Pub Date : 2025-10-03DOI: 10.1016/j.metabol.2025.156397
Chrysoula Boutari , Michael A. Hill , Christos S. Mantzoros
{"title":"Semaglutide, the first approved GLP-1 receptor agonist for the management of metabolic dysfunction-associated steatohepatitis","authors":"Chrysoula Boutari , Michael A. Hill , Christos S. Mantzoros","doi":"10.1016/j.metabol.2025.156397","DOIUrl":"10.1016/j.metabol.2025.156397","url":null,"abstract":"","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156397"},"PeriodicalIF":11.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145232989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1016/j.metabol.2025.156410
Ramesh C. Mishra , Rayan Khaddaj Mallat , Cini M. John , Darrell D. Belke , Liam Hamm , Latika Singh , Taeyoeb Kim , Grace George , Yong-Xiang Chen , Heike Wulff , Andrew P. Braun
Objective
Our goal in the present study was to examine whether long-term administration of the selective KCa channel activator SKA-31 would mitigate the development/severity of type 2 diabetes (T2D)-associated cardiovascular (CV) complications in adult male Goto-Kakizaki (GK) rats with spontaneous T2D.
Methods
Adult male T2D GK rats instrumented with radio-telemeters were administered either vehicle or the KCa channel activator SKA-31 (10 mg/kg) at ~14 weeks of age by daily intraperitoneal injection for 12 consecutive weeks. In vivo and ex vivo analyses of CV function, immune system status, vascular signaling and metabolic hormones were performed following treatment.
Results
Vehicle-treated T2D GK rats exhibited gradual increases in systolic and diastolic blood pressure, whereas SKA-31 administration led to lower mean arterial pressure, along with improvements in cardiac function (i.e., ejection fraction, fractional shortening) and structure (i.e., end systolic and diastolic volumes), as determined by echocardiography. SKA-31 treatment in vivo further improved vascular endothelial function in small mesenteric arteries, as determined by arterial pressure myography, and increased the protein expression of vasodilatory signaling molecules in the vascular wall. Prolonged SKA-31 treatment did not impair vasodilatory responsiveness in skeletal muscle and coronary arteries, elicit a pro-inflammatory profile in T2D GK rats or produce any adverse histological effects in brain, kidney or liver.
Conclusions
The results of our study demonstrate that low-dose administration of the KCa channel activator SKA-31 improved CV function in an established rat model of spontaneous T2D and reveal a potential novel strategy to oppose CV-related morbidity in T2D.
{"title":"Administration of the KCa channel activator SKA-31 improves long-term endothelial function, blood pressure regulation and cardiac performance in rats with type 2 diabetes","authors":"Ramesh C. Mishra , Rayan Khaddaj Mallat , Cini M. John , Darrell D. Belke , Liam Hamm , Latika Singh , Taeyoeb Kim , Grace George , Yong-Xiang Chen , Heike Wulff , Andrew P. Braun","doi":"10.1016/j.metabol.2025.156410","DOIUrl":"10.1016/j.metabol.2025.156410","url":null,"abstract":"<div><h3>Objective</h3><div>Our goal in the present study was to examine whether long-term administration of the selective K<sub>Ca</sub> channel activator SKA-31 would mitigate the development/severity of type 2 diabetes (T2D)-associated cardiovascular (CV) complications in adult male Goto-Kakizaki (GK) rats with spontaneous T2D.</div></div><div><h3>Methods</h3><div>Adult male T2D GK rats instrumented with radio-telemeters were administered either vehicle or the K<sub>Ca</sub> channel activator SKA-31 (10 mg/kg) at ~14 weeks of age by daily intraperitoneal injection for 12 consecutive weeks. <em>In vivo</em> and <em>ex vivo</em> analyses of CV function, immune system status, vascular signaling and metabolic hormones were performed following treatment.</div></div><div><h3>Results</h3><div>Vehicle-treated T2D GK rats exhibited gradual increases in systolic and diastolic blood pressure, whereas SKA-31 administration led to lower mean arterial pressure, along with improvements in cardiac function (i.e., ejection fraction, fractional shortening) and structure (i.e., end systolic and diastolic volumes), as determined by echocardiography. SKA-31 treatment <em>in vivo</em> further improved vascular endothelial function in small mesenteric arteries, as determined by arterial pressure myography, and increased the protein expression of vasodilatory signaling molecules in the vascular wall. Prolonged SKA-31 treatment did not impair vasodilatory responsiveness in skeletal muscle and coronary arteries, elicit a pro-inflammatory profile in T2D GK rats or produce any adverse histological effects in brain, kidney or liver.</div></div><div><h3>Conclusions</h3><div>The results of our study demonstrate that low-dose administration of the K<sub>Ca</sub> channel activator SKA-31 improved CV function in an established rat model of spontaneous T2D and reveal a potential novel strategy to oppose CV-related morbidity in T2D.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156410"},"PeriodicalIF":11.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145225658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-21DOI: 10.1016/j.metabol.2025.156394
Jiaxing Wang , Qiangzhou Wang , Xinrui Li , Qingqing Cai , Yulin Bi , Chenyang Xu , Hao Bai , Lihong Gu , Guobin Chang , Shihao Chen
