Pub Date : 2024-09-24DOI: 10.1016/j.mcpro.2024.100845
Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
蛋白质乙酰化是一种关键的共翻译和翻译后修饰。然而,不同类型的乙酰化如何应对环境胁迫仍是未知数。为了解决这个问题,我们研究了新发现的质体乙酰转移酶家族成员(GNAT2)的作用,它同时具有赖氨酸和 N 端乙酰转移酶活性。我们的研究旨在为植物适应短期光照变化提供一个多组学乙酰化依赖的整体视角。我们发现,在野生型和gnat2-敲除型背景中,暴露于强光或黑暗中两小时后,N-末端乙酰化组的产量和覆盖率均保持不变。同样,在测试的光照条件下,也没有观察到基因型之间转录组或腺苷酸能量电荷的差异。相比之下,赖氨酸乙酰组对光照条件的变化非常敏感,尤其是在gnat2背景下。这表明植物对环境变化做出快速反应的独特适应策略涉及赖氨酸,而不是 N 端 GNAT2 介导的乙酰化活性。
{"title":"Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.","authors":"Jürgen Eirich, Jean-Baptiste Boyer, Laura Armbruster, Aiste Ivanauskaite, Carolina De La Torre, Thierry Meinnel, Markus Wirtz, Paula Mulo, Iris Finkemeier, Carmela Giglione","doi":"10.1016/j.mcpro.2024.100845","DOIUrl":"10.1016/j.mcpro.2024.100845","url":null,"abstract":"<p><p>Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100845"},"PeriodicalIF":6.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcpro.2024.100844
Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
{"title":"Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies.","authors":"Jamie Heimburg-Molinaro, Akul Y Mehta, Catherine A Tilton, Richard D Cummings","doi":"10.1016/j.mcpro.2024.100844","DOIUrl":"10.1016/j.mcpro.2024.100844","url":null,"abstract":"<p><p>Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100844"},"PeriodicalIF":6.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.mcpro.2024.100841
Yumi Kwon, Jongmin Woo, Fengchao Yu, Sarah M Williams, Lye Meng Markillie, Ronald J Moore, Ernesto S Nakayasu, Jing Chen, Martha Campbell-Thompson, Clayton E Mathews, Alexey I Nesvizhskii, Wei-Jun Qian, Ying Zhu
Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ∼3500 proteins at a spatial resolution of 50 μm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provides robust protein quantifications in identifying differentially abundant proteins and spatially covariable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial coexpression analysis.
{"title":"Proteome-Scale Tissue Mapping Using Mass Spectrometry Based on Label-Free and Multiplexed Workflows.","authors":"Yumi Kwon, Jongmin Woo, Fengchao Yu, Sarah M Williams, Lye Meng Markillie, Ronald J Moore, Ernesto S Nakayasu, Jing Chen, Martha Campbell-Thompson, Clayton E Mathews, Alexey I Nesvizhskii, Wei-Jun Qian, Ying Zhu","doi":"10.1016/j.mcpro.2024.100841","DOIUrl":"10.1016/j.mcpro.2024.100841","url":null,"abstract":"<p><p>Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ∼3500 proteins at a spatial resolution of 50 μm and the highest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provides robust protein quantifications in identifying differentially abundant proteins and spatially covariable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables the identification of protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial coexpression analysis.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100841"},"PeriodicalIF":6.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-31DOI: 10.1016/j.mcpro.2024.100823
Jennifer G Abelin, Andrea L Cox
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
在过去的 30 年中,免疫肽组学与质谱技术、基因组学、转录组学、T 细胞受体测序和免疫测定等方面的改进同步发展,以确定和描述活化 T 细胞的靶标。在免疫学、生物化学、化学和肽质谱技术方面具有专长的多个研究小组共同合作,实现了内源性 MHC 结合肽的分离和序列鉴定。应用高灵敏度的质谱技术研究细胞表面主要组织相容性复合体呈现的多肽抗原结构是一个创新的想法,并将继续得到成功应用和改进,以加深我们对多肽抗原如何处理并呈现给 T 细胞的理解。多个研究小组参与了将免疫肽组学引入转化研究前沿的工作,我们将重点介绍最早的开发者之一、弗吉尼亚大学的唐纳德-亨特(Donald F. Hunt)教授及其研究小组的贡献。亨特实验室将基于质谱的尖端免疫肽组学应用于癌症、自身免疫、移植排斥和传染病的研究。在这些不同的研究领域中,亨特实验室及其合作者将利用超灵敏质谱技术,鉴定以前未知的 MHC 肽结合基序,并识别具有免疫活性的抗原。令人惊奇的是,与亨特实验室合作发现的许多 MHC 结合肽抗原都是在人类基因组人工从头测序完成之前通过质谱法测序的。在这篇透视文章中,我们将记录亨特实验室及其众多合作者的工作,这些工作是基于质谱的免疫肽组学及其在免疫学研究中应用的重要基础。
{"title":"Innovations Toward Immunopeptidomics.","authors":"Jennifer G Abelin, Andrea L Cox","doi":"10.1016/j.mcpro.2024.100823","DOIUrl":"10.1016/j.mcpro.2024.100823","url":null,"abstract":"<p><p>Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100823"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-22DOI: 10.1016/j.mcpro.2024.100818
