Pub Date : 2024-11-05Epub Date: 2024-09-17DOI: 10.1128/spectrum.04222-23
Shaoting Weng, Shengming Ma, Yueteng Xing, Wenhui Zhang, Yinrong Wu, Mengyao Fu, Zhongyi Luo, Qiuying Li, Sen Lin, Longfei Zhang, Yao Wang
Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/μL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection.
Importance: The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.
{"title":"Toward establishing a rapid constant temperature detection method for canine parvovirus based on endonuclease activities.","authors":"Shaoting Weng, Shengming Ma, Yueteng Xing, Wenhui Zhang, Yinrong Wu, Mengyao Fu, Zhongyi Luo, Qiuying Li, Sen Lin, Longfei Zhang, Yao Wang","doi":"10.1128/spectrum.04222-23","DOIUrl":"10.1128/spectrum.04222-23","url":null,"abstract":"<p><p>Canine parvovirus (CPV) can cause high morbidity and mortality rates in puppies, posing a significant threat to both pet dogs and the breeding industry. Rapid, accurate, and convenient detection methods are important for the early intervention and treatment of canine parvovirus. In this study, we propose a visual CPV detection system called nucleic acid mismatch enzyme digestion (NMED). This system combines loop-mediated isothermal amplification (LAMP), endonuclease for gene mismatch detection, and colloidal gold lateral chromatography. We demonstrated that NMED can induce the binding of the amplicon from the sample to the specific labeling probe, which in turn triggers digestion by the endonuclease. The sensitivity and visual visibility of LAMP were increased by combining endonuclease and colloidal gold lateral chromatography assisted by a simple temperature-controlled device. The sensitivity of the NMED assay was 1 copy/μL, which was consistent with quantitative PCR (qPCR). The method was validated with 20 clinical samples that potentially had CPV infection; 15 positive samples and 5 negative samples were evaluated; and the detection accuracy was consistent with that of qPCR. As a rapid, accurate, and convenient molecular diagnostic method, NMED has great potential for application in the field of pathogenic microorganism detection.</p><p><strong>Importance: </strong>The NMED method has been established in the laboratory and used for CPV detection. The method has several advantages, including simple sampling, high sensitivity, intuitive results, and no requirement for expensive equipment. The establishment of this method has commercial potential and offers a novel approach and concept for the future development of clinical detection of pathogenic microorganisms.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdominal aortic aneurysm (AAA) is a large-vessel disease with high mortality, characterized by complex pathogenic mechanisms. Current therapeutic approaches remain insufficient to halt its progression. Fungi are important members of the gut microbiota. However, their characteristic alterations and roles in AAA remain unclear. This study investigated the role of gut fungal communities in the development of AAA through metagenomic sequencing of fecal samples from 31 healthy individuals and 33 AAA patients. We observed significant dysbiosis in the gut mycobiomes of AAA patients compared to healthy individuals, characterized by an increase in pathogenic fungi like Candida species and a decrease in beneficial yeasts such as Saccharomyces cerevisiae. The changes in fungal populations correlated strongly with clinical indicators of AAA, highlighting their potential for diagnosing and predicting AAA progression. Furthermore, our animal experiments demonstrated that Saccharomyces cerevisiae significantly ameliorated pathological alterations in AAA mice, suggesting a protective role for specific yeast strains against AAA development. These findings underscore the significant impact of gut mycobiomes on AAA and suggest that modulating these fungal communities could offer a novel therapeutic approach. Our research advances the understanding of the influence of gut microbiome on vascular diseases and suggests potential non-surgical approaches for managing AAA. By elucidating the diagnostic and therapeutic potential of gut fungi in AAA, this study provided important clues for future clinical strategies and therapeutic developments in the field of vascular medicine.
Importance: Our research highlights the crucial role of gut fungi in abdominal aortic aneurysm (AAA) development. By analyzing fecal samples from AAA patients and healthy controls, we discovered significant dysbiosis in gut fungal communities, characterized by an increase in harmful Candida species and a decrease in beneficial yeasts like Saccharomyces cerevisiae. This dysbiosis was correlated with the severity of AAA. Importantly, in animal experiments, supplementing with Saccharomyces cerevisiae significantly slowed AAA progression. These findings suggest that modulating gut fungi may offer a novel, non-surgical approach to the diagnosis and treatment of AAA, potentially reducing the need for invasive procedures.
