首页 > 最新文献

Molecular & Cellular Proteomics最新文献

英文 中文
Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-07 DOI: 10.1016/j.mcpro.2025.100926
Daewon Kim, Gabriel Lemes Jorge, Chunhui Xu, Lingtao Su, Sung-Hwan Cho, Nagib Ahsan, Dongqin Chen, Lijuan Zhou, Marina A Gritsenko, Mowei Zhou, Jinrong Wan, Ljiljana Pasa-Tolic, Dong Xu, Laura E Bartley, Jay J Thelen, Gary Stacey

In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.

{"title":"Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites.","authors":"Daewon Kim, Gabriel Lemes Jorge, Chunhui Xu, Lingtao Su, Sung-Hwan Cho, Nagib Ahsan, Dongqin Chen, Lijuan Zhou, Marina A Gritsenko, Mowei Zhou, Jinrong Wan, Ljiljana Pasa-Tolic, Dong Xu, Laura E Bartley, Jay J Thelen, Gary Stacey","doi":"10.1016/j.mcpro.2025.100926","DOIUrl":"10.1016/j.mcpro.2025.100926","url":null,"abstract":"<p><p>In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100926"},"PeriodicalIF":6.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycoproteoforms of Osteoarthritis-associated Lubricin in Plasma and Synovial Fluid.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-06 DOI: 10.1016/j.mcpro.2025.100923
Ali Reza Afshari, Vincent Chang, Kristina A Thomsson, Jennifer Höglund, Elizabeth N Browne, George Karadzhov, Keira E Mahoney, Taryn M Lucas, Valentina Rangel-Angarita, Henrik Ryberg, Kamlesh Gidwani, Kim Pettersson, Ola Rolfson, Lena I Björkman, Thomas Eisler, Tannin A Schmidt, Gregory D Jay, Stacy A Malaker, Niclas G Karlsson

Lubricin/proteoglycan-4 (PRG-4) is a mucinous glycoprotein that lubricates cartilage and maintains normal tissue function and cell homeostasis. Altered O-glycoproteforms of lubricin have been found in osteoarthritis (OA) synovial fluid (SF), which could ostensibly be used to diagnose early onset OA. However, SF is invasive to obtain and generally would not be surveyed from otherwise healthy individuals. Thus, a plasma-based OA screening tool focused on lubricin glycosylation could be a less invasive method to aid in early-stage OA diagnosis. In this report, we used glycomics and glycoproteomics to characterize glycoproteoforms of OA lubricin in SF and plasma. We obtained near-complete sequence coverage of lubricin's mucin domain and its glycosylation using matched SF and plasma from patients with OA (N = 5). From SF lubricin we observed a spectrum of O-glycans ranging from a single GalNAcα1-Ser/Thr monosaccharide up to branched pentasaccharides. In contrast, plasma based lubricin was predominantly decorated with sialylated Galβ1-3GalNAcα1-Ser/Thr (Sialyl T). To explain the glycosylation differences observed between SF and plasma lubricin, we present splice variant-specific peptides found within the non-glycosylated region, revealing that that the longest spliceoform of lubricin was present exclusively in SF, while additional shorter splice variants could only be detected in plasma. Based on our glycoproteomic data, we developed and validated a lectin assay for lubricin, and applied this on a larger cohort of matched SF/plasma (N = 19) to confirm the glycosylation differences between SF and plasma proteoforms. Next, we leveraged our assay to screen over 100 patient with OA samples (OA patients N = 108/controls N = 38) to probe plasma lubricin as an OA biomarker. Here, we detected a decrease in α2,6 linked sialic acid in patients with OA and further show that the extent of α2,6 and α2,3 sialylation on plasma-associated lubricin correlated with patient characteristics, especially Body Mass Index (BMI).

