首页 > 最新文献

Molecular & Cellular Proteomics最新文献

英文 中文
Proteomics analysis of porcine endometrial cell-derived extracellular vesicles involved in embryo attachment. 参与胚胎附着的猪子宫内膜细胞衍生细胞外囊泡的蛋白质组学分析。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-11 DOI: 10.1016/j.mcpro.2025.100942
Seonggyu Bang, Ahmad Yar Qamar, Sang-Yeop Lee, Ayeong Han, Heejae Kang, Bereket Molla Tanga, Sung Ho Yun, Hye Sun Park, Seung Il Kim, Won Gi Yoo, Islam M Saadeldin, Sanghoon Lee, Jongki Cho

Maternal-embryo interactions play a critical role in early mammalian development, with extracellular vesicles (EVs) playing a key role in intercellular communication. Recent studies have focused on the mechanisms by which maternal-derived factors, such as RNA, proteins, and metabolites influence gap junctions, EVs, and direct cell-to-cell interactions, contributing to embryonic development. In this study, using a proteomics approach, we investigated the impact of EVs secreted from porcine endometrial cells (pEECs) and their protein cargoes on embryonic development. We characterized EVs isolated from pEECs (pEEC-EVs) during the diestrus stage using a nanoparticle tracking analysis and cryo-transmission electron microscopy. Furthermore, the effects of pEEC-EVs with or without hormone treatment on the in vitro attachment of hatched blastocysts were evaluated. The attachment rate of porcine embryos was significantly higher for pEEC-EVs in the hormone treatment group than the control group (23.0 ± 1.7% vs. 36.9 ± 1.9% for control and pEEC-EVs, respectively). Furthermore, hormone treatment altered the expression of proteins involved in cellular organization, protein transport, and immunity. Proteomic analysis revealed distinct biological processes between groups: control EVs supported cytoskeletal organization and adhesion, while hormone-treated EVs were enriched in protein transport, immune regulation, and stress response pathways. Key signaling pathways, including VEGFA-VEGFR2, focal adhesion, and TGF-β, were modulated, influencing implantation and embryogenesis. EVs play a crucial role in maternal-embryo interactions, optimizing implantation conditions and supporting embryo-derived stem cell establishment. These findings enhance our understanding of EV-mediated communication and suggest potential applications for improving reproductive health and assisted reproductive technologies.

{"title":"Proteomics analysis of porcine endometrial cell-derived extracellular vesicles involved in embryo attachment.","authors":"Seonggyu Bang, Ahmad Yar Qamar, Sang-Yeop Lee, Ayeong Han, Heejae Kang, Bereket Molla Tanga, Sung Ho Yun, Hye Sun Park, Seung Il Kim, Won Gi Yoo, Islam M Saadeldin, Sanghoon Lee, Jongki Cho","doi":"10.1016/j.mcpro.2025.100942","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100942","url":null,"abstract":"<p><p>Maternal-embryo interactions play a critical role in early mammalian development, with extracellular vesicles (EVs) playing a key role in intercellular communication. Recent studies have focused on the mechanisms by which maternal-derived factors, such as RNA, proteins, and metabolites influence gap junctions, EVs, and direct cell-to-cell interactions, contributing to embryonic development. In this study, using a proteomics approach, we investigated the impact of EVs secreted from porcine endometrial cells (pEECs) and their protein cargoes on embryonic development. We characterized EVs isolated from pEECs (pEEC-EVs) during the diestrus stage using a nanoparticle tracking analysis and cryo-transmission electron microscopy. Furthermore, the effects of pEEC-EVs with or without hormone treatment on the in vitro attachment of hatched blastocysts were evaluated. The attachment rate of porcine embryos was significantly higher for pEEC-EVs in the hormone treatment group than the control group (23.0 ± 1.7% vs. 36.9 ± 1.9% for control and pEEC-EVs, respectively). Furthermore, hormone treatment altered the expression of proteins involved in cellular organization, protein transport, and immunity. Proteomic analysis revealed distinct biological processes between groups: control EVs supported cytoskeletal organization and adhesion, while hormone-treated EVs were enriched in protein transport, immune regulation, and stress response pathways. Key signaling pathways, including VEGFA-VEGFR2, focal adhesion, and TGF-β, were modulated, influencing implantation and embryogenesis. EVs play a crucial role in maternal-embryo interactions, optimizing implantation conditions and supporting embryo-derived stem cell establishment. These findings enhance our understanding of EV-mediated communication and suggest potential applications for improving reproductive health and assisted reproductive technologies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100942"},"PeriodicalIF":6.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of limited proteolysis-coupled mass spectrometry data.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-07 DOI: 10.1016/j.mcpro.2025.100934
L Nagel, J Grossbach, V Cappelletti, C Dörig, P Picotti, A Beyer