{"title":"The role of dysbiotic gut mycobiota in modulating risk for abdominal aortic aneurysm.","authors":"Guixiang Yao, Xinjie Zhang, Tongxue Zhang, Jiajia Jin, Zihan Qin, Xiaoyu Ren, Xiaowei Wang, Shucui Zhang, Xianlun Yin, Zhenyu Tian, Yun Zhang, Jingyong Zhang, Zhe Wang, Qunye Zhang","doi":"10.1128/spectrum.01776-24","DOIUrl":"10.1128/spectrum.01776-24","url":null,"abstract":"<p><p>Abdominal aortic aneurysm (AAA) is a large-vessel disease with high mortality, characterized by complex pathogenic mechanisms. Current therapeutic approaches remain insufficient to halt its progression. Fungi are important members of the gut microbiota. However, their characteristic alterations and roles in AAA remain unclear. This study investigated the role of gut fungal communities in the development of AAA through metagenomic sequencing of fecal samples from 31 healthy individuals and 33 AAA patients. We observed significant dysbiosis in the gut mycobiomes of AAA patients compared to healthy individuals, characterized by an increase in pathogenic fungi like <i>Candida</i> species and a decrease in beneficial yeasts such as <i>Saccharomyces cerevisiae</i>. The changes in fungal populations correlated strongly with clinical indicators of AAA, highlighting their potential for diagnosing and predicting AAA progression. Furthermore, our animal experiments demonstrated that <i>Saccharomyces cerevisiae</i> significantly ameliorated pathological alterations in AAA mice, suggesting a protective role for specific yeast strains against AAA development. These findings underscore the significant impact of gut mycobiomes on AAA and suggest that modulating these fungal communities could offer a novel therapeutic approach. Our research advances the understanding of the influence of gut microbiome on vascular diseases and suggests potential non-surgical approaches for managing AAA. By elucidating the diagnostic and therapeutic potential of gut fungi in AAA, this study provided important clues for future clinical strategies and therapeutic developments in the field of vascular medicine.</p><p><strong>Importance: </strong>Our research highlights the crucial role of gut fungi in abdominal aortic aneurysm (AAA) development. By analyzing fecal samples from AAA patients and healthy controls, we discovered significant dysbiosis in gut fungal communities, characterized by an increase in harmful <i>Candida</i> species and a decrease in beneficial yeasts like <i>Saccharomyces cerevisiae</i>. This dysbiosis was correlated with the severity of AAA. Importantly, in animal experiments, supplementing with <i>Saccharomyces cerevisiae</i> significantly slowed AAA progression. These findings suggest that modulating gut fungi may offer a novel, non-surgical approach to the diagnosis and treatment of AAA, potentially reducing the need for invasive procedures.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-09-27DOI: 10.1128/spectrum.01270-24
Erin M Nawrocki, Indira T Kudva, Edward G Dudley
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC E. coli to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models. To identify a set of bovine-specific E. coli adherence factors, we used the primary RAJ squamous epithelial (RSE) cell-adherence assay to coculture RSE cells from healthy Holstein cattle with diverse E. coli strains from bovine and nonbovine sources. We hypothesized that a comparative genomic analysis of the strains would reveal factors associated with RSE adherence. After performing adherence assays with historical strains from the E. coli Reference Center (n = 62) and strains newly isolated from the RAJ (n = 15), we used the bioinformatic tool Roary to create a pangenome of this collection. We classified strains as either low or high adherence and using the Scoary program compiled a list of accessory genes correlated with the "high adherence" strains. While none of the correlations were statistically significant, several gene clusters were associated with the high-adherence phenotype, including two that encode uncharacterized proteins. We also demonstrated that non-STEC E. coli strains from the RAJ are more adherent than other isolates and can outcompete STEC in coculture with RSEs. Further analysis of adherence-associated gene clusters may lead to an improved understanding of the molecular mechanisms of RSE adherence and may help develop probiotics targeting STEC in cattle.
Importance: E. coli strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that E. coli uses to adhere to cattle cells are largely unknown. Various strategies are used to control E. coli in livestock and limit the risk of outbreaks. These include vaccinating animals against common E. coli strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for E. coli adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic E. coli from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.
{"title":"Investigating the adherence factors of <i>Escherichia coli</i> at the bovine recto-anal junction.","authors":"Erin M Nawrocki, Indira T Kudva, Edward G Dudley","doi":"10.1128/spectrum.01270-24","DOIUrl":"10.1128/spectrum.01270-24","url":null,"abstract":"<p><p>Shiga toxin<b>-</b>producing <i>Escherichia coli</i> (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC <i>E. coli</i> to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models. To identify a set of bovine-specific <i>E. coli</i> adherence factors, we used the primary RAJ squamous epithelial (RSE) cell-adherence assay to coculture RSE cells from healthy Holstein cattle with diverse <i>E. coli</i> strains from bovine and nonbovine sources. We hypothesized that a comparative genomic analysis of the strains would reveal factors associated with RSE adherence. After performing adherence assays with historical strains from the <i>E. coli</i> Reference Center (<i>n</i> = 62) and strains newly isolated from the RAJ (<i>n</i> = 15), we used the bioinformatic tool Roary to create a pangenome of this collection. We classified strains as either low or high adherence and using the Scoary program compiled a list of accessory genes correlated with the \"high adherence\" strains. While none of the correlations were statistically significant, several gene clusters were associated with the high-adherence phenotype, including two that encode uncharacterized proteins. We also demonstrated that non-STEC <i>E. coli</i> strains from the RAJ are more adherent than other isolates and can outcompete STEC in coculture with RSEs. Further analysis of adherence-associated gene clusters may lead to an improved understanding of the molecular mechanisms of RSE adherence and may help develop probiotics targeting STEC in cattle.</p><p><strong>Importance: </strong><i>E. coli</i> strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that <i>E. coli</i> uses to adhere to cattle cells are largely unknown. Various strategies are used to control <i>E. coli</i> in livestock and limit the risk of outbreaks. These include vaccinating animals against common <i>E. coli</i> strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for <i>E. coli</i> adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic <i>E. coli</i> from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-09-30DOI: 10.1128/spectrum.01285-24
Hayden N Brochu, Elise Smith, Sangmi Jeong, Michelle Carlson, Scott G Hansen, Jennifer Tisoncik-Go, Lynn Law, Louis J Picker, Michael Gale, Xinxia Peng
Rhesus cytomegalovirus expressing simian immunodeficiency virus (RhCMV/SIV) vaccines protect ~59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is unknown. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here, we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post-challenge and were profiled using 16S rRNA based microbiome analysis. We identified ~2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, by using newly developed compositional data analysis techniques, we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.IMPORTANCEThe human immunodeficiency virus (HIV) has infected millions of people worldwide. Unfortunately, still there is no vaccine that can prevent or treat HIV infection. A promising pre-clinical HIV vaccine based on rhesus cytomegalovirus (RhCMV) expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) provides sustained, durable protection against SIV challenge in ~59% of vaccinated rhesus macaques. There is an urgent need to understand the cause of this protection vs non-protection outcome. In this study, we profiled the gut microbiomes of 45 RhCMV/SIV vaccinated rhesus macaques and identified gut microbial signatures that were predictive of RhCMV/SIV vaccination groups and vaccine protection outcomes. These vaccine protection-associated microbial features were significantly correlated with early vaccine-induced host immune signatures in whole blood from the same animals. These findings show that the gut microbiome may be involved in RhCMV/SIV vaccine-induced protection, warranting further research into the impact of the gut microbiome in human vaccine trials.
