Pub Date : 2024-10-16DOI: 10.1016/j.mcpro.2024.100861
Kasandra Buchholtz, Rosa Jersie-Christensen, Karen Angeliki Krogfelt, Biljana Mojsoska
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen, causing serious chronic infections. P. aeruginosa can adapt efficiently to antibiotic stressors via different genotypic or phenotypic strategies such as resistance and tolerance. The adaptation regulatory system is not always very well understood. In this study, we use shotgun proteomics to investigate the system-level response to tobramycin in two clinical wound P. aeruginosa isolates and PAO1. We profiled each strain for its antibiotic drug-tolerant phenotype using supra-minimum inhibitory concentrations (supra-MIC) of tobramycin and applied proteomics to investigate the protein expression profiles. The MIC revealed that all isolates were susceptible to tobramycin but at supra-MIC concentrations at stationary growth, a degree of tolerance was observed for the isolates. We identified around 40 % of the total proteins encoded by the P. aeruginosa genome and highlighted shared and unique protein signatures for all isolates. Comparative proteome profiling in the absence of antibiotic treatment showed divergent fingerprints, despite similarities in the growth behavior of the isolates. In the presence of tobramycin, the isolates shared a common response in the downregulation of proteins involved in the two-component system, whereas stress response proteins were present at higher levels. Our findings provide insight into the use of proteomic tools to dissect the system-level response in clinical isolates in the absence and presence of antibiotic stress.
{"title":"Analysis of antibiotic response in Clinical Wound Pseudomonas aeruginosa isolates: Unveiling Proteome Dynamics of tobramycin tolerant phenotype.","authors":"Kasandra Buchholtz, Rosa Jersie-Christensen, Karen Angeliki Krogfelt, Biljana Mojsoska","doi":"10.1016/j.mcpro.2024.100861","DOIUrl":"https://doi.org/10.1016/j.mcpro.2024.100861","url":null,"abstract":"<p><p>Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen, causing serious chronic infections. P. aeruginosa can adapt efficiently to antibiotic stressors via different genotypic or phenotypic strategies such as resistance and tolerance. The adaptation regulatory system is not always very well understood. In this study, we use shotgun proteomics to investigate the system-level response to tobramycin in two clinical wound P. aeruginosa isolates and PAO1. We profiled each strain for its antibiotic drug-tolerant phenotype using supra-minimum inhibitory concentrations (supra-MIC) of tobramycin and applied proteomics to investigate the protein expression profiles. The MIC revealed that all isolates were susceptible to tobramycin but at supra-MIC concentrations at stationary growth, a degree of tolerance was observed for the isolates. We identified around 40 % of the total proteins encoded by the P. aeruginosa genome and highlighted shared and unique protein signatures for all isolates. Comparative proteome profiling in the absence of antibiotic treatment showed divergent fingerprints, despite similarities in the growth behavior of the isolates. In the presence of tobramycin, the isolates shared a common response in the downregulation of proteins involved in the two-component system, whereas stress response proteins were present at higher levels. Our findings provide insight into the use of proteomic tools to dissect the system-level response in clinical isolates in the absence and presence of antibiotic stress.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.mcpro.2024.100860
Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan
sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.
sORF编码肽(SEPs)是指由长度小于100个氨基酸的小开放阅读框(sORFs)编码的蛋白质,它们在各种生命活动中发挥着重要作用。对已知 SEP 的分析表明,使用 SEP 的非规范起始密码子较为常见。然而,目前对SEP序列的分析主要依赖于生物信息学预测,且大多使用AUG作为起始位点,这对于SEP来说可能并不完全正确。我们采用化学标记法系统分析了SEPs的N端序列,以准确界定SEPs的起始位点。通过比较,我们发现二甲基化和鸟苷酸化比乙酰化更有效。ACN 沉淀和加热沉淀的 SEP 富集效果更好。作为 N 端多肽富集材料,六甲醛优于 CNBr 活化的琼脂糖和 NHS 活化的琼脂糖。结合这些方法,我们共鉴定出 128 个 SEPs,131 个 N 端序列。其中,三分之二是新的 N 端序列,它们大多从原始序列的第 11-31 个氨基酸开始。部分新型 N 端是通过蛋白水解或信号肽去除产生的。一些 SEP 的转录起始位点被修正为非 AUG 起始密码子。使用 GFP 标记载体对一个新的起始密码子进行了验证。这些结果表明,化学标记方法有助于鉴定 sORFs 的起始密码子及其编码肽的真正 N-末端,从而有助于更好地理解 SEPs 的特征。
{"title":"Mapping Start Codons of Small Open Reading Frames by N-Terminomics Approach.","authors":"Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan","doi":"10.1016/j.mcpro.2024.100860","DOIUrl":"10.1016/j.mcpro.2024.100860","url":null,"abstract":"<p><p>sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.mcpro.2024.100862
Xiang Zhang, Juan Ge, Yue Wang, Minjian Chen, Xuejiang Guo, Shuai Zhu, Hui Wang, Qiang Wang
Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.