Limited proteolysis combined with mass spectrometry (LiP-MS) facilitates probing structural changes on a proteome-wide scale. This method leverages differences in the proteinase K accessibility of native protein structures to concurrently assess structural alterations for thousands of proteins in situ. Distinguishing different contributions to the LiP-MS signal, such as changes in protein abundance or chemical modifications, from structural protein alterations remains challenging. Here, we present the first comprehensive computational pipeline to infer structural alterations for LiP-MS data using a two-step approach. (1) We remove unwanted variations from the LiP signal that are not caused by protein structural effects and (2) infer the effects of variables of interest on the remaining signal. Using LiP-MS data from three species we demonstrate that this approach outperforms previously employed approaches. Our framework provides a uniquely powerful approach for deconvolving LiP-MS signals and separating protein structural changes from changes in protein abundance, post-translational modifications and alternative splicing. Our approach may also be applied to analyze other types of peptide-centric structural proteomics data, such as FPOP or molecular painting data.

{"title":"Analysis of limited proteolysis-coupled mass spectrometry data.","authors":"L Nagel, J Grossbach, V Cappelletti, C Dörig, P Picotti, A Beyer","doi":"10.1016/j.mcpro.2025.100934","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100934","url":null,"abstract":"<p><p>Limited proteolysis combined with mass spectrometry (LiP-MS) facilitates probing structural changes on a proteome-wide scale. This method leverages differences in the proteinase K accessibility of native protein structures to concurrently assess structural alterations for thousands of proteins in situ. Distinguishing different contributions to the LiP-MS signal, such as changes in protein abundance or chemical modifications, from structural protein alterations remains challenging. Here, we present the first comprehensive computational pipeline to infer structural alterations for LiP-MS data using a two-step approach. (1) We remove unwanted variations from the LiP signal that are not caused by protein structural effects and (2) infer the effects of variables of interest on the remaining signal. Using LiP-MS data from three species we demonstrate that this approach outperforms previously employed approaches. Our framework provides a uniquely powerful approach for deconvolving LiP-MS signals and separating protein structural changes from changes in protein abundance, post-translational modifications and alternative splicing. Our approach may also be applied to analyze other types of peptide-centric structural proteomics data, such as FPOP or molecular painting data.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100934"},"PeriodicalIF":6.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of protein O-GlcNAcylation levels promotes zebrafish fin regeneration.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-03 DOI: 10.1016/j.mcpro.2025.100936
Liyuan Jia, Hanxue Zheng, Juantao Feng, Yi Ding, Xiaotian Sun, Yuan Yu, Xue Hao, Junxiang Wang, Xinyu Zhang, Yuanfeng Tian, Fulin Chen, Jihong Cui

As one of the most important post-translational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that O-GlcNAc expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or Alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of Thiamet-G or Glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, LC-MS/MS was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as THBS4 and HSPG, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, ECM-receptor interaction pathway, tissue remodeling, etc. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.