{"title":"Pre-challenge gut microbial signature predicts RhCMV/SIV vaccine efficacy in rhesus macaques.","authors":"Hayden N Brochu, Elise Smith, Sangmi Jeong, Michelle Carlson, Scott G Hansen, Jennifer Tisoncik-Go, Lynn Law, Louis J Picker, Michael Gale, Xinxia Peng","doi":"10.1128/spectrum.01285-24","DOIUrl":"10.1128/spectrum.01285-24","url":null,"abstract":"<p><p>Rhesus cytomegalovirus expressing simian immunodeficiency virus (RhCMV/SIV) vaccines protect ~59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is unknown. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here, we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post-challenge and were profiled using 16S rRNA based microbiome analysis. We identified ~2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, by using newly developed compositional data analysis techniques, we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.IMPORTANCEThe human immunodeficiency virus (HIV) has infected millions of people worldwide. Unfortunately, still there is no vaccine that can prevent or treat HIV infection. A promising pre-clinical HIV vaccine based on rhesus cytomegalovirus (RhCMV) expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) provides sustained, durable protection against SIV challenge in ~59% of vaccinated rhesus macaques. There is an urgent need to understand the cause of this protection vs non-protection outcome. In this study, we profiled the gut microbiomes of 45 RhCMV/SIV vaccinated rhesus macaques and identified gut microbial signatures that were predictive of RhCMV/SIV vaccination groups and vaccine protection outcomes. These vaccine protection-associated microbial features were significantly correlated with early vaccine-induced host immune signatures in whole blood from the same animals. These findings show that the gut microbiome may be involved in RhCMV/SIV vaccine-induced protection, warranting further research into the impact of the gut microbiome in human vaccine trials.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-10-04DOI: 10.1128/spectrum.01146-24
Chuchu Li, Lu Zhou, Xiaoxuan Ma, Liguo Zhu, Jia Li, Lingning Meng, Mei Han, Danwei Wang, Han Shen, Chang Liu
<p><p><i>Yersinia enterocolitica</i>, a species within the genus <i>Yersinia</i>, thrives optimally at 22-25°C but can also grow at the mammalian core body temperature of 37°C. This dual temperature adaptability necessitates establishing both temperature conditions in research to examine the effects on various biological processes. In quantitative real-time PCR (qRT-PCR) assays, the selection of appropriate housekeeping genes is vital for data accuracy. Nevertheless, the lack of alternatives and information often leads to the default use of the 16S rRNA gene despite potential limitations. This investigation sourced 16 potential reference genes through a comprehensive review of the literature and transcriptome sequencing data analysis. We validated the expression stability of these genes via qRT-PCR across 12 <i>Y. enterocolitica</i> strains, representing the four prevalent serotypes O:3, O:5,27, O:8, and O:9, isolated from diarrheal patient stool samples. This approach aimed to minimize the impact of serotype heterogeneity. After acquiring Cq values, gene stability was evaluated using four established algorithms-ΔCq, geNorm, NormFinder, and BestKeeper-and subsequently synthesized into a consolidated ranking through the Robust Rank Aggregation (RRA) method. Our study suggests that the genes <i>glnS</i>, <i>nuoB</i>, <i>glmS</i>, <i>gyrB</i>, <i>dnaK</i>, and <i>thrS</i> maintain consistent expression across varying culture temperatures, supporting their candidacy as robust housekeeping genes. We advise against the exclusive use of 16S rRNA for this purpose. Should tradition prevail in its utilization, it must be employed with discernment, preferably alongside one or two of the housekeeping genes identified in this study as internal controls.IMPORTANCEIn our study, we focused on identifying stable reference genes for quantitative real-time PCR (qRT-PCR) experiments on <i>Y. enterocolitica</i> cultured at different temperatures (22°C and 37°C). After thoroughly evaluating 16 candidate genes, we identified six genes-<i>glnS</i>, <i>nuoB</i>, <i>glmS</i>, <i>gyrB</i>, <i>dnaK</i>, and <i>thrS</i>-as exhibiting stable expression across these temperature conditions, making them ideal reference genes for <i>Y. enterocolitica</i> studies. This discovery is crucial for ensuring the accuracy and reliability of qRT-PCR data, as the choice of appropriate reference genes is key to normalizing expression data and minimizing experimental variability. Importantly, our research extended beyond bioinformatics analysis by incorporating validation with clinical strains, bridging the gap between theoretical predictions and practical application. This approach not only underscores the robustness and reliability of our findings but also directly addresses the critical need for experimental validation in the field. By providing a set of validated, stably expressed reference genes, our work offers valuable guidance for designing experiments involving <i>Y. enterocolitica<