Inês Correia, Carla Oliveira, Andreia Reis, Ana Rita Guimarães, Susana Aveiro, Pedro Domingues, Ana Rita Bezerra, Rui Vitorino, Gabriela Moura, Manuel A S Santos
Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 °C, the ability to switch between yeast and hyphal forms, and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins. This leads to increased morphological and physiological phenotypic diversity of high adaptive potential, but the scope of such protein mistranslation is poorly understood due to technical difficulties in detecting and quantifying amino acid misincorporation events in complex protein samples. We have developed and optimized mass spectrometry and bioinformatics pipelines capable of identifying rare amino acid misincorporation events at the proteome level. We have also analyzed the proteomic profile of an engineered C. albicans strain that exhibits high level of leucine misincorporation at protein CUG sites and employed an in vivo quantitative gain-of-function fluorescence reporter system to validate our LC-MS/MS data. C. albicans misincorporates amino acids above the background level at protein sites of diverse codons, particularly at CUG, confirming our previous data on the quantification of leucine incorporation at single CUG sites of recombinant reporter proteins, but increasing misincorporation of Leucine at these sites does not alter the translational fidelity of the other codons. These findings indicate that the C. albicans statistical proteome exceeds prior estimates, suggesting that its highly plastic phenome may also be modulated by environmental factors due to translational ambiguity.
{"title":"A Proteogenomic Pipeline for the Analysis of Protein Biosynthesis Errors in the Human Pathogen Candida albicans.","authors":"Inês Correia, Carla Oliveira, Andreia Reis, Ana Rita Guimarães, Susana Aveiro, Pedro Domingues, Ana Rita Bezerra, Rui Vitorino, Gabriela Moura, Manuel A S Santos","doi":"10.1016/j.mcpro.2024.100818","DOIUrl":"10.1016/j.mcpro.2024.100818","url":null,"abstract":"<p><p>Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 °C, the ability to switch between yeast and hyphal forms, and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins. This leads to increased morphological and physiological phenotypic diversity of high adaptive potential, but the scope of such protein mistranslation is poorly understood due to technical difficulties in detecting and quantifying amino acid misincorporation events in complex protein samples. We have developed and optimized mass spectrometry and bioinformatics pipelines capable of identifying rare amino acid misincorporation events at the proteome level. We have also analyzed the proteomic profile of an engineered C. albicans strain that exhibits high level of leucine misincorporation at protein CUG sites and employed an in vivo quantitative gain-of-function fluorescence reporter system to validate our LC-MS/MS data. C. albicans misincorporates amino acids above the background level at protein sites of diverse codons, particularly at CUG, confirming our previous data on the quantification of leucine incorporation at single CUG sites of recombinant reporter proteins, but increasing misincorporation of Leucine at these sites does not alter the translational fidelity of the other codons. These findings indicate that the C. albicans statistical proteome exceeds prior estimates, suggesting that its highly plastic phenome may also be modulated by environmental factors due to translational ambiguity.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100818"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-26DOI: 10.1016/j.mcpro.2024.100821
Fanghua Chen, Ke Gao, Yan Li, Yin Li, Yingcheng Wu, Liangqing Dong, Zijian Yang, Jieyi Shi, Kun Guo, Qiang Gao, Haojie Lu, Shu Zhang
Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.