{"title":"Glycoproteoforms of Osteoarthritis-associated Lubricin in Plasma and Synovial Fluid.","authors":"Ali Reza Afshari, Vincent Chang, Kristina A Thomsson, Jennifer Höglund, Elizabeth N Browne, George Karadzhov, Keira E Mahoney, Taryn M Lucas, Valentina Rangel-Angarita, Henrik Ryberg, Kamlesh Gidwani, Kim Pettersson, Ola Rolfson, Lena I Björkman, Thomas Eisler, Tannin A Schmidt, Gregory D Jay, Stacy A Malaker, Niclas G Karlsson","doi":"10.1016/j.mcpro.2025.100923","DOIUrl":"10.1016/j.mcpro.2025.100923","url":null,"abstract":"<p><p>Lubricin/proteoglycan-4 (PRG-4) is a mucinous glycoprotein that lubricates cartilage and maintains normal tissue function and cell homeostasis. Altered O-glycoproteforms of lubricin have been found in osteoarthritis (OA) synovial fluid (SF), which could ostensibly be used to diagnose early onset OA. However, SF is invasive to obtain and generally would not be surveyed from otherwise healthy individuals. Thus, a plasma-based OA screening tool focused on lubricin glycosylation could be a less invasive method to aid in early-stage OA diagnosis. In this report, we used glycomics and glycoproteomics to characterize glycoproteoforms of OA lubricin in SF and plasma. We obtained near-complete sequence coverage of lubricin's mucin domain and its glycosylation using matched SF and plasma from patients with OA (N = 5). From SF lubricin we observed a spectrum of O-glycans ranging from a single GalNAcα1-Ser/Thr monosaccharide up to branched pentasaccharides. In contrast, plasma based lubricin was predominantly decorated with sialylated Galβ1-3GalNAcα1-Ser/Thr (Sialyl T). To explain the glycosylation differences observed between SF and plasma lubricin, we present splice variant-specific peptides found within the non-glycosylated region, revealing that that the longest spliceoform of lubricin was present exclusively in SF, while additional shorter splice variants could only be detected in plasma. Based on our glycoproteomic data, we developed and validated a lectin assay for lubricin, and applied this on a larger cohort of matched SF/plasma (N = 19) to confirm the glycosylation differences between SF and plasma proteoforms. Next, we leveraged our assay to screen over 100 patient with OA samples (OA patients N = 108/controls N = 38) to probe plasma lubricin as an OA biomarker. Here, we detected a decrease in α2,6 linked sialic acid in patients with OA and further show that the extent of α2,6 and α2,3 sialylation on plasma-associated lubricin correlated with patient characteristics, especially Body Mass Index (BMI).</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100923"},"PeriodicalIF":6.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Enhances Precision of Citrullination Identification in Human and Plant Tissue Proteomes.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-05 DOI: 10.1016/j.mcpro.2025.100924
Wassim Gabriel, Rebecca Meelker González, Sophia Laposchan, Erik Riedel, Gönül Dündar, Brigitte Poppenberger, Mathias Wilhelm, Chien-Yun Lee

Citrullination is a critical yet understudied post-translational modification (PTM) implicated in various biological processes. Exploring its role in health and disease requires a comprehensive understanding of the prevalence of this PTM at a proteome-wide scale. Although mass spectrometry has enabled the identification of citrullination sites in complex biological samples, it faces significant challenges, including limited enrichment tools and a high rate of false positives due to the identical mass with deamidation (+0.9840 Da) and errors in monoisotopic ion selection. These issues often necessitate manual spectrum inspection, reducing throughput in large-scale studies. In this work, we present a novel data analysis pipeline that incorporates the deep learning model Prosit-Cit into the MS database search workflow to improve both the sensitivity and the precision of citrullination site identification. Prosit-Cit, an extension of the existing Prosit model, has been trained on ∼53,000 spectra from ∼2500 synthetic citrullinated peptides and provides precise predictions for chromatographic retention time and fragment ion intensities of both citrullinated and deamidated peptides. This enhances the accuracy of identification and reduces false positives. Our pipeline demonstrated high precision on the evaluation dataset, recovering the majority of known citrullination sites in human tissue proteomes and improving sensitivity by identifying up to 14 times more citrullinated sites. Sequence motif analysis revealed consistency with previously reported findings, validating the reliability of our approach. Furthermore, extending the pipeline to a tissue proteome dataset of the model plant Arabidopsis thaliana enabled the identification of ∼200 citrullination sites across 169 proteins from 30 tissues, representing the first large-scale citrullination mapping in plants. This pipeline can be seamlessly applied to existing proteomics datasets, offering a robust tool for advancing biological discoveries and deepening our understanding of protein citrullination across species.