{"title":"Stability assessment of housekeeping genes for qRT-PCR in <i>Yersinia enterocolitica</i> cultured at 22°C and 37°C.","authors":"Chuchu Li, Lu Zhou, Xiaoxuan Ma, Liguo Zhu, Jia Li, Lingning Meng, Mei Han, Danwei Wang, Han Shen, Chang Liu","doi":"10.1128/spectrum.01146-24","DOIUrl":"10.1128/spectrum.01146-24","url":null,"abstract":"<p><p><i>Yersinia enterocolitica</i>, a species within the genus <i>Yersinia</i>, thrives optimally at 22-25°C but can also grow at the mammalian core body temperature of 37°C. This dual temperature adaptability necessitates establishing both temperature conditions in research to examine the effects on various biological processes. In quantitative real-time PCR (qRT-PCR) assays, the selection of appropriate housekeeping genes is vital for data accuracy. Nevertheless, the lack of alternatives and information often leads to the default use of the 16S rRNA gene despite potential limitations. This investigation sourced 16 potential reference genes through a comprehensive review of the literature and transcriptome sequencing data analysis. We validated the expression stability of these genes via qRT-PCR across 12 <i>Y. enterocolitica</i> strains, representing the four prevalent serotypes O:3, O:5,27, O:8, and O:9, isolated from diarrheal patient stool samples. This approach aimed to minimize the impact of serotype heterogeneity. After acquiring Cq values, gene stability was evaluated using four established algorithms-ΔCq, geNorm, NormFinder, and BestKeeper-and subsequently synthesized into a consolidated ranking through the Robust Rank Aggregation (RRA) method. Our study suggests that the genes <i>glnS</i>, <i>nuoB</i>, <i>glmS</i>, <i>gyrB</i>, <i>dnaK</i>, and <i>thrS</i> maintain consistent expression across varying culture temperatures, supporting their candidacy as robust housekeeping genes. We advise against the exclusive use of 16S rRNA for this purpose. Should tradition prevail in its utilization, it must be employed with discernment, preferably alongside one or two of the housekeeping genes identified in this study as internal controls.IMPORTANCEIn our study, we focused on identifying stable reference genes for quantitative real-time PCR (qRT-PCR) experiments on <i>Y. enterocolitica</i> cultured at different temperatures (22°C and 37°C). After thoroughly evaluating 16 candidate genes, we identified six genes-<i>glnS</i>, <i>nuoB</i>, <i>glmS</i>, <i>gyrB</i>, <i>dnaK</i>, and <i>thrS</i>-as exhibiting stable expression across these temperature conditions, making them ideal reference genes for <i>Y. enterocolitica</i> studies. This discovery is crucial for ensuring the accuracy and reliability of qRT-PCR data, as the choice of appropriate reference genes is key to normalizing expression data and minimizing experimental variability. Importantly, our research extended beyond bioinformatics analysis by incorporating validation with clinical strains, bridging the gap between theoretical predictions and practical application. This approach not only underscores the robustness and reliability of our findings but also directly addresses the critical need for experimental validation in the field. By providing a set of validated, stably expressed reference genes, our work offers valuable guidance for designing experiments involving <i>Y. enterocolitica<","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-10-07DOI: 10.1128/spectrum.01760-24
Zihan Wang, Jingge Qu, Chun Chang, Yongchang Sun
Mounting evidence has revealed the association between gut microbiota and both chronic obstructive pulmonary disease (COPD) and asthma; however, the causal association between gut microbiota and specific disease phenotypes remains to be determined. This study employed bidirectional two-sample Mendelian randomization (MR) analyses to investigate the potential causal relationship between gut microbiota and these conditions. The research utilized genome-wide association study (GWAS) data from the MiBioGen consortium for gut microbiota and the integrative epidemiology unit (IEU) Open GWAS for these conditions. Four MR analysis methods were employed: the inverse variance weighted (IVW) test, MR-Egger, weighted median, and weighted mode methods. The IVW method results are considered the primary findings. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy analysis, and leave-one-out analysis, were used to enhance robustness. Our MR study identified eight gut microbiota taxa potentially associated with the risk of different types of COPD and asthma. These include two taxa for early-onset COPD: Streptococcaceae [odds ratio (OR) = 1.315, 95% confidence interval (CI) = 1.071-1.616, P = 0.009] and Holdemanella (OR = 1.199, 95% CI = 1.063-1.352, P = 0.003); three for later-onset COPD: Acidaminococcaceae (OR = 1.312, 95% CI = 1.098-1.567, P = 0.003), Holdemania (OR = 1.165, 95% CI = 1.039-1.305, P = 0.009), and Marvinbryantia (OR = 0.814, 95% CI = 0.697-0.951, P = 0.009); one for allergic asthma: Butyricimonas (OR = 0.794, 95% CI = 0.693-0.908, P = 0.001); and two for non-allergic asthma: Clostridia (OR = 1.255, 95% CI = 1.043-1.511, P = 0.016) and Clostridiales (OR = 1.256, 95% CI = 1.048-1.506, P = 0.014).IMPORTANCEIndividuals with diverse phenotypes of chronic obstructive pulmonary disease (COPD) and asthma exhibit different responses to the conventional "one treatment fits all" approach. Recent research has revealed the significant role of the gut-lung axis in both COPD and asthma. However, the specific impact of gut microbiota on different subtypes of these conditions remains poorly understood. Our study has identified eight gut microbiota that may be associated with the risk of different types of COPD and asthma. These findings provide evidence suggesting a potential causal relationship between gut microbiota and various phenotypes of COPD and asthma. This offers a new perspective on the origins of different disease phenotypes and points toward future exploration of phenotype-specific and personalized therapies.