{"title":"Integrative Omics Reveals the Metabolic Patterns During Oocyte Growth.","authors":"Xiang Zhang, Juan Ge, Yue Wang, Minjian Chen, Xuejiang Guo, Shuai Zhu, Hui Wang, Qiang Wang","doi":"10.1016/j.mcpro.2024.100862","DOIUrl":"10.1016/j.mcpro.2024.100862","url":null,"abstract":"<p><p>Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.mcpro.2024.100857
Lin Xi, Xuna Wu, Jiahui Wang, Zhaoxia Zhang, Mingjie He, Zeeshan Zeeshan, Thorsten Stefan, Waltraud X Schulze
At the plasma membrane, in response to biotic and abiotic cues, specific ligands initiate the formation of receptor kinase heterodimers, which regulate the activities of plasma membrane proteins and initiate signaling cascades to the nucleus. In this study, we utilized affinity enrichment mass spectrometry to investigate the stimulus-dependent interactomes of LRR receptor kinases in response to their respective ligands, with an emphasis on exploring structural influences and potential cross-talk events at the plasma membrane. BRI1 and SIRK1 were chosen as receptor kinases with distinct coreceptor preference. By using interactome characteristic of domain-swap chimera following a gradient boosting learning algorithm trained on SIRK1 and BRI1 interactomes, we attribute contributions of extracellular domain, transmembrane domain, juxtamembrane domain, and kinase domain of respective ligand-binding receptors to their interaction with their coreceptors and substrates. Our results revealed juxtamembrane domain as major structural element defining the specific substrate recruitment for BRI1 and extracellular domain for SIRK1. Furthermore, the learning algorithm enabled us to predict the phenotypic outcomes of chimeric receptors based on different domain combinations, which was verified by dedicated experiments. As a result, our work reveals a tightly controlled balance of signaling cascade activation dependent on ligand-binding receptors domains and the internal ligand status of the plant. Moreover, our study shows the robust utility of machine learning classification as a quantitative metric for studying dynamic interactomes, dissecting the contribution of specific domains and predicting their phenotypic outcome.
{"title":"Receptor Kinase Signaling of BRI1 and SIRK1 Is Tightly Balanced by Their Interactomes as Revealed From Domain-Swap Chimaera in AE-MS Approaches.","authors":"Lin Xi, Xuna Wu, Jiahui Wang, Zhaoxia Zhang, Mingjie He, Zeeshan Zeeshan, Thorsten Stefan, Waltraud X Schulze","doi":"10.1016/j.mcpro.2024.100857","DOIUrl":"10.1016/j.mcpro.2024.100857","url":null,"abstract":"<p><p>At the plasma membrane, in response to biotic and abiotic cues, specific ligands initiate the formation of receptor kinase heterodimers, which regulate the activities of plasma membrane proteins and initiate signaling cascades to the nucleus. In this study, we utilized affinity enrichment mass spectrometry to investigate the stimulus-dependent interactomes of LRR receptor kinases in response to their respective ligands, with an emphasis on exploring structural influences and potential cross-talk events at the plasma membrane. BRI1 and SIRK1 were chosen as receptor kinases with distinct coreceptor preference. By using interactome characteristic of domain-swap chimera following a gradient boosting learning algorithm trained on SIRK1 and BRI1 interactomes, we attribute contributions of extracellular domain, transmembrane domain, juxtamembrane domain, and kinase domain of respective ligand-binding receptors to their interaction with their coreceptors and substrates. Our results revealed juxtamembrane domain as major structural element defining the specific substrate recruitment for BRI1 and extracellular domain for SIRK1. Furthermore, the learning algorithm enabled us to predict the phenotypic outcomes of chimeric receptors based on different domain combinations, which was verified by dedicated experiments. As a result, our work reveals a tightly controlled balance of signaling cascade activation dependent on ligand-binding receptors domains and the internal ligand status of the plant. Moreover, our study shows the robust utility of machine learning classification as a quantitative metric for studying dynamic interactomes, dissecting the contribution of specific domains and predicting their phenotypic outcome.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.mcpro.2024.100859
Namrata D Udeshi, Gerald W Hart, Chad Slawson
O-GlcNAcylation was identified in the 1980s by Torres and Hart (1) and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.