{"title":"Upregulation of protein O-GlcNAcylation levels promotes zebrafish fin regeneration.","authors":"Liyuan Jia, Hanxue Zheng, Juantao Feng, Yi Ding, Xiaotian Sun, Yuan Yu, Xue Hao, Junxiang Wang, Xinyu Zhang, Yuanfeng Tian, Fulin Chen, Jihong Cui","doi":"10.1016/j.mcpro.2025.100936","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100936","url":null,"abstract":"<p><p>As one of the most important post-translational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that O-GlcNAc expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or Alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of Thiamet-G or Glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, LC-MS/MS was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as THBS4 and HSPG, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, ECM-receptor interaction pathway, tissue remodeling, etc. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100936"},"PeriodicalIF":6.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PEPSeek-mediated identification of novel epitopes from viral and bacterial pathogens and the impact on host cell immunopeptidomes.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-03 DOI: 10.1016/j.mcpro.2025.100937
John A Cormican, Lobna Medfai, Magdalena Wawrzyniuk, Martin Pasen, Hassnae Afrache, Constance Fourny, Sahil Khan, Pascal Gneiße, Wai Tuck Soh, Arianna Timelli, Emanuele Nolfi, Yvonne Pannekoek, Andrew Cope, Henning Urlaub, Alice J A M Sijts, Michele Mishto, Juliane Liepe

Here, we develop PEPSeek, a web-server based software to allow higher performance in the identification of pathogen-derived epitope candidates detected via mass spectrometry in MHC class I immunopeptidomes. We apply it to human and mouse cell lines infected with either SARS-CoV-2, Listeria monocytogenes or Chlamydia trachomatis, thereby identifying a large number of novel antigens and epitopes that we prove to be recognized by CD8+ T cells. In infected cells, we identified antigenic peptide features that suggested how processing and presentation of pathogenic antigens differ between pathogens. The quantitative tools of PEPSeek also helped to define how C. trachomatis infection cycle could impact on the antigenic landscape of the host human cell system, likely reflecting metabolic changes occurred in the infected cells.

{"title":"PEPSeek-mediated identification of novel epitopes from viral and bacterial pathogens and the impact on host cell immunopeptidomes.","authors":"John A Cormican, Lobna Medfai, Magdalena Wawrzyniuk, Martin Pasen, Hassnae Afrache, Constance Fourny, Sahil Khan, Pascal Gneiße, Wai Tuck Soh, Arianna Timelli, Emanuele Nolfi, Yvonne Pannekoek, Andrew Cope, Henning Urlaub, Alice J A M Sijts, Michele Mishto, Juliane Liepe","doi":"10.1016/j.mcpro.2025.100937","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100937","url":null,"abstract":"<p><p>Here, we develop PEPSeek, a web-server based software to allow higher performance in the identification of pathogen-derived epitope candidates detected via mass spectrometry in MHC class I immunopeptidomes. We apply it to human and mouse cell lines infected with either SARS-CoV-2, Listeria monocytogenes or Chlamydia trachomatis, thereby identifying a large number of novel antigens and epitopes that we prove to be recognized by CD8<sup>+</sup> T cells. In infected cells, we identified antigenic peptide features that suggested how processing and presentation of pathogenic antigens differ between pathogens. The quantitative tools of PEPSeek also helped to define how C. trachomatis infection cycle could impact on the antigenic landscape of the host human cell system, likely reflecting metabolic changes occurred in the infected cells.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100937"},"PeriodicalIF":6.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
diaPASEF analysis for HLA-I peptides enables quantification of common cancer neoantigens.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-03 DOI: 10.1016/j.mcpro.2025.100938
Denys Oliinyk, Hem R Gurung, Zhenru Zhou, Kristin Leskoske, Christopher M Rose, Susan Klaeger

Human leukocyte antigen class I (HLA-I) molecules present short peptide sequences from endogenous or foreign proteins to cytotoxic T cells. The low abundance of HLA-I peptides poses significant technical challenges for their identification and accurate quantification. While mass spectrometry (MS) is currently a method of choice for direct system-wide identification of cellular immunopeptidome, there is still a need for enhanced sensitivity in detecting and quantifying tumor specific epitopes. As gas phase separation in data-dependent MS data acquisition (DDA) increased HLA-I peptide detection by up to 50%, here, we aimed to evaluate the performance of data-independent acquisition (DIA) in combination with ion mobility (diaPASEF) for high-sensitivity identification of HLA presented peptides. Our streamlined diaPASEF workflow enabled identification of 11,412 unique peptides from 12.5 million A375 cells and 3,426 8-11mers from as low as 500,000 cells with high reproducibility. By taking advantage of HLA binder-specific in-silico predicted spectral libraries, we were able to further increase the number of identified HLA-I peptides. We applied SILAC-DIA to a mixture of labeled HLA-I peptides, calculated heavy-to-light ratios for 7,742 peptides across 5 conditions and demonstrated that diaPASEF achieves high quantitative accuracy up to 4-fold dilution. Finally, we identified and quantified shared neoantigens in a monoallelic C1R cell line model. By spiking in heavy synthetic peptides, we verified the identification of the peptide sequences and calculated relative abundances for 13 neoantigens. Taken together, diaPASEF analysis workflows for HLA-I peptides can increase the peptidome coverage for lower sample amounts. The sensitivity and quantitative precision provided by DIA can enable the detection and quantification of less abundant peptide species such as neoantigens across samples from the same background.