{"title":"Association of the gut microbiome and different phenotypes of COPD and asthma: a bidirectional Mendelian randomization study.","authors":"Zihan Wang, Jingge Qu, Chun Chang, Yongchang Sun","doi":"10.1128/spectrum.01760-24","DOIUrl":"10.1128/spectrum.01760-24","url":null,"abstract":"<p><p>Mounting evidence has revealed the association between gut microbiota and both chronic obstructive pulmonary disease (COPD) and asthma; however, the causal association between gut microbiota and specific disease phenotypes remains to be determined. This study employed bidirectional two-sample Mendelian randomization (MR) analyses to investigate the potential causal relationship between gut microbiota and these conditions. The research utilized genome-wide association study (GWAS) data from the MiBioGen consortium for gut microbiota and the integrative epidemiology unit (IEU) Open GWAS for these conditions. Four MR analysis methods were employed: the inverse variance weighted (IVW) test, MR-Egger, weighted median, and weighted mode methods. The IVW method results are considered the primary findings. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy analysis, and leave-one-out analysis, were used to enhance robustness. Our MR study identified eight gut microbiota taxa potentially associated with the risk of different types of COPD and asthma. These include two taxa for early-onset COPD: <i>Streptococcaceae</i> [odds ratio (OR) = 1.315, 95% confidence interval (CI) = 1.071-1.616, <i>P</i> = 0.009] and <i>Holdemanella</i> (OR = 1.199, 95% CI = 1.063-1.352, <i>P</i> = 0.003); three for later-onset COPD: <i>Acidaminococcaceae</i> (OR = 1.312, 95% CI = 1.098-1.567, <i>P</i> = 0.003), <i>Holdemania</i> (OR = 1.165, 95% CI = 1.039-1.305, <i>P</i> = 0.009), and <i>Marvinbryantia</i> (OR = 0.814, 95% CI = 0.697-0.951, <i>P</i> = 0.009); one for allergic asthma: <i>Butyricimonas</i> (OR = 0.794, 95% CI = 0.693-0.908, <i>P</i> = 0.001); and two for non-allergic asthma: <i>Clostridia</i> (OR = 1.255, 95% CI = 1.043-1.511, <i>P</i> = 0.016) and <i>Clostridiales</i> (OR = 1.256, 95% CI = 1.048-1.506, <i>P</i> = 0.014).IMPORTANCEIndividuals with diverse phenotypes of chronic obstructive pulmonary disease (COPD) and asthma exhibit different responses to the conventional \"one treatment fits all\" approach. Recent research has revealed the significant role of the gut-lung axis in both COPD and asthma. However, the specific impact of gut microbiota on different subtypes of these conditions remains poorly understood. Our study has identified eight gut microbiota that may be associated with the risk of different types of COPD and asthma. These findings provide evidence suggesting a potential causal relationship between gut microbiota and various phenotypes of COPD and asthma. This offers a new perspective on the origins of different disease phenotypes and points toward future exploration of phenotype-specific and personalized therapies.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-10-08DOI: 10.1128/spectrum.01906-24
Erzsébet Fekete, Vivien Bíró, Alexandra Márton, István Bakondi-Kovács, Erzsébet Sándor, Béla Kovács, Nicholas Geoffrion, Adrian Tsang, Christian P Kubicek, Levente Karaffa
For over a century, the filamentous Ascomycete fungus Aspergillus niger has played a pivotal role in the industrial production of citric acid. A critical fermentation parameter that sustains high-yield citric acid accumulation is the suboptimal concentration of manganese(II) ions in the culture broth at the early stages of the process. However, the requirement for this deficiency has not been investigated on a functional genomics level. In this study, we compared the transcriptome of the citric acid hyper-producer A. niger NRRL2270 strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. Of the 11,846 genes in the genome, 963 genes (8.1% of the total) were identified as significantly differentially expressed under these conditions. Disproportionately high number of differentially regulated genes encode predicted extracellular and membrane proteins. The most abundant gene group that was upregulated in Mn2+ ion deficiency condition encodes enzymes acting on polysaccharides. In contrast, six clusters of genes encoding secondary metabolites showed downregulation under manganese deficiency. Mn2+ deficiency also triggers upregulation of the cexA gene, which encodes the citrate exporter. We provide functional evidence that the upregulation of cexA is caused by the intracellular accumulation of citrate or acetyl-CoA and is a major factor in triggering citrate overflow.
Importance: Citric acid is produced on industrial scale by batch fermentation of the filamentous fungus Aspergillus niger. High-yield citric acid production requires a low (<5 ppb) manganese(II) ion concentration in the culture broth. However, the requirement for this deficiency has not been investigated on a functional genomics level. Here, we compared the transcriptome of a citric acid hyper-producer A. niger strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. We observed that Mn2+ deficiency triggers an upregulation of the citrate exporter gene cexA and provides functional evidence that this event is responsible for citrate overflow. In addition to the industrial relevance, this is the first study that examined the role of Mn2+ ion deficiency in a heterotrophic eukaryotic cell on a genome-wide scale.