{"title":"ST3GAL1 Promotes Malignant Phenotypes in Intrahepatic Cholangiocarcinoma.","authors":"Fanghua Chen, Ke Gao, Yan Li, Yin Li, Yingcheng Wu, Liangqing Dong, Zijian Yang, Jieyi Shi, Kun Guo, Qiang Gao, Haojie Lu, Shu Zhang","doi":"10.1016/j.mcpro.2024.100821","DOIUrl":"10.1016/j.mcpro.2024.100821","url":null,"abstract":"<p><p>Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis, and elucidation of the molecular mechanisms underlying iCCA malignancy is of great significance. Glycosylation, an important post-translational modification, is closely associated with tumor progression. Altered glycosylation, including aberrant sialylation resulting from abnormal expression of sialyltransferases (STs) and neuraminidases (NEUs), is a significant feature of cancer cells. However, there is limited information on the roles of STs and NEUs in iCCA malignancy. Here, utilizing our proteogenomic resources from a cohort of 262 patients with iCCA, we identified ST3GAL1 as a prognostically relevant molecule in iCCA. Moreover, overexpression of ST3GAL1 promoted proliferation, migration, and invasion and inhibited apoptosis of iCCA cells in vitro. Through proteomic analyses, we identified the downstream pathway potentially regulated by ST3GAL1, which was the NF-κB signaling pathway, and further demonstrated that this pathway was positively correlated with malignancy in iCCA cells. Notably, glycoproteomics showed that O-glycosylation was changed in iCCA cells with high ST3GAL1 expression. Importantly, the altered O-glycopeptides underscored the potential utility of O-glycosylation profiling as a discriminatory marker for iCCA cells with ST3GAL1 overexpression. Additionally, miR-320b was identified as a post-transcriptional regulator of ST3GAL1, capable of suppressing ST3GAL1 expression and then reducing the proliferation, migration, and invasion abilities of iCCA cell lines. Taken together, these results suggest ST3GAL1 could serve as a promising therapeutic target for iCCA.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100821"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-05DOI: 10.1016/j.mcpro.2024.100826
Ji Hyae Lim, Jae Min Lim, Hyeong Min Lee, Hyun Jung Lee, Dong Wook Kwak, You Jung Han, Moon Young Kim, Sang Hee Jung, Young Ran Kim, Hyun Mee Ryu, Kwang Pyo Kim
Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.