{"title":"Deep Learning Enhances Precision of Citrullination Identification in Human and Plant Tissue Proteomes.","authors":"Wassim Gabriel, Rebecca Meelker González, Sophia Laposchan, Erik Riedel, Gönül Dündar, Brigitte Poppenberger, Mathias Wilhelm, Chien-Yun Lee","doi":"10.1016/j.mcpro.2025.100924","DOIUrl":"10.1016/j.mcpro.2025.100924","url":null,"abstract":"<p><p>Citrullination is a critical yet understudied post-translational modification (PTM) implicated in various biological processes. Exploring its role in health and disease requires a comprehensive understanding of the prevalence of this PTM at a proteome-wide scale. Although mass spectrometry has enabled the identification of citrullination sites in complex biological samples, it faces significant challenges, including limited enrichment tools and a high rate of false positives due to the identical mass with deamidation (+0.9840 Da) and errors in monoisotopic ion selection. These issues often necessitate manual spectrum inspection, reducing throughput in large-scale studies. In this work, we present a novel data analysis pipeline that incorporates the deep learning model Prosit-Cit into the MS database search workflow to improve both the sensitivity and the precision of citrullination site identification. Prosit-Cit, an extension of the existing Prosit model, has been trained on ∼53,000 spectra from ∼2500 synthetic citrullinated peptides and provides precise predictions for chromatographic retention time and fragment ion intensities of both citrullinated and deamidated peptides. This enhances the accuracy of identification and reduces false positives. Our pipeline demonstrated high precision on the evaluation dataset, recovering the majority of known citrullination sites in human tissue proteomes and improving sensitivity by identifying up to 14 times more citrullinated sites. Sequence motif analysis revealed consistency with previously reported findings, validating the reliability of our approach. Furthermore, extending the pipeline to a tissue proteome dataset of the model plant Arabidopsis thaliana enabled the identification of ∼200 citrullination sites across 169 proteins from 30 tissues, representing the first large-scale citrullination mapping in plants. This pipeline can be seamlessly applied to existing proteomics datasets, offering a robust tool for advancing biological discoveries and deepening our understanding of protein citrullination across species.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100924"},"PeriodicalIF":6.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Region and cell-type resolved multi-omic altas of the heart.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-05 DOI: 10.1016/j.mcpro.2025.100922
Fan Zhang, Yunzhi Wang, Jiajun Zhu, Jinxi Wang, Qiang Li, Jinwen Feng, Mingwei Liu, Kai Li, Jiliang Tan, Rongkui Luo, Huangtian Yang, Yingyong Hou, Fuchu He, Jun Qin, Chen Ding, Wenjun Yang

The heart is a vital muscular organ in vertebrate animals, responsible for maintaining blood circulation through rhythmic contraction. Although previous studies have investigated the heart proteome, the full hierarchical molecular network at cell-type and region resolved level, illustrating the specialized roles and crosstalk among different cell types and regions, remains unclear. Here, we presented an atlas of cell-type resolved proteome for mouse heart and region resolved proteome for both mouse and human hearts. In-depth proteomic analysis identified 11,794 proteins across four cell types and 11,995 proteins across six regions of the mouse heart. To further illustrate protein expression patterns in both physiological and pathological conditions, we conducted proteomic analysis on human heart samples from four regions with dilated cardiomyopathy (DCM). We quantified 8,201 proteins in DCM tissue and 8,316 proteins in adjacent unaffected myocardium (AUM) tissue across the four human heart regions. Notably, we found that the retinoic acid synthesis pathway was significantly enriched in the DCM-affected left ventricle, and functional experiments demonstrated that all-trans retinoic acid (atRA) efficiently rescued Ang II-induced myocardial hypertrophy and transverse aorta constriction (TAC)- induced heart failure. In conclusion, our datasets uncovered the functional features of different cell types and their synergistic cooperation centered by cell-type specific transcription factors (ctsTF) in different regions, while these TF-TG (target gene) axes were significantly altered in DCM. Additionally, atRA was demonstrated to be an efficient treatment for heart failure. This work presented a panoramic heart proteome map, offering a valuable resource for future cardiovascular research.

{"title":"Region and cell-type resolved multi-omic altas of the heart.","authors":"Fan Zhang, Yunzhi Wang, Jiajun Zhu, Jinxi Wang, Qiang Li, Jinwen Feng, Mingwei Liu, Kai Li, Jiliang Tan, Rongkui Luo, Huangtian Yang, Yingyong Hou, Fuchu He, Jun Qin, Chen Ding, Wenjun Yang","doi":"10.1016/j.mcpro.2025.100922","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100922","url":null,"abstract":"<p><p>The heart is a vital muscular organ in vertebrate animals, responsible for maintaining blood circulation through rhythmic contraction. Although previous studies have investigated the heart proteome, the full hierarchical molecular network at cell-type and region resolved level, illustrating the specialized roles and crosstalk among different cell types and regions, remains unclear. Here, we presented an atlas of cell-type resolved proteome for mouse heart and region resolved proteome for both mouse and human hearts. In-depth proteomic analysis identified 11,794 proteins across four cell types and 11,995 proteins across six regions of the mouse heart. To further illustrate protein expression patterns in both physiological and pathological conditions, we conducted proteomic analysis on human heart samples from four regions with dilated cardiomyopathy (DCM). We quantified 8,201 proteins in DCM tissue and 8,316 proteins in adjacent unaffected myocardium (AUM) tissue across the four human heart regions. Notably, we found that the retinoic acid synthesis pathway was significantly enriched in the DCM-affected left ventricle, and functional experiments demonstrated that all-trans retinoic acid (atRA) efficiently rescued Ang II-induced myocardial hypertrophy and transverse aorta constriction (TAC)- induced heart failure. In conclusion, our datasets uncovered the functional features of different cell types and their synergistic cooperation centered by cell-type specific transcription factors (ctsTF) in different regions, while these TF-TG (target gene) axes were significantly altered in DCM. Additionally, atRA was demonstrated to be an efficient treatment for heart failure. This work presented a panoramic heart proteome map, offering a valuable resource for future cardiovascular research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100922"},"PeriodicalIF":6.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Classes of Antigen Contribute to the Antigenic Landscape of Mesothelioma.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-05 DOI: 10.1016/j.mcpro.2025.100925
Kirti Pandey, Pouya Faridi, Rochelle Ayala, Y C Gary Lee, Ebony Rouse, Sanjay S G Krishna, Ian Dick, Alec Redwood, Bruce Robinson, Jenette Creaney, Anthony W Purcell