{"title":"Transcriptomics identify the triggering of citrate export as the key event caused by manganese deficiency in <i>Aspergillus niger</i>.","authors":"Erzsébet Fekete, Vivien Bíró, Alexandra Márton, István Bakondi-Kovács, Erzsébet Sándor, Béla Kovács, Nicholas Geoffrion, Adrian Tsang, Christian P Kubicek, Levente Karaffa","doi":"10.1128/spectrum.01906-24","DOIUrl":"10.1128/spectrum.01906-24","url":null,"abstract":"<p><p>For over a century, the filamentous Ascomycete fungus <i>Aspergillus niger</i> has played a pivotal role in the industrial production of citric acid. A critical fermentation parameter that sustains high-yield citric acid accumulation is the suboptimal concentration of manganese(II) ions in the culture broth at the early stages of the process. However, the requirement for this deficiency has not been investigated on a functional genomics level. In this study, we compared the transcriptome of the citric acid hyper-producer <i>A. niger</i> NRRL2270 strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn<sup>2+</sup> ion-deficient (5 ppb) and Mn<sup>2+</sup> ion-sufficient (100 ppb) conditions at three early time points of cultivation. Of the 11,846 genes in the genome, 963 genes (8.1% of the total) were identified as significantly differentially expressed under these conditions. Disproportionately high number of differentially regulated genes encode predicted extracellular and membrane proteins. The most abundant gene group that was upregulated in Mn<sup>2+</sup> ion deficiency condition encodes enzymes acting on polysaccharides. In contrast, six clusters of genes encoding secondary metabolites showed downregulation under manganese deficiency. Mn<sup>2+</sup> deficiency also triggers upregulation of the <i>cexA</i> gene, which encodes the citrate exporter. We provide functional evidence that the upregulation of <i>cexA</i> is caused by the intracellular accumulation of citrate or acetyl-CoA and is a major factor in triggering citrate overflow.</p><p><strong>Importance: </strong>Citric acid is produced on industrial scale by batch fermentation of the filamentous fungus <i>Aspergillus niger</i>. High-yield citric acid production requires a low (<5 ppb) manganese(II) ion concentration in the culture broth. However, the requirement for this deficiency has not been investigated on a functional genomics level. Here, we compared the transcriptome of a citric acid hyper-producer <i>A. niger</i> strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn<sup>2+</sup> ion-deficient (5 ppb) and Mn<sup>2+</sup> ion-sufficient (100 ppb) conditions at three early time points of cultivation. We observed that Mn<sup>2+</sup> deficiency triggers an upregulation of the citrate exporter gene cexA and provides functional evidence that this event is responsible for citrate overflow. In addition to the industrial relevance, this is the first study that examined the role of Mn<sup>2+</sup> ion deficiency in a heterotrophic eukaryotic cell on a genome-wide scale.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-10-10DOI: 10.1128/spectrum.00962-24
Yuan Fang, Xiaohong Liu, Jie Ren, Xing Wang, Feihan Zhou, Shi Huang, Lei You, Yupei Zhao
Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), is one of the most malignant tumors of the digestive system. Emerging evidence suggests the involvement of the microbiome and metabolic substances in the development of PDAC, yet the results remain contradictory. This study aims to identify the alterations and relationships in intratumoral microbiome and metabolites in PDAC. We collected matched tumor and normal adjacent tissue (NAT) samples from 105 PDAC patients and performed a 6-year follow-up. 2bRAD-M sequencing, untargeted liquid chromatography-tandem mass spectrometry, and untargeted gas chromatography-mass spectrometry were performed. Compared with NATs, microbial α-diversity decreased in PDAC tumors. The relative abundance of Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum was higher in PDAC tumor after adjusting for confounding factors body mass index and M stage, and the presence of Ralstonia pickettii_B was found associated with a worse overall survival. Metabolomic analysis revealed distinctive differences in composition between PDAC and NAT, with 553 discriminative metabolites identified. Differential metabolites were revealed to originate from the microbiota and showed significant interactions with shifted bacterial species through KO (KEGG Orthology) genes. These findings suggest that the PDAC microenvironment harbors unique microbial-derived enzymatic reactions, potentially influencing the occurrence and development of PDAC by modulating the levels of glycerol-3-phosphate, succinate, carbonate, and beta-alanine.
Importance: We conducted a large sample-size pancreatic adenocarcinoma microbiome study using a novel microbiome sequencing method and two metabolomic assays. Two significant outcomes of our analysis are: (i) commensal opportunistic pathogens Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum were enriched in pancreatic ductal adenocarcinoma (PDAC) tumors compared with normal adjacent tissues, and (ii) worse overall survival was found related to the presence of Ralstonia pickettii_B. Microbial species affect the tumorigenesis, metastasis, and prognosis of PDAC via unique microbe-enzyme-metabolite interaction. Thus, our study highlights the need for further investigation of the potential associations between pancreatic microbiota-derived omics signatures, which may drive the clinical transformation of microbiome-derived strategies toward therapy-targeted bacteria.