Recent findings have broadened our understanding of the tripartite motif (TRIM) protein family, positioning these proteins as pivotal regulators of cellular metabolism and cell fate. Primarily functioning as versatile E3 ubiquitin ligases, TRIM proteins orchestrate key metabolic pathways—including glucose, lipid, and amino acid metabolism—through both ubiquitination-dependent and -independent mechanisms such as oligomerization and epigenetic modification. For example, TRIM38, TRIM11, and TRIM24 have been reported to modulate glycolytic flux and insulin signaling by targeting key glucose transporters and glycolytic enzymes, with effects on cancer metabolism and insulin responses in model systems. Similarly, TRIM21 and TRIM56 have been implicated in fatty acid synthesis, oxidation, and cholesterol balance, with potential relevance to fatty-liver conditions and atherosclerosis. Moreover, TRIM-mediated regulation of amino acid metabolism-particularly through pathways involving glutamine and branched-chain amino acids-plays a central role in tumor metabolic reprogramming and survival. Beyond enzymatic regulation, TRIM proteins exert non-canonical functions through epigenetic modulation and interactions with signaling networks. This review synthesizes current insights into the multifaceted roles of TRIM proteins in metabolic control and cell death, suggesting that ferroptosis may link TRIM proteins to lipid and amino acid metabolism, and highlights the connection between TRIM proteins and metabolic stress as a key area for future research.
{"title":"Emerging roles of TRIM in metabolic regulation","authors":"Jiaxing Wang , Qiangzhou Wang , Xinrui Li , Qingqing Cai , Yulin Bi , Chenyang Xu , Hao Bai , Lihong Gu , Guobin Chang , Shihao Chen","doi":"10.1016/j.metabol.2025.156394","DOIUrl":"10.1016/j.metabol.2025.156394","url":null,"abstract":"<div><div>Recent findings have broadened our understanding of the tripartite motif (TRIM) protein family, positioning these proteins as pivotal regulators of cellular metabolism and cell fate. Primarily functioning as versatile E3 ubiquitin ligases, TRIM proteins orchestrate key metabolic pathways—including glucose, lipid, and amino acid metabolism—through both ubiquitination-dependent and -independent mechanisms such as oligomerization and epigenetic modification. For example, TRIM38, TRIM11, and TRIM24 have been reported to modulate glycolytic flux and insulin signaling by targeting key glucose transporters and glycolytic enzymes, with effects on cancer metabolism and insulin responses in model systems. Similarly, TRIM21 and TRIM56 have been implicated in fatty acid synthesis, oxidation, and cholesterol balance, with potential relevance to fatty-liver conditions and atherosclerosis. Moreover, TRIM-mediated regulation of amino acid metabolism-particularly through pathways involving glutamine and branched-chain amino acids-plays a central role in tumor metabolic reprogramming and survival. Beyond enzymatic regulation, TRIM proteins exert non-canonical functions through epigenetic modulation and interactions with signaling networks. This review synthesizes current insights into the multifaceted roles of TRIM proteins in metabolic control and cell death, suggesting that ferroptosis may link TRIM proteins to lipid and amino acid metabolism, and highlights the connection between TRIM proteins and metabolic stress as a key area for future research.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156394"},"PeriodicalIF":11.9,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-18DOI: 10.1016/j.metabol.2025.156395
Maryam Kay , Anne-Maj Samuelsson , Nike Bharucha , Xueyi Li , Rohin Ramchandani , Rachel E. Baum , Diego Ruiz Arvizo , Aurélie Laguerre , Sherin Lajevardi , Shrikaar Kambhampati , Christian M. Metallo , Michael S. Kapiloff , Ioannis Karakikes
Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. However, disease-modifying therapies remain limited. Metabolic dysfunction has emerged as a key driver of DCM pathogenesis, and impaired serine biosynthesis, catalyzed by the rate-limiting enzyme phosphoglycerate dehydrogenase (PHGDH), has recently been identified as a potential therapeutic target. Here, we evaluated the therapeutic potential of increasing serine biosynthesis through AAV9-mediated PHGDH gene augmentation in a transgenic TM54 mouse model of DCM with established pathology. Longitudinal echocardiography showed preserved systolic function and prevented ventricular dilatation in TM54 mice treated with AAV9-PHGDH compared to AAV9-GFP controls. Histological analysis revealed reduced myocardial fibrosis and cardiomyocyte hypertrophy in AAV9-PHGDH-treated TM54 hearts, indicating a reversal of pathological remodeling. Metabolic profiling, including targeted metabolomics and in vivo 13C-glucose tracing analysis, revealed that serine levels increased in hearts treated with AAV9-PHGDH, accompanied by decreases in glucose-derived pyruvate and lactate. At the same time, mitochondrial oxidative metabolism remained intact, indicating a shift of glycolytic carbon towards serine biosynthesis. Collectively, these findings show that enhancing cardiac serine synthesis through PHGDH gene augmentation therapy preserves contractile function and mitigates disease progression in vivo, suggesting a novel metabolic therapeutic strategy for DCM.