Mesothelioma is an incurable, asbestos-exposure-related cancer that typically affects the lining or pleura of the lungs. Symptoms typically develop many decades after initial asbestos exposure, leaving an enduring legacy of disease. The current disease burden is peaking worldwide and thus there is a massive unmet clinical need for curative therapies. Recently, immune checkpoint blockade-based therapy has been adopted as a first-line of treatment for mesothelioma. Vaccine-induced augmentation of immune responses unleashed during checkpoint blockade may provide further clinical benefit in mesothelioma. In this study, we explore the human leukocyte antigen class I landscape (or immunopeptidome) of mesothelioma in patient-derived cell lines and clinical material (pleural effusion samples). We identify a range of peptide antigens derived from targets including cancer testis antigens, endogenous retroviruses as well as novel post-translational modification of peptides. This information will facilitate the characterization of the immune response to these antigens to determine which class of antigen is most immunogenic and has the potential to be tested in future vaccine studies.

{"title":"Multiple Classes of Antigen Contribute to the Antigenic Landscape of Mesothelioma.","authors":"Kirti Pandey, Pouya Faridi, Rochelle Ayala, Y C Gary Lee, Ebony Rouse, Sanjay S G Krishna, Ian Dick, Alec Redwood, Bruce Robinson, Jenette Creaney, Anthony W Purcell","doi":"10.1016/j.mcpro.2025.100925","DOIUrl":"10.1016/j.mcpro.2025.100925","url":null,"abstract":"<p><p>Mesothelioma is an incurable, asbestos-exposure-related cancer that typically affects the lining or pleura of the lungs. Symptoms typically develop many decades after initial asbestos exposure, leaving an enduring legacy of disease. The current disease burden is peaking worldwide and thus there is a massive unmet clinical need for curative therapies. Recently, immune checkpoint blockade-based therapy has been adopted as a first-line of treatment for mesothelioma. Vaccine-induced augmentation of immune responses unleashed during checkpoint blockade may provide further clinical benefit in mesothelioma. In this study, we explore the human leukocyte antigen class I landscape (or immunopeptidome) of mesothelioma in patient-derived cell lines and clinical material (pleural effusion samples). We identify a range of peptide antigens derived from targets including cancer testis antigens, endogenous retroviruses as well as novel post-translational modification of peptides. This information will facilitate the characterization of the immune response to these antigens to determine which class of antigen is most immunogenic and has the potential to be tested in future vaccine studies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100925"},"PeriodicalIF":6.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteogenomic Profiling Reveals Small ORFs and Functional Microproteins in Activated T Cells.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-04 DOI: 10.1016/j.mcpro.2025.100914
Yang Yang, Chuangmiao Chen, Kecheng Li, Yuanliang Zhang, Lei Chen, Jue Shi, Quanhua Mu, Yang Xu, Qian Zhao

Noncanonical micropeptides or called novel microproteins, i.e., polypeptides mostly under 10 kDa, are encoded by genomic sequences that have been previously annotated as noncoding but now known as small open reading frames (sORFs). The recent identification of microproteins encoded by sORFs has provided evidence that many sORFs encode functional microproteins that play crucial roles in various biological processes. T cell activation is a critical biological process for adaptive immune response. Understanding key players in this process will allow us to decipher the complex mechanisms as well as develop immunotherapy for treating a wide range of diseases. Although there have been extensive studies on canonical proteins in T cell activation, the novel microproteins in T cells and their roles have been uncharted water to date. Nascent proteins are defined as newly synthesized polypeptides emerged during the translation of mRNA. In this study, we combined nascent proteomics and quantitative proteomics to identify 411 novel microproteins in primary human T cells, including 83 nascent microproteins. We activated the T cell function with either PMA/Ionomycin (distal activation) or CD3/CD28 activating antibodies (proximal activation), and obtained a comprehensive canonical protein and microprotein profiles to pinpoint common and distinct differentially expressed proteins under these two activation conditions. After experimental testing, three microproteins numbered T1, T2 and T3 were found to be functional in regulating T cell activation. Bioinformatic and proteomic analyses suggested that T1 was functional related to immune as negative feedback to T cell activation. Our study not only established an integrated approach to uncover and elucidate novel microproteins but also highlight the significant role of microproteins in regulating T cell activation.