背景:子痫前期(PE)是一种妊娠期高血压疾病,具有各种临床症状。然而,该疾病的传统标志物(包括高血压和蛋白尿)并不能很好地反映相关的不良后果。在此,我们对患有 PE 的孕妇血浆样本进行了系统的蛋白质组分析,以确定临床上有效的诊断生物标志物:方法:使用基于 TMT 的液相色谱-质谱联用仪(LC-MS/MS)进行蛋白质组分析,随后通过多反应监测(MRM)分析对正常和 PE 孕妇血浆样本进行验证。利用生物信息学工具预测了 PE 中差异表达蛋白 (DEP) 的功能注释。根据接收者操作特征曲线下面积(AUC)估算了PE生物标志物的诊断准确性:结果:共鉴定出 1,307 种蛋白质,其中 870 种蛋白质从血浆样本中进行了定量。与对照组相比,PE 组 138 种 DEPs 蛋白质存在明显差异,其中 71 种 DEPs 蛋白质上调,67 种 DEPs 蛋白质下调。上调的蛋白质与包括血小板脱颗粒、蛋白水解、脂蛋白代谢和胆固醇外流在内的生物过程密切相关。包括血液凝固和急性期反应在内的生物过程富含下调蛋白。其中 40 个蛋白质随后在 26 名 PE 患者和 29 名健康对照者组成的独立队列中进行了验证。经 MRM 和 ELISA 验证,APOM、LCN2 和 QSOX1 对 PE 的检测显示出很高的诊断准确性(AUC > 0.9,P < 0.001):我们的数据表明,通过系统蛋白质组分析确定的三种血浆生物标记物可用于评估 PE,而不受孕妇临床特征的影响。
{"title":"Systematic Proteome Profiling of Maternal Plasma for Development of Preeclampsia Biomarkers.","authors":"Ji Hyae Lim, Jae Min Lim, Hyeong Min Lee, Hyun Jung Lee, Dong Wook Kwak, You Jung Han, Moon Young Kim, Sang Hee Jung, Young Ran Kim, Hyun Mee Ryu, Kwang Pyo Kim","doi":"10.1016/j.mcpro.2024.100826","DOIUrl":"10.1016/j.mcpro.2024.100826","url":null,"abstract":"<p><p>Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100826"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-19DOI: 10.1016/j.mcpro.2024.100831
Gustav N Sundell, Sheng-Ce Tao
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
表征循环抗体的抗体反应组,有助于深入了解病原体接触、过敏和自身免疫性疾病。这对于生物标记物的发现、临床诊断、疾病进展的预后以及人群免疫系统的了解都非常重要。新兴技术噬菌体展示免疫沉淀和测序(PhIP-seq)是一种高通量方法,可用于鉴定抗体反应组的抗原/表位。在 PhIP-seq 中,利用天然蛋白质通过生物信息学方法设计出具有确定长度和重叠片段序列的文库,并克隆到噬菌体基因组中显示在表面。这些文库用于循环抗体的免疫沉淀实验。这可以通过多个来源的平行样本来完成,结合噬菌体的 DNA 插入物会被条形码编码,并进行下一代测序以确定命中率。PhIP-seq 是一种表征抗体反应组的强大技术,近年来取得了突飞猛进的发展。在这篇综述中,我们全面介绍了 PhIP-seq 的历史,并讨论了文库设计和应用方面的最新进展。
{"title":"Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome.","authors":"Gustav N Sundell, Sheng-Ce Tao","doi":"10.1016/j.mcpro.2024.100831","DOIUrl":"10.1016/j.mcpro.2024.100831","url":null,"abstract":"<p><p>Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100831"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-05DOI: 10.1016/j.mcpro.2024.100825
Mogjiborahman Salek, Jonas D Förster, Jonas P Becker, Marten Meyer, Pornpimol Charoentong, Yanhong Lyu, Katharina Lindner, Catharina Lotsch, Michael Volkmar, Frank Momburg, Isabel Poschke, Stefan Fröhling, Marc Schmitz, Rienk Offringa, Michael Platten, Dirk Jäger, Inka Zörnig, Angelika B Riemer
Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.