{"title":"Enhancing cardiac serine biosynthesis mitigates the progression of dilated cardiomyopathy in mice","authors":"Maryam Kay , Anne-Maj Samuelsson , Nike Bharucha , Xueyi Li , Rohin Ramchandani , Rachel E. Baum , Diego Ruiz Arvizo , Aurélie Laguerre , Sherin Lajevardi , Shrikaar Kambhampati , Christian M. Metallo , Michael S. Kapiloff , Ioannis Karakikes","doi":"10.1016/j.metabol.2025.156395","DOIUrl":"10.1016/j.metabol.2025.156395","url":null,"abstract":"<div><div>Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. However, disease-modifying therapies remain limited. Metabolic dysfunction has emerged as a key driver of DCM pathogenesis, and impaired serine biosynthesis, catalyzed by the rate-limiting enzyme phosphoglycerate dehydrogenase (PHGDH), has recently been identified as a potential therapeutic target. Here, we evaluated the therapeutic potential of increasing serine biosynthesis through AAV9-mediated PHGDH gene augmentation in a transgenic TM54 mouse model of DCM with established pathology. Longitudinal echocardiography showed preserved systolic function and prevented ventricular dilatation in TM54 mice treated with AAV9-PHGDH compared to AAV9-GFP controls. Histological analysis revealed reduced myocardial fibrosis and cardiomyocyte hypertrophy in AAV9-PHGDH-treated TM54 hearts, indicating a reversal of pathological remodeling. Metabolic profiling, including targeted metabolomics and in vivo <sup>13</sup>C-glucose tracing analysis, revealed that serine levels increased in hearts treated with AAV9-PHGDH, accompanied by decreases in glucose-derived pyruvate and lactate. At the same time, mitochondrial oxidative metabolism remained intact, indicating a shift of glycolytic carbon towards serine biosynthesis. Collectively, these findings show that enhancing cardiac serine synthesis through PHGDH gene augmentation therapy preserves contractile function and mitigates disease progression in vivo, suggesting a novel metabolic therapeutic strategy for DCM.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156395"},"PeriodicalIF":11.9,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-17DOI: 10.1016/j.metabol.2025.156389
Filipe S. Pereira-Dutra , Julia Cunha Santos , Ellen Kiarely Souza , Rodrigo Vieira Savi , Tamyris S. Souza , Helen Gil , Hugo Espinheira-Silva , Felipe Ferraro-Moreira , Guilherme Iack , Tamires Cunha-Fernandes , Tathiany Igreja-Silva , Lohanna Palhinha , Mariana Macedo Campos , Ester Fernanda Terra Souza , Amanda França Cordeiro , Pablo Andrade-dos-Santos , Douglas Mathias Oliveira , Vinicius Soares Cardoso , Matheus A. Rajão , Livia Teixeira , Patrícia T. Bozza
Lipid droplets (LDs) are lipid-rich organelles recognized as central players in lipid homeostasis, signaling, and inflammation. While their functions in inflammation are well-documented, the mechanisms of LDs in antibacterial immunity and infection resistance remain less understood. Our results show that E. coli-infection trigger immunometabolic reprogramming and LD accumulation in murine macrophages (BMDM). Moreover, purified LDs from LPS-stimulated and E. coli-infected macrophages exhibited direct E. coli anti-bacterial activity. Pharmacological inhibition or genetic knockdown of DGAT1, a key enzyme in triglyceride synthesis, reduced LD formation, bacterial clearance, and pro-inflammatory responses (nitric oxide, PGE2, CCL2, IL-6). Notably, DGAT1 inhibition impaired the expression of IFN-β and interferon-stimulated genes (ISGs), including viperin, iNOS, cathelicidin and IGTP, in E. coli-infected macrophages. In a cecal-ligation and puncture model of sepsis in C57BL/6 mice, DGAT1 inhibition reduced sepsis-induced LD accumulation in peritoneal cells and decreased levels of IFN-β, CCL2, nitric oxide, and lipid mediators (PGE2, LTB4, and RvD1) in the peritoneum. Furthermore, DGAT1 inhibition accelerated sepsis-related mortality, coinciding with elevated bacterial loads in the peritoneum and bloodstream at 6- and 24-h post-sepsis. Our results demonstrate that LDs are critical regulators of innate immunity infection resistance, contributing to both bacterial clearance and the coordination of a protective proinflammatory response during sepsis through mechanisms dependent on DGAT-1 and Type I IFN.