{"title":"diaPASEF analysis for HLA-I peptides enables quantification of common cancer neoantigens.","authors":"Denys Oliinyk, Hem R Gurung, Zhenru Zhou, Kristin Leskoske, Christopher M Rose, Susan Klaeger","doi":"10.1016/j.mcpro.2025.100938","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100938","url":null,"abstract":"<p><p>Human leukocyte antigen class I (HLA-I) molecules present short peptide sequences from endogenous or foreign proteins to cytotoxic T cells. The low abundance of HLA-I peptides poses significant technical challenges for their identification and accurate quantification. While mass spectrometry (MS) is currently a method of choice for direct system-wide identification of cellular immunopeptidome, there is still a need for enhanced sensitivity in detecting and quantifying tumor specific epitopes. As gas phase separation in data-dependent MS data acquisition (DDA) increased HLA-I peptide detection by up to 50%, here, we aimed to evaluate the performance of data-independent acquisition (DIA) in combination with ion mobility (diaPASEF) for high-sensitivity identification of HLA presented peptides. Our streamlined diaPASEF workflow enabled identification of 11,412 unique peptides from 12.5 million A375 cells and 3,426 8-11mers from as low as 500,000 cells with high reproducibility. By taking advantage of HLA binder-specific in-silico predicted spectral libraries, we were able to further increase the number of identified HLA-I peptides. We applied SILAC-DIA to a mixture of labeled HLA-I peptides, calculated heavy-to-light ratios for 7,742 peptides across 5 conditions and demonstrated that diaPASEF achieves high quantitative accuracy up to 4-fold dilution. Finally, we identified and quantified shared neoantigens in a monoallelic C1R cell line model. By spiking in heavy synthetic peptides, we verified the identification of the peptide sequences and calculated relative abundances for 13 neoantigens. Taken together, diaPASEF analysis workflows for HLA-I peptides can increase the peptidome coverage for lower sample amounts. The sensitivity and quantitative precision provided by DIA can enable the detection and quantification of less abundant peptide species such as neoantigens across samples from the same background.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100938"},"PeriodicalIF":6.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic analysis of human follicular fluid-derived exosomes reveals that insufficient folliculogenesis in aging women is associated with infertility.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-28 DOI: 10.1016/j.mcpro.2025.100930
Zhen Liu, Qilin Zhou, Jun Zan, Jingyan Tian, Yangzhuohan Zhang, Fanggui Wu, Huan Zhao, Qianwen Peng, Shangjie Liu, Qianjun Chen, Endong Liu, Zhengdong Liao, Pengfei Zou, Lin Mei, Wen Wang, Sen Dong, Luo Niu, Shengda Wu, Liangge He, Xiaoyi Zhou, Yanbo Jin, Panpan Li, Sheng Yang