治疗性疫苗和 T 细胞受体(TCR)转基因 T 细胞的采纳性转移等个性化癌症免疫疗法依赖于人类白细胞抗原(HLA)Ⅰ类分子向细胞毒性 T 细胞呈递肿瘤特异性多肽。例如,这种新表位可由体细胞突变产生,识别它们对于合理设计新的治疗干预措施至关重要。基于液相色谱质谱(LC-MS)的免疫肽组学是直接证明实际肽呈现的唯一方法,我们开发了一种参数优化工作流程来调整靶向检测,以实现每条肽的最大检测灵敏度,称为 optiPRM。利用 optiPRM 优化碰撞能量,可以提高对低含量多肽的检测灵敏度,而使用标准参数很难检测到这些多肽。将这一方法应用于免疫肽组学,我们从仅输入 2.5×106 个细胞的病人异种移植(PDX)中检测到了一个新表位。在小型患者肿瘤样本中应用该工作流程,在三名患者中检测到了五个突变衍生的新表位。其中一个新表位被证实能被患者的 T 细胞识别。总之,optiPRM 是一种靶向质谱工作流程,通过对每个肽段参数的优化达到了超高灵敏度,这使得从临床上通常可用的样本量中鉴定可操作的新表位成为可能。
{"title":"optiPRM: A Targeted Immunopeptidomics LC-MS Workflow With Ultra-High Sensitivity for the Detection of Mutation-Derived Tumor Neoepitopes From Limited Input Material.","authors":"Mogjiborahman Salek, Jonas D Förster, Jonas P Becker, Marten Meyer, Pornpimol Charoentong, Yanhong Lyu, Katharina Lindner, Catharina Lotsch, Michael Volkmar, Frank Momburg, Isabel Poschke, Stefan Fröhling, Marc Schmitz, Rienk Offringa, Michael Platten, Dirk Jäger, Inka Zörnig, Angelika B Riemer","doi":"10.1016/j.mcpro.2024.100825","DOIUrl":"10.1016/j.mcpro.2024.100825","url":null,"abstract":"<p><p>Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 10<sup>6</sup> cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100825"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-17DOI: 10.1016/j.mcpro.2024.100814
Neven N Mikawy, Carolina Rojas Ramírez, Steven A DeFiglia, Carson W Szot, Jessie Le, Carter Lantz, Benqian Wei, Muhammad A Zenaidee, Greg T Blakney, Alexey I Nesvizhskii, Joseph A Loo, Brandon T Ruotolo, Jeffrey Shabanowitz, Lissa C Anderson, Kristina Håkansson
Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS3 was performed to validate/refute potential internal fragment assignments, including differentiating MS3 fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.
蛋白质串联质谱(MS/MS)通常会在靠近末端的骨架键裂解处产生序列信息片段。这种蛋白质内部缺乏片段的现象在原生自上而下质谱中尤为明显。提高序列覆盖率对于翻译后修饰(PTMs)和序列变异的可靠注释至关重要,可从多个骨架裂解事件产生的内部片段中获得。然而,由于来自蛋白质序列不同部分的异构/异位片段,内部片段的分配可能容易出错。此外,内部片段的生成倾向取决于所选择的 MS/MS 激活策略。在此,我们研究了几种蛋白质在原生和变性 MS 以及液相色谱 (LC)/MS 之后的电子捕获解离 (ECD) 和电子转移解离 (ETD) 过程中内部片段的形成。实验在四个实验室的多台仪器上进行,包括 Q-ToF、Orbitrap 和高场 FT-ICR。ECD 在超高真空和与 ETD 条件相似的压力下进行。数据分析使用了两个互补的软件包。在可行的情况下,还进行了 ETD-高能碰撞解离(ETD-HCD)MS3 分析,以验证/反驳潜在的内部片段分配,包括区分自由基与偶电子初级片段的 MS3 断裂行为。我们发现,在典型的操作条件下,内部片段无法在 ECD 或 ETD 中可靠地分配。另一方面,在非典型 ECD 操作条件下,这些碎片以及一些 b 型末端碎片(通常不会在 ECD/ETD 光谱中观察到)会出现,这表明它们来自一个独立的离子-电子活化过程。此外,在这种条件下以及在 EThcD 时也会观察到非典型的碎片离子类型,例如 x 离子,这可能是由于 Z 型离子的振动活化所致。
{"title":"Are Internal Fragments Observable in Electron Based Top-Down Mass Spectrometry?","authors":"Neven N Mikawy, Carolina Rojas Ramírez, Steven A DeFiglia, Carson W Szot, Jessie Le, Carter Lantz, Benqian Wei, Muhammad A Zenaidee, Greg T Blakney, Alexey I Nesvizhskii, Joseph A Loo, Brandon T Ruotolo, Jeffrey Shabanowitz, Lissa C Anderson, Kristina Håkansson","doi":"10.1016/j.mcpro.2024.100814","DOIUrl":"10.1016/j.mcpro.2024.100814","url":null,"abstract":"<p><p>Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS<sup>3</sup> was performed to validate/refute potential internal fragment assignments, including differentiating MS<sup>3</sup> fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100814"},"PeriodicalIF":6.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}