{"title":"Sepsis-induced lipid droplet accumulation enhances antibacterial innate immunity through mechanisms dependent on DGAT-1 and interferon-beta","authors":"Filipe S. Pereira-Dutra , Julia Cunha Santos , Ellen Kiarely Souza , Rodrigo Vieira Savi , Tamyris S. Souza , Helen Gil , Hugo Espinheira-Silva , Felipe Ferraro-Moreira , Guilherme Iack , Tamires Cunha-Fernandes , Tathiany Igreja-Silva , Lohanna Palhinha , Mariana Macedo Campos , Ester Fernanda Terra Souza , Amanda França Cordeiro , Pablo Andrade-dos-Santos , Douglas Mathias Oliveira , Vinicius Soares Cardoso , Matheus A. Rajão , Livia Teixeira , Patrícia T. Bozza","doi":"10.1016/j.metabol.2025.156389","DOIUrl":"10.1016/j.metabol.2025.156389","url":null,"abstract":"<div><div>Lipid droplets (LDs) are lipid-rich organelles recognized as central players in lipid homeostasis, signaling, and inflammation. While their functions in inflammation are well-documented, the mechanisms of LDs in antibacterial immunity and infection resistance remain less understood. Our results show that <em>E. coli</em>-infection trigger immunometabolic reprogramming and LD accumulation in murine macrophages (BMDM). Moreover, purified LDs from LPS-stimulated and <em>E. coli-</em>infected macrophages exhibited direct <em>E. coli</em> anti-bacterial activity. Pharmacological inhibition or genetic knockdown of DGAT1, a key enzyme in triglyceride synthesis, reduced LD formation, bacterial clearance, and pro-inflammatory responses (nitric oxide, PGE<sub>2</sub>, CCL2, IL-6). Notably, DGAT1 inhibition impaired the expression of IFN-β and interferon-stimulated genes (ISGs), including viperin, iNOS, cathelicidin and IGTP, in <em>E. coli</em>-infected macrophages. In a cecal-ligation and puncture model of sepsis in C57BL/6 mice, DGAT1 inhibition reduced sepsis-induced LD accumulation in peritoneal cells and decreased levels of IFN-β, CCL2, nitric oxide, and lipid mediators (PGE<sub>2</sub>, LTB<sub>4</sub>, and RvD1) in the peritoneum. Furthermore, DGAT1 inhibition accelerated sepsis-related mortality, coinciding with elevated bacterial loads in the peritoneum and bloodstream at 6- and 24-h post-sepsis. Our results demonstrate that LDs are critical regulators of innate immunity infection resistance, contributing to both bacterial clearance and the coordination of a protective proinflammatory response during sepsis through mechanisms dependent on DGAT-1 and Type I IFN.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156389"},"PeriodicalIF":11.9,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145091961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-16DOI: 10.1016/j.metabol.2025.156390
Shuman Ran , Siqi Wang , Qi Jin , Genzheng Liu , Xiaobin Xue , Peng Qu , Liang Peng , Hua Meng
E4BP4/NFIL3 (E4 promoter-binding protein 4 or nuclear factor interleukin-3-regulated protein), is well-established for its association with circadian rhythm regulation and immune function. Recent advances in research have revealed its emerging and indispensable role in metabolic homeostasis, positioning it at the crossroads of circadian biology, immune responses, and metabolic balance. This review summarizes three decades of research on E4BP4/NFIL3 and explores its structural basis and regulatory functions. We synthesized current insights into the regulatory pathways that govern E4BP4/NFIL3 and discuss its central role in various metabolic scenarios, emphasizing its emerging significance as a pivotal metabolic regulator. Finally, we identify critical, unresolved questions and propose future research directions to enhance our understanding of E4BP4/NFIL3's broader implications in metabolic health.