Although the risk of female infertility increases with advancing age, the underlying mechanisms remain unknown. Exosomes in follicular fluid are suggested to regulate folliculogenesis and influence oocyte quality, potentially playing a critical role in age-related infertility. Elucidating their content could enhance the understanding of the molecular mechanisms associated with female aging-induced infertility. In this study, we explored the proteomic profiles of exosomes derived from human follicular fluid to identify protein signatures associated with infertility in both young and aging women. Despite the lack of significant differences in the morphology and particle size of follicular fluid-derived exosomes between the two groups, proteomic analysis revealed a distinct pattern of differentially expressed proteins (DEPs). DEPs associated with B-cell activation, pathogen invasion, and disrupted metabolic processes were significantly more highly expressed in the aging group than in the young group, indicating their involvement in age-related infertility. In vivo experiments demonstrated that the application of exosomes, particularly those derived from young female mice, facilitated the successful maturation of follicles. Key exosomal proteins, including ENO1, HSP90B1, fetuin-B, C7, and APOC4, were found to be associated with follicular maturation. Furthermore, the PI3K/AKT signaling pathway, which is known to be related to folliculogenesis, was activated by the application of exosomes in aging female mice. This study provides novel insights into the aging-associated protein signatures of follicular fluid-derived exosomes and their potential role in infertility. These findings suggest that aging-related protein signatures in exosomes could contribute to the treatment of age-related infertility.

虽然女性不孕的风险会随着年龄的增长而增加,但其潜在的机制仍不清楚。卵泡液中的外泌体被认为能调节卵泡生成并影响卵母细胞质量,可能在与年龄相关的不孕症中发挥关键作用。阐明卵泡液中的外泌体含量可加深对女性衰老诱发不孕症相关分子机制的理解。在这项研究中,我们探索了从人类卵泡液中提取的外泌体的蛋白质组图谱,以确定与年轻和衰老女性不孕症相关的蛋白质特征。尽管两组女性卵泡液外泌体的形态和颗粒大小没有明显差异,但蛋白质组学分析却揭示了差异表达蛋白(DEPs)的独特模式。与B细胞活化、病原体入侵和新陈代谢过程紊乱相关的DEPs在老龄组的表达量明显高于年轻组,这表明它们参与了与年龄相关的不孕症。体内实验表明,外泌体的应用,尤其是来自年轻雌性小鼠的外泌体,有助于卵泡的成功成熟。研究发现,包括ENO1、HSP90B1、fetuin-B、C7和APOC4在内的关键外泌体蛋白与卵泡成熟有关。此外,已知与卵泡生成有关的PI3K/AKT信号通路在衰老雌性小鼠体内应用外泌体后被激活。这项研究为卵泡液外泌体的衰老相关蛋白特征及其在不孕症中的潜在作用提供了新的见解。这些发现表明,外泌体中与衰老相关的蛋白质特征可能有助于治疗与年龄相关的不孕症。
{"title":"Proteomic analysis of human follicular fluid-derived exosomes reveals that insufficient folliculogenesis in aging women is associated with infertility.","authors":"Zhen Liu, Qilin Zhou, Jun Zan, Jingyan Tian, Yangzhuohan Zhang, Fanggui Wu, Huan Zhao, Qianwen Peng, Shangjie Liu, Qianjun Chen, Endong Liu, Zhengdong Liao, Pengfei Zou, Lin Mei, Wen Wang, Sen Dong, Luo Niu, Shengda Wu, Liangge He, Xiaoyi Zhou, Yanbo Jin, Panpan Li, Sheng Yang","doi":"10.1016/j.mcpro.2025.100930","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100930","url":null,"abstract":"<p><p>Although the risk of female infertility increases with advancing age, the underlying mechanisms remain unknown. Exosomes in follicular fluid are suggested to regulate folliculogenesis and influence oocyte quality, potentially playing a critical role in age-related infertility. Elucidating their content could enhance the understanding of the molecular mechanisms associated with female aging-induced infertility. In this study, we explored the proteomic profiles of exosomes derived from human follicular fluid to identify protein signatures associated with infertility in both young and aging women. Despite the lack of significant differences in the morphology and particle size of follicular fluid-derived exosomes between the two groups, proteomic analysis revealed a distinct pattern of differentially expressed proteins (DEPs). DEPs associated with B-cell activation, pathogen invasion, and disrupted metabolic processes were significantly more highly expressed in the aging group than in the young group, indicating their involvement in age-related infertility. In vivo experiments demonstrated that the application of exosomes, particularly those derived from young female mice, facilitated the successful maturation of follicles. Key exosomal proteins, including ENO1, HSP90B1, fetuin-B, C7, and APOC4, were found to be associated with follicular maturation. Furthermore, the PI3K/AKT signaling pathway, which is known to be related to folliculogenesis, was activated by the application of exosomes in aging female mice. This study provides novel insights into the aging-associated protein signatures of follicular fluid-derived exosomes and their potential role in infertility. These findings suggest that aging-related protein signatures in exosomes could contribute to the treatment of age-related infertility.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100930"},"PeriodicalIF":6.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles.
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-28 DOI: 10.1016/j.mcpro.2025.100935
Rosane Mazzarella, José María Sánchez, Beatriz Fernandez-Fuertes, Sandra Guisado Egido, Michael McDonald, Alberto Álvarez-Barrientos, Esperanza González, Juan Manuel Falcón-Pérez, Mikel Azkargorta, Félix Elortza, Maria Encina González, Pat Lonergan, Dimitrios Rizos
<p><p>The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: (i) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; (ii) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp+Emb); and (iii) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp+Emb with EVs from pregnant heifers. Proteins were considered 'identified' if detected in at least three out of five replicates and considered 'exclusive' if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp+Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp+Emb, 17 were common to Exp and Emb, 5 were common to Exp+Emb and Emb, 4 were unique to Exp, 6 were unique to Exp+Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp+Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp+Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs a
{"title":"Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles.","authors":"Rosane Mazzarella, José María Sánchez, Beatriz Fernandez-Fuertes, Sandra Guisado Egido, Michael McDonald, Alberto Álvarez-Barrientos, Esperanza González, Juan Manuel Falcón-Pérez, Mikel Azkargorta, Félix Elortza, Maria Encina González, Pat Lonergan, Dimitrios Rizos","doi":"10.1016/j.mcpro.2025.100935","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100935","url":null,"abstract":"&lt;p&gt;&lt;p&gt;The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: (i) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; (ii) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp+Emb); and (iii) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp+Emb with EVs from pregnant heifers. Proteins were considered 'identified' if detected in at least three out of five replicates and considered 'exclusive' if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp+Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp+Emb, 17 were common to Exp and Emb, 5 were common to Exp+Emb and Emb, 4 were unique to Exp, 6 were unique to Exp+Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp+Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp+Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs a","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100935"},"PeriodicalIF":6.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What have Data Standards ever done for us?
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-28 DOI: 10.1016/j.mcpro.2025.100933
S E Orchard