{"title":"Integrated analysis of microbiome and metabolome reveals signatures in PDAC tumorigenesis and prognosis.","authors":"Yuan Fang, Xiaohong Liu, Jie Ren, Xing Wang, Feihan Zhou, Shi Huang, Lei You, Yupei Zhao","doi":"10.1128/spectrum.00962-24","DOIUrl":"10.1128/spectrum.00962-24","url":null,"abstract":"<p><p>Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), is one of the most malignant tumors of the digestive system. Emerging evidence suggests the involvement of the microbiome and metabolic substances in the development of PDAC, yet the results remain contradictory. This study aims to identify the alterations and relationships in intratumoral microbiome and metabolites in PDAC. We collected matched tumor and normal adjacent tissue (NAT) samples from 105 PDAC patients and performed a 6-year follow-up. 2bRAD-M sequencing, untargeted liquid chromatography-tandem mass spectrometry, and untargeted gas chromatography-mass spectrometry were performed. Compared with NATs, microbial α-diversity decreased in PDAC tumors. The relative abundance of <i>Staphylococcus aureus</i>, <i>Cutibacterium acnes,</i> and <i>Cutibacterium granulosum</i> was higher in PDAC tumor after adjusting for confounding factors body mass index and M stage, and the presence of <i>Ralstonia pickettii_B</i> was found associated with a worse overall survival. Metabolomic analysis revealed distinctive differences in composition between PDAC and NAT, with 553 discriminative metabolites identified. Differential metabolites were revealed to originate from the microbiota and showed significant interactions with shifted bacterial species through KO (KEGG Orthology) genes. These findings suggest that the PDAC microenvironment harbors unique microbial-derived enzymatic reactions, potentially influencing the occurrence and development of PDAC by modulating the levels of glycerol-3-phosphate, succinate, carbonate, and beta-alanine.</p><p><strong>Importance: </strong>We conducted a large sample-size pancreatic adenocarcinoma microbiome study using a novel microbiome sequencing method and two metabolomic assays. Two significant outcomes of our analysis are: (i) commensal opportunistic pathogens <i>Staphylococcus aureus</i>, <i>Cutibacterium acnes</i>, and <i>Cutibacterium granulosum</i> were enriched in pancreatic ductal adenocarcinoma (PDAC) tumors compared with normal adjacent tissues, and (ii) worse overall survival was found related to the presence of <i>Ralstonia pickettii_B</i>. Microbial species affect the tumorigenesis, metastasis, and prognosis of PDAC via unique microbe-enzyme-metabolite interaction. Thus, our study highlights the need for further investigation of the potential associations between pancreatic microbiota-derived omics signatures, which may drive the clinical transformation of microbiome-derived strategies toward therapy-targeted bacteria.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of multidrug-resistant Citrobacter freundii poses a significant threat to public health. C. freundii isolates were collected from clinical patients in a Chinese hospital during 2020-2022. An unusual strain, GMU8049, was not susceptible to any of the antibiotics tested, including the novel β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam. Whole-genome sequencing (WGS) revealed that GMU8049 harbors a circular chromosome belonging to the rare ST257 and an IncX3 resistance plasmid. Genomic analysis revealed the coexistence of two β-lactamase genes, including plasmid-mediated blaNDM-1 and chromosomal blaCMY encoding a novel CMY variant, combined with an outer membrane porin deficiency, which may account for the extreme resistance to β-lactams. Conjugation experiment confirmed that the blaNDM-1 resistance gene located on pGMU8049 could be successfully transferred to Escherichia coli EC600. The novel CMY variant had an amino acid substitution at position 106 (N106S) compared to the closely related CMY-51. Additionally, a GMU8049-specific truncation in an OmpK37 variant that produces a premature stop codon. Moreover, a variety of chromosome-located efflux pump coding genes and virulence-related genes were also identified. Analysis of strain GMU8049 in the context of other C. freundii strains reveals an open pan-genome and the presence of mobile genetic elements that can mediate horizontal gene transfer of antimicrobial resistance and virulence genes. Our work provides comprehensive insights into the genetic mechanisms of highly resistant C. freundii, highlighting the importance of genomic surveillance of this opportunistic pathogen as a high-risk population for emerging resistance and pathogenicity.IMPORTANCEEmerging pathogens exhibiting multi-, extremely, and pan-drug resistance are a major concern for hospitalized patients and the healthcare community due to limited antimicrobial treatment options and the potential for spread. Genomic technologies have enabled clinical surveillance of emerging pathogens and modeling of the evolution and transmission of antimicrobial resistance and virulence. Here, we report the genomic characterization of an extremely drug-resistant ST257 Citrobacter freundii clinical isolate. Genomic analysis of GMU8049 with a rare ST type and unusual phenotypes can provide information on how this extremely resistant clinical isolate has evolved, including the acquisition of blaNDM-1 via the IncX3 plasmid and accumulation through chromosomal mutations leading to a novel CMY variant and deficiency of the outer membrane porin OmpK37. Our work highlights that the emergence of extremely resistant C. freundii poses a significant challenge to the treatment of clinical infections. Therefore, great efforts must be made to specifically monitor this opportunistic pathogen.