{"title":"Emerging role of E4BP4/NFIL3 in metabolic homeostasis","authors":"Shuman Ran , Siqi Wang , Qi Jin , Genzheng Liu , Xiaobin Xue , Peng Qu , Liang Peng , Hua Meng","doi":"10.1016/j.metabol.2025.156390","DOIUrl":"10.1016/j.metabol.2025.156390","url":null,"abstract":"<div><div>E4BP4/NFIL3 (E4 promoter-binding protein 4 or nuclear factor interleukin-3-regulated protein), is well-established for its association with circadian rhythm regulation and immune function. Recent advances in research have revealed its emerging and indispensable role in metabolic homeostasis, positioning it at the crossroads of circadian biology, immune responses, and metabolic balance. This review summarizes three decades of research on E4BP4/NFIL3 and explores its structural basis and regulatory functions. We synthesized current insights into the regulatory pathways that govern E4BP4/NFIL3 and discuss its central role in various metabolic scenarios, emphasizing its emerging significance as a pivotal metabolic regulator. Finally, we identify critical, unresolved questions and propose future research directions to enhance our understanding of E4BP4/NFIL3's broader implications in metabolic health.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"173 ","pages":"Article 156390"},"PeriodicalIF":11.9,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145086404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-15DOI: 10.1016/j.metabol.2025.156393
Thiago dos Reis Araujo , Joel Alves da Silva Junior , Bruna Lourençoni Alves , Dimitrius Santiago Passos Simões Fróes Guimarães , Lohanna Monali Barreto , Mariana Roberta Rodrigues Muniz , Jennifer Rieusset , Everardo Magalhães Carneiro
Aims/hypothesis
Nutritional disorders directly affect the endocrine pancreas, increasing the susceptibility to type 2 diabetes mellitus. However, the molecular mechanisms underlying these alterations remain unknown. This study aims to characterize the role of endoplasmic reticulum (ER)-mitochondria contact sites, known as mitochondrial-associated membranes (MAMs), in insulin secretion dysfunctions associated with undernutrition, obesity, and the double burden of malnutrition (DBM).
Methods
Rat pancreatic INS-1E β-cells were cultured in a medium without amino acids supplemented with 1 × (control) or 0.25 × (amino acid restriction) of an amino acid solution for 48 h, and then cells were exposed to a fatty acid mix for 48 h. Male C57BL/6 mice were fed a normoprotein diet (14 % protein) or protein-restricted diet (6 % protein) for 6 weeks and subsequently a high-fat diet (35 % kcal) for 12 weeks. ER-mitochondria interactions were evaluated by in situ proximity ligation assay and transmission electronic microscopy.
Results
Our findings indicate that protein restriction reduces ER-mitochondria contacts in pancreatic beta-cells, leading to decreased mitochondrial metabolism and glucose-stimulated insulin secretion (GSIS). In contrast, obesity increases ER-mitochondria contact points, mitochondrial metabolism, and GSIS in pancreatic beta-cells, without alterations in viability. DBM results in a significant increase in ER-mitochondria contacts, elevated mitochondrial calcium levels, increased production of reactive oxygen species, and cell death, collectively contributing to impaired GSIS response in the context of obesity.
Conclusions/interpretation
These data indicates that MAMs play a crucial role in GSIS during nutritional disorders such as undernutrition, obesity, and DBM. Importantly, changes in MAMs precede GSIS impairment, therefore targeting these interactions might prevent further disruption in beta-cell function.
{"title":"Disruption of mitochondria-associated membranes contributes to the dysregulation of insulin secretion in undernutrition, obesity, and double burden of malnutrition","authors":"Thiago dos Reis Araujo , Joel Alves da Silva Junior , Bruna Lourençoni Alves , Dimitrius Santiago Passos Simões Fróes Guimarães , Lohanna Monali Barreto , Mariana Roberta Rodrigues Muniz , Jennifer Rieusset , Everardo Magalhães Carneiro","doi":"10.1016/j.metabol.2025.156393","DOIUrl":"10.1016/j.metabol.2025.156393","url":null,"abstract":"<div><h3>Aims/hypothesis</h3><div>Nutritional disorders directly affect the endocrine pancreas, increasing the susceptibility to type 2 diabetes mellitus. However, the molecular mechanisms underlying these alterations remain unknown. This study aims to characterize the role of endoplasmic reticulum (ER)-mitochondria contact sites, known as mitochondrial-associated membranes (MAMs), in insulin secretion dysfunctions associated with undernutrition, obesity, and the double burden of malnutrition (DBM).</div></div><div><h3>Methods</h3><div>Rat pancreatic INS-1E β-cells were cultured in a medium without amino acids supplemented with 1 × (control) or 0.25 × (amino acid restriction) of an amino acid solution for 48 h, and then cells were exposed to a fatty acid mix for 48 h. Male C57BL/6 mice were fed a normoprotein diet (14 % protein) or protein-restricted diet (6 % protein) for 6 weeks and subsequently a high-fat diet (35 % kcal) for 12 weeks. ER-mitochondria interactions were evaluated by in situ proximity ligation assay and transmission electronic microscopy.</div></div><div><h3>Results</h3><div>Our findings indicate that protein restriction reduces ER-mitochondria contacts in pancreatic beta-cells, leading to decreased mitochondrial metabolism and glucose-stimulated insulin secretion (GSIS). In contrast, obesity increases ER-mitochondria contact points, mitochondrial metabolism, and GSIS in pancreatic beta-cells, without alterations in viability. DBM results in a significant increase in ER-mitochondria contacts, elevated mitochondrial calcium levels, increased production of reactive oxygen species, and cell death, collectively contributing to impaired GSIS response in the context of obesity.</div></div><div><h3>Conclusions/interpretation</h3><div>These data indicates that MAMs play a crucial role in GSIS during nutritional disorders such as undernutrition, obesity, and DBM. Importantly, changes in MAMs precede GSIS impairment, therefore targeting these interactions might prevent further disruption in beta-cell function.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"173 ","pages":"Article 156393"},"PeriodicalIF":11.9,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-15DOI: 10.1016/j.metabol.2025.156392
Jinni Yang , Xue Yang , Yuan Zheng , Anhui Wang , Ziwen Kong , Qinwen Xiao , Yuan Tian , Haijuan Dong , Zunjian Zhang , Min Wang , Rui Song
Background and aims
Insulin resistance is a key driver of metabolic disorders, yet its molecular mechanisms remain elusive. This study identifies 27-hydroxycholesterol (27HC), a cholesterol-derived metabolite, and investigates its role in insulin resistance.
