱,其中包括一个全面的新型cEVs目录,可能有助于生物标志物的开发并改善PDAC患者的预后。
{"title":"A Large-Scale Proteomics Resource of Circulating Extracellular Vesicles for Biomarker Discovery in Pancreatic Cancer.","authors":"Bruno Bockorny, Lakshmi Muthuswamy, Ling Huang, Marco Hadisurya, Christine Maria Lim, Leo L Tsai, Ritu R Gill, Jesse L Wei, Andrea J Bullock, Joseph E Grossman, Robert J Besaw, Supraja Narasimhan, W Andy Tao, Sofia Perea, Mandeep S Sawhney, Steven D Freedman, Manuel Hidalgo, Anton Iliuk, Senthil K Muthuswamy","doi":"10.1101/2023.03.13.23287216","DOIUrl":"10.1101/2023.03.13.23287216","url":null,"abstract":"<p><p>Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12 and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2 and ANKAR were associated with metastasis, and those with CRP, RALB and CD55 correlated with poor clinical prognosis. Finally, we validated a 7-EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9274949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
United States' qualifying conditions compared to evidence of the 2017 National Academy of Sciences Report. 美国的合格条件与 2017 年美国国家科学院报告的证据相比。
Pub Date : 2024-07-10 DOI: 10.1101/2023.05.01.23289286
Elena L Stains, Amy L Kennalley, Maria Tian, Kevin F Boehnke, Chadd K Kraus, Brian J Piper

Objective: To compare the 2017 National Academies of Sciences, Engineering, and Medicine (NAS) report to state medical cannabis (MC) laws defining approved qualifying conditions (QC) from 2017 to 2024 and to determine if there exist gaps in evidence-based decision making.

Methods: The 2017 NAS report assessed therapeutic evidence for over twenty medical conditions treated with MC. We identified the QCs of 38 states (including Washington, D.C.) where MC was legal in 2024. We also identified the QCs that these states used in 2017. QCs were then categorized based on NAS-established level of evidence: substantial/conclusive evidence of effectiveness, moderate evidence of effectiveness, limited evidence of effectiveness, limited evidence of ineffectiveness, and no/insufficient evidence to support or refute effectiveness. This study was completed between January 31, 2023 through May 20, 2024.

Results: Most states listed at least one QC with substantial evidence-80.0% of states in 2017 and 97.0% in 2024. However, in 2024 only 8.3% of the QCs on states' QC lists met the standard of substantial evidence. Of the 20 most popular QCs in the country in 2017 and 2024, one only (chronic pain) was categorized by the NAS as having substantial evidence for effectiveness. However, seven (ALS, Alzheimer's disease, epilepsy, glaucoma, Huntington's disease, Parkinson's disease, spastic spinal cord damage) were rated as either ineffective or insufficient evidence.

Conclusion: Most QCs lack evidence for use based on the 2017 NAS report. Many states recommend QCs with little evidence, such as amyotrophic lateral sclerosis (ALS), or even those for which MC is ineffective, like depression. There have been insufficient updates to QCs since the NAS report. These findings highlight a disparity between state-level MC recommendations and the evidence to support them.

目的:将 2017 年美国国家科学、工程和医学研究院(NAS)报告与 2017 年至 2024 年各州医用大麻(MC)法律中定义的获准合格条件(QC)进行比较,并确定是否存在差距:将 2017 年美国国家科学、工程和医学院(NAS)报告与各州医用大麻(MC)法律(定义了 2017 年至 2024 年经批准的合格条件(QC))进行比较,并确定在循证决策方面是否存在差距:2017 年美国国家科学院报告评估了二十多种用医用大麻治疗的病症的治疗证据。我们确定了 MC 在 2024 年合法的 38 个州(包括华盛顿特区)的 QC。我们还确定了这些州在 2017 年使用的质控标准。然后根据美国国家科学院(NAS)确定的证据水平对 QC 进行分类:大量/确凿证据表明有效、中等证据表明有效、有限证据表明有效、有限证据表明无效,以及无/无足够证据支持或反驳有效性。本研究在 2023 年 1 月 31 日至 2024 年 5 月 20 日期间完成:大多数州至少列出了一项具有实质性证据的 QC--2017 年为 80.0%,2024 年为 97.0%。然而,在 2024 年,各州的质量控制清单上只有 8.3% 的质量控制符合实质性证据标准。在 2017 年和 2024 年全国最受欢迎的 20 种质控项目中,只有一种(慢性疼痛)被美国国家科学院归类为具有实质性证据的有效性。然而,有七种(渐冻人症、阿尔茨海默病、癫痫、青光眼、亨廷顿氏病、帕金森病、痉挛性脊髓损伤)被评为无效或证据不足:根据 2017 年美国国家科学院的报告,大多数 QC 缺乏使用证据。许多州推荐了证据不足的 QC,如肌萎缩性脊髓侧索硬化症(ALS),甚至是 MC 无效的 QC,如抑郁症。自 NAS 报告发布以来,对 QC 的更新不足。这些发现凸显了州一级的 MC 建议与支持这些建议的证据之间的差异。
{"title":"United States' qualifying conditions compared to evidence of the 2017 National Academy of Sciences Report.","authors":"Elena L Stains, Amy L Kennalley, Maria Tian, Kevin F Boehnke, Chadd K Kraus, Brian J Piper","doi":"10.1101/2023.05.01.23289286","DOIUrl":"10.1101/2023.05.01.23289286","url":null,"abstract":"<p><strong>Objective: </strong>To compare the 2017 National Academies of Sciences, Engineering, and Medicine (NAS) report to state medical cannabis (MC) laws defining approved qualifying conditions (QC) from 2017 to 2024 and to determine if there exist gaps in evidence-based decision making.</p><p><strong>Methods: </strong>The 2017 NAS report assessed therapeutic evidence for over twenty medical conditions treated with MC. We identified the QCs of 38 states (including Washington, D.C.) where MC was legal in 2024. We also identified the QCs that these states used in 2017. QCs were then categorized based on NAS-established level of evidence: substantial/conclusive evidence of effectiveness, moderate evidence of effectiveness, limited evidence of effectiveness, limited evidence of ineffectiveness, and no/insufficient evidence to support or refute effectiveness. This study was completed between January 31, 2023 through May 20, 2024.</p><p><strong>Results: </strong>Most states listed at least one QC with substantial evidence-80.0% of states in 2017 and 97.0% in 2024. However, in 2024 only 8.3% of the QCs on states' QC lists met the standard of substantial evidence. Of the 20 most popular QCs in the country in 2017 and 2024, one only (chronic pain) was categorized by the NAS as having substantial evidence for effectiveness. However, seven (ALS, Alzheimer's disease, epilepsy, glaucoma, Huntington's disease, Parkinson's disease, spastic spinal cord damage) were rated as either ineffective or insufficient evidence.</p><p><strong>Conclusion: </strong>Most QCs lack evidence for use based on the 2017 NAS report. Many states recommend QCs with little evidence, such as amyotrophic lateral sclerosis (ALS), or even those for which MC is ineffective, like depression. There have been insufficient updates to QCs since the NAS report. These findings highlight a disparity between state-level MC recommendations and the evidence to support them.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9858876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
medRxiv : the preprint server for health sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1