{"title":"Proteogenomic Profiling Reveals Small ORFs and Functional Microproteins in Activated T Cells.","authors":"Yang Yang, Chuangmiao Chen, Kecheng Li, Yuanliang Zhang, Lei Chen, Jue Shi, Quanhua Mu, Yang Xu, Qian Zhao","doi":"10.1016/j.mcpro.2025.100914","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100914","url":null,"abstract":"<p><p>Noncanonical micropeptides or called novel microproteins, i.e., polypeptides mostly under 10 kDa, are encoded by genomic sequences that have been previously annotated as noncoding but now known as small open reading frames (sORFs). The recent identification of microproteins encoded by sORFs has provided evidence that many sORFs encode functional microproteins that play crucial roles in various biological processes. T cell activation is a critical biological process for adaptive immune response. Understanding key players in this process will allow us to decipher the complex mechanisms as well as develop immunotherapy for treating a wide range of diseases. Although there have been extensive studies on canonical proteins in T cell activation, the novel microproteins in T cells and their roles have been uncharted water to date. Nascent proteins are defined as newly synthesized polypeptides emerged during the translation of mRNA. In this study, we combined nascent proteomics and quantitative proteomics to identify 411 novel microproteins in primary human T cells, including 83 nascent microproteins. We activated the T cell function with either PMA/Ionomycin (distal activation) or CD3/CD28 activating antibodies (proximal activation), and obtained a comprehensive canonical protein and microprotein profiles to pinpoint common and distinct differentially expressed proteins under these two activation conditions. After experimental testing, three microproteins numbered T1, T2 and T3 were found to be functional in regulating T cell activation. Bioinformatic and proteomic analyses suggested that T1 was functional related to immune as negative feedback to T cell activation. Our study not only established an integrated approach to uncover and elucidate novel microproteins but also highlight the significant role of microproteins in regulating T cell activation.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100914"},"PeriodicalIF":6.1,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Display of the Animal Meta-Venome for Discovery of Novel Therapeutic Peptides. 动物元静脉的分子展示,用于发现新的治疗肽。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI: 10.1016/j.mcpro.2024.100901
Meng-Hsuan Hsiao, Yang Miao, Zixing Liu, Konstantin Schütze, Nathachit Limjunyawong, Daphne Chun-Che Chien, Wayne Denis Monteiro, Lee-Shin Chu, William Morgenlander, Sahana Jayaraman, Sung-Eun Jang, Jeffrey J Gray, Heng Zhu, Xinzhong Dong, Martin Steinegger, H Benjamin Larman

Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with comprehensively constructing and expressing highly complex venom and venom-like molecule libraries have precluded their therapeutic evaluation via high-throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms". We used programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz-type domain containing proteins that target the human itch receptor Mas-related G-protein coupled receptor member X4, which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI), and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of Mas-related G-protein coupled receptor member X4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.