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies for both the field of molecular interaction and that of mass spectrometry for more than 20 years. This review explores some of the ways that the proteomics community has benefitted from the development of community standards and takes a look at some of the tools and resources that have been improved or developed as a result of the work of the HUPO-PSI.

人类蛋白质组组织(HUPO)蛋白质组学标准计划(PSI)20 多年来一直在成功地为分子相互作用领域和质谱分析领域制定指南、数据格式和受控词汇表。本综述探讨了蛋白质组学界从制定社区标准中获益的一些方式,并介绍了因 HUPO-PSI 的工作而得到改进或开发的一些工具和资源。
{"title":"What have Data Standards ever done for us?","authors":"S E Orchard","doi":"10.1016/j.mcpro.2025.100933","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100933","url":null,"abstract":"<p><p>The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies for both the field of molecular interaction and that of mass spectrometry for more than 20 years. This review explores some of the ways that the proteomics community has benefitted from the development of community standards and takes a look at some of the tools and resources that have been improved or developed as a result of the work of the HUPO-PSI.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100933"},"PeriodicalIF":6.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated multiomics reveals alterations in paucimannose and complex type N-glycans in cardiac tissue of COVID-19 patients. 综合多组学揭示了 COVID-19 患者心脏组织中白蛋白甘露糖和复合型 N-聚糖的变化。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-21 DOI: 10.1016/j.mcpro.2025.100929
Sabarinath Peruvemba Subramanian, Melinda Wojtkiewicz, Fang Yu, Chase Castro, Erin N Schuette, Jocelyn Rodriguez-Paar, Jared Churko, Pranav Renavikar, Daniel Anderson, Claudius Mahr, Rebekah L Gundry