Methods
Targeted metabolomics quantified absolute and relative levels of 27HC (27HC/cholesterol ratio) in patients, mice, and hepatocytes. Insulin resistant mouse models were established to characterize spatiotemporal dynamics of 27HC and related enzymes. Functional analyses assessed 27HC's effect on insulin signaling across multiple hepatocyte types. Transcriptomic analysis identified key effector pathways. Plasma membrane cholesterol accessibility was evaluated using biosensors and validated by cholesterol rescue. Membrane protein extraction, immunofluorescence, and flow cytometry were employed to assess the impact of 27HC on insulin receptor (IR) distribution and binding capacity.
Results
Elevated 27HC levels were observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), obese and type 2 diabetic mice (T2DM), and PA-treated HepG2 and primary hepatocytes, correlating with impaired insulin sensitivity. CYP27A1 was identified as the key enzyme regulating liver 27HC levels. In vitro studies demonstrated that 27HC disrupts insulin signaling in HepG2, AML12, and primary hepatocytes, whereas CYP27A1 knockdown restored IR responsiveness. 27HC suppresses SREBP2-dependent cholesterol biosynthesis, depleting accessible cholesterol in the plasma membrane, triggering IR mislocalization and signal attenuation. Liver-specific CYP27A1 silencing in mice fed a high-fat diet improved systemic insulin sensitivity and restored metabolic homeostasis.
Conclusion
Our findings establish 27HC as a key effector linking cholesterol metabolism to insulin resistance and propose CYP27A1 inhibition as a potential therapeutic strategy for insulin resistance.
{"title":"27-Hydroxycholesterol exacerbates hepatic insulin resistance via plasma membrane cholesterol remodeling","authors":"Jinni Yang , Xue Yang , Yuan Zheng , Anhui Wang , Ziwen Kong , Qinwen Xiao , Yuan Tian , Haijuan Dong , Zunjian Zhang , Min Wang , Rui Song","doi":"10.1016/j.metabol.2025.156392","DOIUrl":"10.1016/j.metabol.2025.156392","url":null,"abstract":"<div><h3>Background and aims</h3><div>Insulin resistance is a key driver of metabolic disorders, yet its molecular mechanisms remain elusive. This study identifies 27-hydroxycholesterol (27HC), a cholesterol-derived metabolite, and investigates its role in insulin resistance.</div></div><div><h3>Methods</h3><div>Targeted metabolomics quantified absolute and relative levels of 27HC (27HC/cholesterol ratio) in patients, mice, and hepatocytes. Insulin resistant mouse models were established to characterize spatiotemporal dynamics of 27HC and related enzymes. Functional analyses assessed 27HC's effect on insulin signaling across multiple hepatocyte types. Transcriptomic analysis identified key effector pathways. Plasma membrane cholesterol accessibility was evaluated using biosensors and validated by cholesterol rescue. Membrane protein extraction, immunofluorescence, and flow cytometry were employed to assess the impact of 27HC on insulin receptor (IR) distribution and binding capacity.</div></div><div><h3>Results</h3><div>Elevated 27HC levels were observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), obese and type 2 diabetic mice (T2DM), and PA-treated HepG2 and primary hepatocytes, correlating with impaired insulin sensitivity. CYP27A1 was identified as the key enzyme regulating liver 27HC levels. In vitro studies demonstrated that 27HC disrupts insulin signaling in HepG2, AML12, and primary hepatocytes, whereas CYP27A1 knockdown restored IR responsiveness. 27HC suppresses SREBP2-dependent cholesterol biosynthesis, depleting accessible cholesterol in the plasma membrane, triggering IR mislocalization and signal attenuation. Liver-specific CYP27A1 silencing in mice fed a high-fat diet improved systemic insulin sensitivity and restored metabolic homeostasis.</div></div><div><h3>Conclusion</h3><div>Our findings establish 27HC as a key effector linking cholesterol metabolism to insulin resistance and propose CYP27A1 inhibition as a potential therapeutic strategy for insulin resistance.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"173 ","pages":"Article 156392"},"PeriodicalIF":11.9,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-13DOI: 10.1016/j.metabol.2025.156391
Anna Giannakogeorgou , Sabine Kahl , Cesare Granata , Geronimo Heilmann , Lucia Mastrototaro , Bedair Dewidar , Pavel Bobrov , Irene Esposito , Aslihan Yavas , Sandra Trenkamp , Frank A. Granderath , Matthias Schlensak , Christos S. Mantzoros , Michael Roden , Patrick Schrauwen
Background and purpose
Preclinical studies reported elevated growth differentiation factor 15 (GDF15) when mitochondrial function is reduced. In humans, metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) exhibit different hepatic mitochondrial adaptation. We hypothesized that circulating GDF15 differently correlates with hepatic mitochondrial respiration in obesity and/or MASLD/MASH.