动物毒液以其独特的结构特征和强大的生物活性而著称,是一个巨大的、尚未开发的治疗分子储存库。然而,全面构建和表达高度复杂的毒液和类毒液分子文库的局限性阻碍了它们通过高通量筛选进行治疗性评估。在这里,我们开发了一种创新的计算方法来设计一个高度多样化的动物毒液和“元毒液”库。我们采用可编程的M13噬菌体显示器来保存关键的二硫键结构,以便通过高通量DNA测序进行高度并行的单轮生物筛选。我们的方法导致了Kunitz型结构域的发现,该结构域包含靶向人类瘙痒受体mass相关G蛋白偶联受体X4 (MRGPRX4)的蛋白质,该受体在瘙痒感知中起着至关重要的作用。基于深度学习的结构同源性挖掘发现了两个内源性人类同源物,组织因子途径抑制剂(TFPI)和丝氨酸肽酶抑制剂Kunitz type 2 (SPINT2),它们表现出MRGPRX4的激动剂依赖性增强。因此,对动物毒液和元毒液进行高度多重筛选是发现新的候选药物的一种很有前途的方法。
{"title":"Molecular Display of the Animal Meta-Venome for Discovery of Novel Therapeutic Peptides.","authors":"Meng-Hsuan Hsiao, Yang Miao, Zixing Liu, Konstantin Schütze, Nathachit Limjunyawong, Daphne Chun-Che Chien, Wayne Denis Monteiro, Lee-Shin Chu, William Morgenlander, Sahana Jayaraman, Sung-Eun Jang, Jeffrey J Gray, Heng Zhu, Xinzhong Dong, Martin Steinegger, H Benjamin Larman","doi":"10.1016/j.mcpro.2024.100901","DOIUrl":"10.1016/j.mcpro.2024.100901","url":null,"abstract":"<p><p>Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with comprehensively constructing and expressing highly complex venom and venom-like molecule libraries have precluded their therapeutic evaluation via high-throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and \"metavenoms\". We used programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz-type domain containing proteins that target the human itch receptor Mas-related G-protein coupled receptor member X4, which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI), and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of Mas-related G-protein coupled receptor member X4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100901"},"PeriodicalIF":6.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filter-Aided Extracellular Vesicle Enrichment (FAEVEr) for Proteomics.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-01 Epub Date: 2025-01-21 DOI: 10.1016/j.mcpro.2025.100907
Jarne Pauwels, Tessa Van de Steene, Jana Van de Velde, Freya De Muyer, Danaë De Pauw, Femke Baeke, Sven Eyckerman, Kris Gevaert

Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.

{"title":"Filter-Aided Extracellular Vesicle Enrichment (FAEVEr) for Proteomics.","authors":"Jarne Pauwels, Tessa Van de Steene, Jana Van de Velde, Freya De Muyer, Danaë De Pauw, Femke Baeke, Sven Eyckerman, Kris Gevaert","doi":"10.1016/j.mcpro.2025.100907","DOIUrl":"10.1016/j.mcpro.2025.100907","url":null,"abstract":"<p><p>Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100907"},"PeriodicalIF":6.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multitiered Proteome Analysis Displays the Hyperpermeability of the Rheumatoid Synovial Compartment for Plasma Proteins. 多层蛋白质组分析显示类风湿滑膜腔对血浆蛋白的高渗透性。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI: 10.1016/j.mcpro.2024.100900
Eva Maria Stork, Sofia Kalaidopoulou Nteak, Danique M H van Rijswijck, J Mirjam A Damen, Hans Ulrich Scherer, Rene E M Toes, Albert Bondt, Tom W J Huizinga, Albert J R Heck

Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction. RA affects the synovial joints, the synovial lining, and the permeability of the synovium. As the latter is of central relevance for the distribution of systemically delivered therapeutics into synovial fluid (SF), we here assessed the protein composition of paired plasma and SF of patients diagnosed with RA at three distinct levels of depth using mass spectrometric approaches: the "total" proteome, the "total" immunoglobulin G1 (IgG1) antibody repertoire, and the RA-specific anticitrullinated protein IgG1 autoantibody repertoire. The SF proteome was found to be dominated in numbers and concentration by plasma proteins, although we additionally detected several cartilage- and neutrophil-derived proteins of lower abundance. Strikingly, the plasma proteins were not only qualitatively reflected in SF but also quantitatively, independent of their size and/or other biochemical features. Also, the synovial "total" IgG1 and autoreactive anticitrullinated protein antibody IgG1 repertoire highly resembled the IgG1 repertoires detected in plasma within the same patient. Our comprehensive multilayer data thus reveals that the proteome, including the dominant, most abundant (auto)antibody clones, present in SF of RA patients is a direct reflection of the proteome present in blood, spiked by the local (immune) processes within the RA joint. We thus conclude that proteins directly pass from blood into SF of these joints without substantial bias. These findings thereby not only exemplify the use of in-depth multilayer proteome analyses to revisit basic concepts underlying RA pathology and to monitor the local (immune) processes destructive to cartilage but also provide evidence indicating that (protein-based) therapeutics may equally enter SF of swollen joints and that pharmacokinetic analyses of such therapeutics in blood are directly relevant to the synovial compartment.