Coronavirus infectious disease 19 (COVID-19) can lead to cardiac complications, yet the molecular mechanisms driving these effects remain unclear. Protein glycosylation is crucial for viral replication, immune response, and organ function and has been found to change in the lungs and liver of COVID-19 patients. However, how COVID-19 impacts cardiac protein glycosylation has not been defined. Our study combined single nuclei transcriptomics, mass spectrometry (MS)-based glycomics, and lectin-based tissue imaging to investigate alterations in N-glycosylation in the human heart post-COVID-19. We identified significant expression differences in glycogenes involved in N-glycan biosynthesis and MS analysis revealed a reduction in high mannose and isomers of paucimannose structures post-infection, with changes in paucimannose directly correlating with COVID-19 independent of comorbidities. Our observations suggest that COVID-19 primes cardiac tissues to alter the glycome at all levels, namely metabolism, nucleotide sugar transport, and glycosyltransferase activity. Given the role of N-glycosylation in cardiac function, this study provides a basis for understanding the molecular events leading to cardiac damage post-COVID-19 and informing future therapeutic strategies to treat cardiac complications resulting from coronavirus infections.

{"title":"Integrated multiomics reveals alterations in paucimannose and complex type N-glycans in cardiac tissue of COVID-19 patients.","authors":"Sabarinath Peruvemba Subramanian, Melinda Wojtkiewicz, Fang Yu, Chase Castro, Erin N Schuette, Jocelyn Rodriguez-Paar, Jared Churko, Pranav Renavikar, Daniel Anderson, Claudius Mahr, Rebekah L Gundry","doi":"10.1016/j.mcpro.2025.100929","DOIUrl":"https://doi.org/10.1016/j.mcpro.2025.100929","url":null,"abstract":"<p><p>Coronavirus infectious disease 19 (COVID-19) can lead to cardiac complications, yet the molecular mechanisms driving these effects remain unclear. Protein glycosylation is crucial for viral replication, immune response, and organ function and has been found to change in the lungs and liver of COVID-19 patients. However, how COVID-19 impacts cardiac protein glycosylation has not been defined. Our study combined single nuclei transcriptomics, mass spectrometry (MS)-based glycomics, and lectin-based tissue imaging to investigate alterations in N-glycosylation in the human heart post-COVID-19. We identified significant expression differences in glycogenes involved in N-glycan biosynthesis and MS analysis revealed a reduction in high mannose and isomers of paucimannose structures post-infection, with changes in paucimannose directly correlating with COVID-19 independent of comorbidities. Our observations suggest that COVID-19 primes cardiac tissues to alter the glycome at all levels, namely metabolism, nucleotide sugar transport, and glycosyltransferase activity. Given the role of N-glycosylation in cardiac function, this study provides a basis for understanding the molecular events leading to cardiac damage post-COVID-19 and informing future therapeutic strategies to treat cardiac complications resulting from coronavirus infections.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100929"},"PeriodicalIF":6.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Immunoglobulin G, A, and M Glycopeptide Profiling for Large-Scale Biomedical Research. 用于大规模生物医学研究的免疫球蛋白 G、A 和 M 糖肽综合分析。
IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-19 DOI: 10.1016/j.mcpro.2025.100928
Bianca D M van Tol, Anna M Wasynczuk, Steinar Gijze, Oleg A Mayboroda, Jan Nouta, Radboud J E M Dolhain, Manfred Wuhrer, David Falck

Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS1 level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences in antibody glycosylation in women during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.

{"title":"Comprehensive Immunoglobulin G, A, and M Glycopeptide Profiling for Large-Scale Biomedical Research.","authors":"Bianca D M van Tol, Anna M Wasynczuk, Steinar Gijze, Oleg A Mayboroda, Jan Nouta, Radboud J E M Dolhain, Manfred Wuhrer, David Falck","doi":"10.1016/j.mcpro.2025.100928","DOIUrl":"10.1016/j.mcpro.2025.100928","url":null,"abstract":"<p><p>Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS<sup>1</sup> level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences in antibody glycosylation in women during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100928"},"PeriodicalIF":6.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular & Cellular Proteomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1