{"title":"Investigation of <i>Citrobacter freundii</i> clinical isolates in a Chinese hospital during 2020-2022 revealed genomic characterization of an extremely drug-resistant <i>C. freundii</i> ST257 clinical strain GMU8049 co-carrying <i>bla</i><sub>NDM-1</sub> and a novel <i>bla</i><sub>CMY</sub> variant.","authors":"Mujie Zhang, Zhiqiu Yin, Baozhu Chen, Zhanpeng Yu, Jiaxin Liang, Xiaoyan Tian, Defu Li, Xiaoyan Deng, Liang Peng","doi":"10.1128/spectrum.04254-23","DOIUrl":"10.1128/spectrum.04254-23","url":null,"abstract":"<p><p>The emergence of multidrug-resistant <i>Citrobacter freundii</i> poses a significant threat to public health. <i>C. freundii</i> isolates were collected from clinical patients in a Chinese hospital during 2020-2022. An unusual strain, GMU8049, was not susceptible to any of the antibiotics tested, including the novel β-lactam/β-lactamase inhibitor combination ceftazidime-avibactam. Whole-genome sequencing (WGS) revealed that GMU8049 harbors a circular chromosome belonging to the rare ST257 and an IncX3 resistance plasmid. Genomic analysis revealed the coexistence of two β-lactamase genes, including plasmid-mediated <i>bla</i><sub>NDM-1</sub> and chromosomal <i>bla</i><sub>CMY</sub> encoding a novel CMY variant, combined with an outer membrane porin deficiency, which may account for the extreme resistance to β-lactams. Conjugation experiment confirmed that the <i>bla</i><sub>NDM-1</sub> resistance gene located on pGMU8049 could be successfully transferred to <i>Escherichia coli</i> EC600. The novel CMY variant had an amino acid substitution at position 106 (N106S) compared to the closely related CMY-51. Additionally, a GMU8049-specific truncation in an OmpK37 variant that produces a premature stop codon. Moreover, a variety of chromosome-located efflux pump coding genes and virulence-related genes were also identified. Analysis of strain GMU8049 in the context of other <i>C. freundii</i> strains reveals an open pan-genome and the presence of mobile genetic elements that can mediate horizontal gene transfer of antimicrobial resistance and virulence genes. Our work provides comprehensive insights into the genetic mechanisms of highly resistant <i>C. freundii</i>, highlighting the importance of genomic surveillance of this opportunistic pathogen as a high-risk population for emerging resistance and pathogenicity.IMPORTANCEEmerging pathogens exhibiting multi-, extremely, and pan-drug resistance are a major concern for hospitalized patients and the healthcare community due to limited antimicrobial treatment options and the potential for spread. Genomic technologies have enabled clinical surveillance of emerging pathogens and modeling of the evolution and transmission of antimicrobial resistance and virulence. Here, we report the genomic characterization of an extremely drug-resistant ST257 <i>Citrobacter freundii</i> clinical isolate. Genomic analysis of GMU8049 with a rare ST type and unusual phenotypes can provide information on how this extremely resistant clinical isolate has evolved, including the acquisition of <i>bla</i><sub>NDM-1</sub> via the IncX3 plasmid and accumulation through chromosomal mutations leading to a novel CMY variant and deficiency of the outer membrane porin OmpK37. Our work highlights that the emergence of extremely resistant <i>C. freundii</i> poses a significant challenge to the treatment of clinical infections. Therefore, great efforts must be made to specifically monitor this opportunistic pathogen.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05Epub Date: 2024-10-14DOI: 10.1128/spectrum.01970-24
Hajar AlQadeeb, Murielle Baltazar, Adrian Cazares, Tiraput Poonpanichakul, Morten Kjos, Neil French, Aras Kadioglu, Marie O'Brien
Streptococcus agalactiae (or group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic lytS knockout mutant in a clinical GBS isolate and used a combination of phenotypic in vitro assays and in vivo murine models to investigate the contribution of lytS to the colonization and invasive properties of GBS. Deletion of the lytS gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the lytS knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the lytS mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCEStreptococcus agalactiae (group B Streptococcus, or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS lytS-deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that lytS deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.
{"title":"The <i>Streptococcus agalactiae</i> LytSR two-component regulatory system promotes vaginal colonization and virulence <i>in vivo</i>.","authors":"Hajar AlQadeeb, Murielle Baltazar, Adrian Cazares, Tiraput Poonpanichakul, Morten Kjos, Neil French, Aras Kadioglu, Marie O'Brien","doi":"10.1128/spectrum.01970-24","DOIUrl":"10.1128/spectrum.01970-24","url":null,"abstract":"<p><p><i>Streptococcus agalactiae</i> (or group B <i>Streptococcus</i>, GBS) is a leading cause of neonatal sepsis and meningitis globally. To sense and respond to variations in its environment, GBS possesses multiple two-component regulatory systems (TCSs), such as LytSR. Here, we aimed to investigate the role of LytSR in GBS pathogenicity. We generated an isogenic <i>lytS</i> knockout mutant in a clinical GBS isolate and used a combination of phenotypic <i>in vitro</i> assays and <i>in vivo</i> murine models to investigate the contribution of <i>lytS</i> to the colonization and invasive properties of GBS. Deletion of the <i>lytS</i> gene in the GBS chromosome resulted in significantly higher survival rates in mice during sepsis, accompanied by reduced bacterial loads in blood, lung, spleen, kidney, and brain tissues compared to infection with the wild-type strain. In a mouse model of GBS vaginal colonization, we also observed that the <i>lytS</i> knockout mutant was cleared more readily from the vaginal tract compared to its wild-type counterpart. Interestingly, lower levels of proinflammatory cytokines were found in the serum of mice infected with the <i>lytS</i> mutant. Our results demonstrate that the LytSR TCS plays a key role in GBS tissue invasion and pathogenesis, and persistence of mucosal colonization.IMPORTANCE<i>Streptococcus agalactiae (</i>group B <i>Streptococcus,</i> or GBS) is a common commensal of the female urogenital tract and one of WHO's priority pathogens. The bacterium has evolved mechanisms to adapt and survive in its host, many of which are regulated via two-component signal transduction systems (TCSs); however, the exact contributions of TCSs toward GBS pathogenicity remain largely obscure. We have constructed a TCS <i>lytS-</i>deficient mutant in a CC-17 hypervirulent GBS clinical isolate. Using murine models, we showed that LytSR regulatory system is essential for vaginal colonization via promoting biofilm production. We also observed that <i>lytS</i> deficiency led to significantly attenuated virulence properties and lower levels of proinflammatory cytokines in blood. Our findings are of significant importance in that they unveil a previously unreported role for LytSR in GBS and pave the way toward a better understanding of its ability to transition from an innocuous commensal to a deadly pathogen.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}