{"title":"From Fringe to the Mainstream: How ETD MS brought O-GlcNAc to the masses.","authors":"Namrata D Udeshi, Gerald W Hart, Chad Slawson","doi":"10.1016/j.mcpro.2024.100859","DOIUrl":"https://doi.org/10.1016/j.mcpro.2024.100859","url":null,"abstract":"<p><p>O-GlcNAcylation was identified in the 1980s by Torres and Hart (1) and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.mcpro.2024.100858
Susmita Ghosh, Ali Ata Tuz, Martin Stenzel, Vikramjeet Singh, Mathis Richter, Oliver Soehnlein, Emanuel Lange, Robert Heyer, Zülal Cibir, Alexander Beer, Marcel Jung, Dennis Nagel, Dirk M Hermann, Anja Hasenberg, Anika Grüneboom, Albert Sickmann, Matthias Gunzer
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
{"title":"Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation.","authors":"Susmita Ghosh, Ali Ata Tuz, Martin Stenzel, Vikramjeet Singh, Mathis Richter, Oliver Soehnlein, Emanuel Lange, Robert Heyer, Zülal Cibir, Alexander Beer, Marcel Jung, Dennis Nagel, Dirk M Hermann, Anja Hasenberg, Anika Grüneboom, Albert Sickmann, Matthias Gunzer","doi":"10.1016/j.mcpro.2024.100858","DOIUrl":"10.1016/j.mcpro.2024.100858","url":null,"abstract":"<p><p>Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 10<sup>2</sup>-10<sup>8</sup> copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.mcpro.2024.100855
Ahmed B Montaser, Fangyuan Gao, Danielle Peters, Katri Vainionpää, Ning Zhibin, Dorota Skowronska-Krawczyk, Daniel Figeys, Krzysztof Palczewski, Henri Leinonen
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
{"title":"Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa.","authors":"Ahmed B Montaser, Fangyuan Gao, Danielle Peters, Katri Vainionpää, Ning Zhibin, Dorota Skowronska-Krawczyk, Daniel Figeys, Krzysztof Palczewski, Henri Leinonen","doi":"10.1016/j.mcpro.2024.100855","DOIUrl":"10.1016/j.mcpro.2024.100855","url":null,"abstract":"<p><p>Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6β<sup>Rd10</sup> (rd10) and Rho<sup>P23H/WT</sup> (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65<sup>-/-</sup> mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.mcpro.2024.100853
Lars Konermann, Pablo M Scrosati
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
氢/氘交换质谱(HDX-MS)通过监测骨架酰胺脱氘的动力学来探测蛋白质的动态运动。动态区域表现出快速的 HDX,而刚性部分则受到更多保护。目前的数据读取侧重于定性比较观察(如 "蛋白质暴露于配体 Z 后,X 至 Y 残基受到更多保护")。目前,还无法以原子论的方式解码 HDX 保护模式。换句话说,无法揭示特定条件下蛋白质运动的确切范围,这就为推测解释留下了空间。酰胺反向交换是一个未得到充分重视的问题,因为广泛使用的(m-m0)/(m100-m0)校正方法会扭曲 HDX 动力曲线。未来的数据分析策略需要从根本上更好地理解 HDX 事件,超越经典的林德斯特伦-朗(Linderstrøm-Lang)模型。结合提供更高的空间分辨率和抑制反向交换的实验,应该有可能发现蛋白质在特定条件下表现出的确切运动范围。这些进展将大大提高人们对蛋白质在健康和疾病中行为的理解。
{"title":"Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.","authors":"Lars Konermann, Pablo M Scrosati","doi":"10.1016/j.mcpro.2024.100853","DOIUrl":"10.1016/j.mcpro.2024.100853","url":null,"abstract":"<p><p>Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as \"residues X to Y become more protected after protein exposure to ligand Z\"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m<sub>0</sub>)/(m<sub>100</sub>-m<sub>0</sub>) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1016/j.mcpro.2024.100854
Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Mueller, Stefan F Lichtenthaler, Simone D Scilabra
Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase (DUB), characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum (ER). Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from ER-associated protein degradation (ERAD) in a catalytic-independent manner, promote autophagy and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a DUB substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis", by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to secretion of lysosomal proteins, including LGMN.
{"title":"Proteomic characterization of ubiquitin carboxyl-terminal hydrolase 19 deficient cells reveals a role for USP19 in secretion of lysosomal proteins.","authors":"Simone Bonelli, Margot Lo Pinto, Yihong Ye, Stephan A Mueller, Stefan F Lichtenthaler, Simone D Scilabra","doi":"10.1016/j.mcpro.2024.100854","DOIUrl":"https://doi.org/10.1016/j.mcpro.2024.100854","url":null,"abstract":"<p><p>Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase (DUB), characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum (ER). Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from ER-associated protein degradation (ERAD) in a catalytic-independent manner, promote autophagy and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a DUB substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation and lysosome function. This mechanism resembled the recently described \"lysosomal exocytosis\", by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to secretion of lysosomal proteins, including LGMN.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1016/j.mcpro.2024.100856
Guillaume Dugied, Thibaut Douche, Melanie Dos Santos, Quentin Giai Gianetto Q, Camille Cassonnet, Françoise Vuillier, Patricia Cassonnet, Yves Jacob, Sylvie van der Werf, Anastassia Komarova, Mariette Matondo, Marwah Karim, Caroline Demeret
Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two Substrate Recognition Factors (SRF), DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.
{"title":"Profiling Cullin4-E3 ligases interactomes and their rewiring in influenza A virus infection.","authors":"Guillaume Dugied, Thibaut Douche, Melanie Dos Santos, Quentin Giai Gianetto Q, Camille Cassonnet, Françoise Vuillier, Patricia Cassonnet, Yves Jacob, Sylvie van der Werf, Anastassia Komarova, Mariette Matondo, Marwah Karim, Caroline Demeret","doi":"10.1016/j.mcpro.2024.100856","DOIUrl":"https://doi.org/10.1016/j.mcpro.2024.100856","url":null,"abstract":"<p><p>Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two Substrate Recognition Factors (SRF), DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}