Methods
Humans without (n = 20) and with biopsy-confirmed MASLD (n = 20) or MASH (n = 20) underwent hyperinsulinemic-euglycemic clamps to assess whole-body (M-value) and adipose-tissue (insulin-induced NEFA suppression) insulin sensitivity. Fasting serum GDF15 and glucagon were quantified by ELISA. Mitochondrial respiration was measured in liver obtained during bariatric surgery by high-resolution respirometry. Associations were assessed with Spearman's nonparametric correlation.
Results
Serum GDF15 correlated negatively with M-value (r = −0.35, p = 0.017) and NEFA suppression (r = −0.29, p = 0.046), but not with hepatic mitochondrial respiration across the whole cohort. However, correlations were found upon stratification into groups based on the presence (n = 37, age: 41 ± 2y, BMI: 49 ± 1 kg/m2) or absence of hepatic fibrosis (n = 23, 44 ± 2 years, BMI: 49 ± 1 kg/m2). In persons without fibrosis, GDF15 correlated positively with fatty acid oxidation-linked (FP; r = 0.35, p = 0.035) and maximal coupled (FNSP; r = 0.42, p = 0.010) mitochondrial respiration. Conversely, GDF15 correlated negatively with hepatic FNP in persons with fibrosis (r = −0.48, p = 0.022).
Conclusions
In humans with obesity, serum GDF15 correlates positively with hepatic mitochondrial respiration in persons without, but negatively in persons with hepatic fibrosis. Future studies are needed to investigate whether and how GDF15 affects hepatic mitochondrial respiration in a fibrosis-dependent manner and/or, conversely, how fibrosis might modulate hepatic GDF15 secretion through altered mitochondrial function.
{"title":"Relationship of GDF15 with hepatic mitochondrial respiration is depending on the presence of fibrosis in obese individuals","authors":"Anna Giannakogeorgou , Sabine Kahl , Cesare Granata , Geronimo Heilmann , Lucia Mastrototaro , Bedair Dewidar , Pavel Bobrov , Irene Esposito , Aslihan Yavas , Sandra Trenkamp , Frank A. Granderath , Matthias Schlensak , Christos S. Mantzoros , Michael Roden , Patrick Schrauwen","doi":"10.1016/j.metabol.2025.156391","DOIUrl":"10.1016/j.metabol.2025.156391","url":null,"abstract":"<div><h3>Background and purpose</h3><div>Preclinical studies reported elevated growth differentiation factor 15 (GDF15) when mitochondrial function is reduced. In humans, metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) exhibit different hepatic mitochondrial adaptation. We hypothesized that circulating GDF15 differently correlates with hepatic mitochondrial respiration in obesity and/or MASLD/MASH.</div></div><div><h3>Methods</h3><div>Humans without (<em>n</em> = 20) and with biopsy-confirmed MASLD (n = 20) or MASH (n = 20) underwent hyperinsulinemic-euglycemic clamps to assess whole-body (M-value) and adipose-tissue (insulin-induced NEFA suppression) insulin sensitivity. Fasting serum GDF15 and glucagon were quantified by ELISA. Mitochondrial respiration was measured in liver obtained during bariatric surgery by high-resolution respirometry. Associations were assessed with Spearman's nonparametric correlation.</div></div><div><h3>Results</h3><div>Serum GDF15 correlated negatively with M-value (<em>r</em> = −0.35, <em>p</em> = 0.017) and NEFA suppression (<em>r</em> = −0.29, <em>p</em> = 0.046), but not with hepatic mitochondrial respiration across the whole cohort. However, correlations were found upon stratification into groups based on the presence (<em>n</em> = 37, age: 41 ± 2y, BMI: 49 ± 1 kg/m<sup>2</sup>) or absence of hepatic fibrosis (<em>n</em> = 23, 44 ± 2 years, BMI: 49 ± 1 kg/m<sup>2</sup>). In persons without fibrosis, GDF15 correlated positively with fatty acid oxidation-linked (F<sub>P</sub>; <em>r</em> = 0.35, <em>p</em> = 0.035) and maximal coupled (FNS<sub>P</sub>; <em>r</em> = 0.42, <em>p</em> = 0.010) mitochondrial respiration. Conversely, GDF15 correlated negatively with hepatic FN<sub>P</sub> in persons with fibrosis (<em>r</em> = −0.48, <em>p</em> = 0.022).