类风湿性关节炎(RA)的特征是滑膜增生和软骨/骨破坏。RA影响滑膜关节,滑膜衬里和滑膜的渗透性。由于后者与系统递送治疗药物进入滑液(SF)的分布具有核心相关性,因此我们在此使用质谱方法评估了被诊断为RA的患者在三个不同深度水平上的配对血浆和SF的蛋白质组成:“总”蛋白质组,“总”IgG1抗体库和RA特异性ACPA IgG1自身抗体库。SF蛋白组在数量和浓度上主要受血浆蛋白支配,尽管我们还发现了一些丰度较低的软骨和中性粒细胞来源的蛋白。引人注目的是,血浆蛋白不仅定性地反映在SF中,而且定量地反映在SF中,与它们的大小和/或其他生化特征无关。此外,滑膜“总”IgG1和自身反应性ACPA IgG1库与同一患者血浆中检测到的IgG1库高度相似。因此,我们的综合多层数据显示,RA患者SF中存在的蛋白质组,包括显性的、最丰富的(自身)抗体克隆,是血液中存在的蛋白质组的直接反映,由RA关节内的局部(免疫)过程引起。因此,我们得出结论,蛋白质直接从血液进入这些关节的SF,没有实质性的偏差。因此,这些发现不仅说明了使用深入的多层蛋白质组分析来重新审视RA病理的基本概念,并监测软骨破坏的局部(免疫)过程,而且还提供了证据表明(基于蛋白质的)治疗方法可能同样进入肿胀关节的SF,并且这种治疗方法在血液中的药代动力学分析与滑膜室直接相关。
{"title":"Multitiered Proteome Analysis Displays the Hyperpermeability of the Rheumatoid Synovial Compartment for Plasma Proteins.","authors":"Eva Maria Stork, Sofia Kalaidopoulou Nteak, Danique M H van Rijswijck, J Mirjam A Damen, Hans Ulrich Scherer, Rene E M Toes, Albert Bondt, Tom W J Huizinga, Albert J R Heck","doi":"10.1016/j.mcpro.2024.100900","DOIUrl":"10.1016/j.mcpro.2024.100900","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction. RA affects the synovial joints, the synovial lining, and the permeability of the synovium. As the latter is of central relevance for the distribution of systemically delivered therapeutics into synovial fluid (SF), we here assessed the protein composition of paired plasma and SF of patients diagnosed with RA at three distinct levels of depth using mass spectrometric approaches: the \"total\" proteome, the \"total\" immunoglobulin G1 (IgG1) antibody repertoire, and the RA-specific anticitrullinated protein IgG1 autoantibody repertoire. The SF proteome was found to be dominated in numbers and concentration by plasma proteins, although we additionally detected several cartilage- and neutrophil-derived proteins of lower abundance. Strikingly, the plasma proteins were not only qualitatively reflected in SF but also quantitatively, independent of their size and/or other biochemical features. Also, the synovial \"total\" IgG1 and autoreactive anticitrullinated protein antibody IgG1 repertoire highly resembled the IgG1 repertoires detected in plasma within the same patient. Our comprehensive multilayer data thus reveals that the proteome, including the dominant, most abundant (auto)antibody clones, present in SF of RA patients is a direct reflection of the proteome present in blood, spiked by the local (immune) processes within the RA joint. We thus conclude that proteins directly pass from blood into SF of these joints without substantial bias. These findings thereby not only exemplify the use of in-depth multilayer proteome analyses to revisit basic concepts underlying RA pathology and to monitor the local (immune) processes destructive to cartilage but also provide evidence indicating that (protein-based) therapeutics may equally enter SF of swollen joints and that pharmacokinetic analyses of such therapeutics in blood are directly relevant to the synovial compartment.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100900"},"PeriodicalIF":6.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Life Exposure to Deltamethrin Impairs Synaptic Function by Altering the Brain-Derived Extracellular Vesicle Proteome. 幼年接触溴氰菊酯会改变脑源性细胞外囊泡蛋白质组,从而损害突触功能。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI: 10.1016/j.mcpro.2024.100902
Leandra Koff, Jessica Di Re, Subhash Chand, Yosef Avchalumov, Nghi M Nguyen, Timothy J Baumgartner, Aditya K Singh, Nana A Goode, Mate Marosi, Lance M Hallberg, Bill T Ameredes, Thomas A Green, Sowmya V Yelamanchili, Gurudutt Pendyala, Fernanda Laezza

Pyrethroid pesticides have been associated with neurodevelopmental disorders including attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). While behavioral effects of pyrethroid exposure have been previously reported, the underlying mechanisms remain unclear. Here, we hypothesized that exposure to deltamethrin (DM), a widely used pyrethroid pesticide known for its neurotoxicity during early developmental stages, induces brain dysfunction through alterations in brain-derived extracellular vesicle (BDEV) signaling. Using a well-established rodent model of early life DM exposure within the recommended no observable effect level, we isolated BDEVs from postnatal 30-day-old vehicle-exposed (control) and DM-exposed mice using a differential sucrose density gradient. Following ZetaView nanoparticle tracking and electron microscopy characterization, quantitative mass spectrometry-based proteomics revealed 89 differentially expressed proteins (DEPs) in BDEVs from DM exposed animals compared to control BDEVs. Bioinformatic analysis identified convergence of DEPs on pathways associated with mitochondrial function and synaptic plasticity. PKH67-green conjugated BDEVs derived from either control or DM-exposed mice were bilaterally injected intracerebroventricularly into naive adult mice, and the brain distribution of labeled BDEVs was verified prior to extracellular field recording experiments. Strikingly, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses, a functional correlate of learning and memory, was intact in control BDEVs but absent in naive mice receiving BDEVs from DM exposed mice. Notably, exogenously delivering LRRTM1, one of the DEPs found in DM BDEVs, disrupts synaptic transmission in CA1 neurons consistent with impaired LTP. Thus, differentially regulated signaling in BDEVs represents a novel mechanism of DM neurotoxicity.