</div></div><div><h3>Conclusions</h3><div>In humans with obesity, serum GDF15 correlates positively with hepatic mitochondrial respiration in persons without, but negatively in persons with hepatic fibrosis. Future studies are needed to investigate whether and how GDF15 affects hepatic mitochondrial respiration in a fibrosis-dependent manner and/or, conversely, how fibrosis might modulate hepatic GDF15 secretion through altered mitochondrial function.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"173 ","pages":"Article 156391"},"PeriodicalIF":11.9,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145070041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-09DOI: 10.1016/j.metabol.2025.156387
Deng Fu Guo , Zili Luo , Alexis Olson , Donald A. Morgan , Elizabeth A. Newell , Kamal Rahmouni
Aims
SerpinA3N (Serpin peptidase inhibitor clade A member 3) is a serine protease inhibitor upregulated in the hypothalamus by leptin and obesity, yet its role in physiological regulation remains poorly understood. This study aims to elucidate the role of hypothalamic SerpinA3N in regulation of energy balance, glucose homeostasis, and autonomic and cardiovascular functions.
Methods and results
Immunostaining revealed that SerpinA3N is primarily expressed in neurons, including those expressing the leptin receptor (LepRb). Targeted deletion of SerpinA3N in LepRb neurons reduced body weight and adiposity and improved insulin sensitivity in female mice. SerpinA3N deficiency also enhanced leptin sensitivity, evidenced by amplified leptin-induced anorexia, weight loss, and LepRb signaling in the hypothalamic arcuate nucleus. Upon exposure to an obesogenic diet, mice lacking SerpinA3N in LepRb neurons exhibited attenuated weight gain, hepatic lipid accumulation and microgliosis. Notably, SerpinA3N deletion in LepRb neurons impaired baroreflex sensitivity and elevated renal sympathetic nerve activity, with dietary obesity further exacerbating sympathetic tone.
Conclusions
These findings identify neuronal SerpinA3N as a key regulator of energy balance, leptin and insulin sensitivity, and autonomic function.
{"title":"SerpinA3N in leptin-sensitive neurons is required for energy and glucose homeostasis and autonomic regulation","authors":"Deng Fu Guo , Zili Luo , Alexis Olson , Donald A. Morgan , Elizabeth A. Newell , Kamal Rahmouni","doi":"10.1016/j.metabol.2025.156387","DOIUrl":"10.1016/j.metabol.2025.156387","url":null,"abstract":"<div><h3>Aims</h3><div>SerpinA3N (Serpin peptidase inhibitor clade A member 3) is a serine protease inhibitor upregulated in the hypothalamus by leptin and obesity, yet its role in physiological regulation remains poorly understood. This study aims to elucidate the role of hypothalamic SerpinA3N in regulation of energy balance, glucose homeostasis, and autonomic and cardiovascular functions.</div></div><div><h3>Methods and results</h3><div>Immunostaining revealed that SerpinA3N is primarily expressed in neurons, including those expressing the leptin receptor (LepRb). Targeted deletion of SerpinA3N in LepRb neurons reduced body weight and adiposity and improved insulin sensitivity in female mice. SerpinA3N deficiency also enhanced leptin sensitivity, evidenced by amplified leptin-induced anorexia, weight loss, and LepRb signaling in the hypothalamic arcuate nucleus. Upon exposure to an obesogenic diet, mice lacking SerpinA3N in LepRb neurons exhibited attenuated weight gain, hepatic lipid accumulation and microgliosis. Notably, SerpinA3N deletion in LepRb neurons impaired baroreflex sensitivity and elevated renal sympathetic nerve activity, with dietary obesity further exacerbating sympathetic tone.</div></div><div><h3>Conclusions</h3><div>These findings identify neuronal SerpinA3N as a key regulator of energy balance, leptin and insulin sensitivity, and autonomic function.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"173 ","pages":"Article 156387"},"PeriodicalIF":11.9,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145040726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}