拟除虫菊酯类杀虫剂与神经发育障碍有关,包括注意缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD)。虽然以前曾报道过接触拟除虫菊酯对行为的影响,但其潜在机制尚不清楚。在这里,我们假设溴氰菊酯(DM)是一种广泛使用的拟除虫菊酯农药,以其在早期发育阶段的神经毒性而闻名,暴露于此,通过改变脑源性细胞外囊泡(BDEV)信号诱导脑功能障碍。利用一个完善的啮齿动物模型,在推荐的无观察效应水平下,我们使用差异蔗糖密度梯度从出生后30天大的车辆暴露小鼠(对照)和DM暴露小鼠中分离出BDEVs。在ZetaView纳米颗粒跟踪和电子显微镜表征之后,基于定量质谱的蛋白质组学发现,与对照BDEVs相比,DM暴露动物BDEVs中有89种差异表达蛋白(DEPs)。生物信息学分析发现dep在与线粒体功能和突触可塑性相关的通路上趋同。将来自对照或暴露于dm的小鼠的PKH67-green共轭BDEVs双侧注射到naïve成年小鼠的脑室内,并在细胞外场记录实验之前验证标记的BDEVs在脑内的分布。引人注目的是,与学习和记忆相关的CA3-CA1海马突触的长期增强(LTP)在对照BDEVs中是完整的,但在接受DM暴露小鼠BDEVs的naïve小鼠中却没有。值得注意的是,外源性递送LRRTM1 (DM BDEVs中发现的dep之一)会破坏与LTP受损一致的CA1神经元的突触传递。因此,BDEVs中的差异调节信号代表了糖尿病神经毒性的一种新机制。
{"title":"Early Life Exposure to Deltamethrin Impairs Synaptic Function by Altering the Brain-Derived Extracellular Vesicle Proteome.","authors":"Leandra Koff, Jessica Di Re, Subhash Chand, Yosef Avchalumov, Nghi M Nguyen, Timothy J Baumgartner, Aditya K Singh, Nana A Goode, Mate Marosi, Lance M Hallberg, Bill T Ameredes, Thomas A Green, Sowmya V Yelamanchili, Gurudutt Pendyala, Fernanda Laezza","doi":"10.1016/j.mcpro.2024.100902","DOIUrl":"10.1016/j.mcpro.2024.100902","url":null,"abstract":"<p><p>Pyrethroid pesticides have been associated with neurodevelopmental disorders including attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). While behavioral effects of pyrethroid exposure have been previously reported, the underlying mechanisms remain unclear. Here, we hypothesized that exposure to deltamethrin (DM), a widely used pyrethroid pesticide known for its neurotoxicity during early developmental stages, induces brain dysfunction through alterations in brain-derived extracellular vesicle (BDEV) signaling. Using a well-established rodent model of early life DM exposure within the recommended no observable effect level, we isolated BDEVs from postnatal 30-day-old vehicle-exposed (control) and DM-exposed mice using a differential sucrose density gradient. Following ZetaView nanoparticle tracking and electron microscopy characterization, quantitative mass spectrometry-based proteomics revealed 89 differentially expressed proteins (DEPs) in BDEVs from DM exposed animals compared to control BDEVs. Bioinformatic analysis identified convergence of DEPs on pathways associated with mitochondrial function and synaptic plasticity. PKH67-green conjugated BDEVs derived from either control or DM-exposed mice were bilaterally injected intracerebroventricularly into naive adult mice, and the brain distribution of labeled BDEVs was verified prior to extracellular field recording experiments. Strikingly, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses, a functional correlate of learning and memory, was intact in control BDEVs but absent in naive mice receiving BDEVs from DM exposed mice. Notably, exogenously delivering LRRTM1, one of the DEPs found in DM BDEVs, disrupts synaptic transmission in CA1 neurons consistent with impaired LTP. Thus, differentially regulated signaling in BDEVs represents a novel mechanism of DM neurotoxicity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100902"},"PeriodicalIF":6.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular & Cellular Proteomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1