Malaria, a parasitic infection caused by the genus Plasmodium, results to over 20 million reported cases annually worldwide. Most individuals exhibit various symptoms, and blood analysis plays a crucial role in determining the appropriate treatment approach. This study discusses various hematologic complications associated with different Plasmodium species. A review of scientific databases including PubMed, Science Direct, Web of Science, Scopus, EMBASE, Magiran, SID, IranMedex was conducted using standard keywords such as Plasmodium, malaria, anemia and blood disorders (hematologic disorder) between 2000 and 2024. The review focused on articles pertaining to clinical trials, prospective cohort, retrospective, cross-sectional and case-control studies. Articles evaluating the effects of malaria on blood cells and indices, with target groups including human and animals, were included. Articles not written in English or Farsi were excluded. Our review revealed that, apart from iron deficiency anemia and vascular dysfunction contributed in part by adhesion of infected RBC to endothelium, decreases in hematocrit and hemoglobin levels, as part of pancytopenia and thrombocytopenia, are characteristic of Plasmodium infection. Additionally, the occurrence of inflammation due to the release of inflammatory cytokines and complement activation can complicate the clinical features of malaria in individuals with hematologic conditions.
{"title":"Hematological changes due to malaria – An update","authors":"Rana Hussein Naser , Toktam Rajaii , Bibi Razieh Hosseini Farash , Seyyed javad Seyyedtabaei , Vahid Hajali , Fatemeh Sadabadi , Ehsan Saburi","doi":"10.1016/j.molbiopara.2024.111635","DOIUrl":"10.1016/j.molbiopara.2024.111635","url":null,"abstract":"<div><p>Malaria, a parasitic infection caused by the genus <em>Plasmodium</em>, results to over 20 million reported cases annually worldwide. Most individuals exhibit various symptoms, and blood analysis plays a crucial role in determining the appropriate treatment approach. This study discusses various hematologic complications associated with different <em>Plasmodium</em> species. A review of scientific databases including PubMed, Science Direct, Web of Science, Scopus, EMBASE, Magiran, SID, IranMedex was conducted using standard keywords such as <em>Plasmodium</em>, malaria, anemia and blood disorders (hematologic disorder) between 2000 and 2024. The review focused on articles pertaining to clinical trials, prospective cohort, retrospective, cross-sectional and case-control studies. Articles evaluating the effects of malaria on blood cells and indices, with target groups including human and animals, were included. Articles not written in English or Farsi were excluded. Our review revealed that, apart from iron deficiency anemia and vascular dysfunction contributed in part by adhesion of infected RBC to endothelium, decreases in hematocrit and hemoglobin levels, as part of pancytopenia and thrombocytopenia, are characteristic of <em>Plasmodium</em> infection. Additionally, the occurrence of inflammation due to the release of inflammatory cytokines and complement activation can complicate the clinical features of malaria in individuals with hematologic conditions.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111635"},"PeriodicalIF":1.5,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.molbiopara.2024.111631
Nashrin F. Patel , Blaženka D. Letinić , Leanne Lobb , Jacek Zawada , Dumsani M. Dlamini , Nondumiso Mabaso , Givemore Munhenga , Shüné V. Oliver
Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.
{"title":"Comparison of the effect of bacterial stimulation on the global epigenetic landscape and transcription of immune genes in primarily zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae)","authors":"Nashrin F. Patel , Blaženka D. Letinić , Leanne Lobb , Jacek Zawada , Dumsani M. Dlamini , Nondumiso Mabaso , Givemore Munhenga , Shüné V. Oliver","doi":"10.1016/j.molbiopara.2024.111631","DOIUrl":"10.1016/j.molbiopara.2024.111631","url":null,"abstract":"<div><p>Members of the <em>Anopheles gambiae</em> complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the <em>An. gambiae</em> complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of <em>An. arabiensis</em>, <em>An. merus</em> and <em>An. quadriannulatus</em>, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of <em>Defensin-1</em> and <em>Gambicin</em> was assessed in response to Gram-positive (<em>Streptococcus pyogenes</em>) and Gram-negative (<em>Escherichia coli</em>) bacterial infections. The effect of insecticide resistance in <em>An. arabiensis</em> on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of <em>Defensin-1</em> and <em>Gambicin</em> were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant <em>An. arabiensis</em> were more reflected in the expression of <em>Defensin-1</em> and <em>Gambicin</em>. The expression of these peptides differed in the strains only after bacterial stimulation. <em>Anopheles merus</em> and <em>An. quadriannulatus</em> expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the <em>An</em>. <em>gambiae</em> complex.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"260 ","pages":"Article 111631"},"PeriodicalIF":1.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000240/pdfft?md5=319161ea823e45001410d6e3ca30ac04&pid=1-s2.0-S0166685124000240-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-02DOI: 10.1016/j.molbiopara.2024.111632
Wiekolize Rothmann-Meyer , Kershney Naidoo , Pamela J. de Waal
Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.
Spirocerca lupi 是一种主要影响家犬的寄生线虫。它导致的螺旋体病通常是致命的。S. lupi 的基因组草案包括 13,627 个预测的蛋白编码基因,长度约为 150Mb。通过比较 C. elegans 抗蠕虫基因靶点的直向同源物以及已知候选疫苗的直向同源物,确定了 S. lupi 的几个已知抗蠕虫基因靶点,如 β-管蛋白、谷氨酸和 GABA 受体,以及已知疫苗基因靶点,如半胱氨酸蛋白酶抑制剂和细胞因子。通过包含-排除策略预测了新的驱虫药靶标,并通过免疫信息学方法预测了新的疫苗靶标。新的抗蠕虫药靶标包括DNA定向RNA聚合酶、几丁质合成酶、聚合酶和其他酶。新的疫苗靶点包括角质层胶原。这些基因靶点为新药鉴定和疫苗设计提供了一个起始平台。
{"title":"Spirocerca lupi draft genome, vaccine and anthelmintic targets","authors":"Wiekolize Rothmann-Meyer , Kershney Naidoo , Pamela J. de Waal","doi":"10.1016/j.molbiopara.2024.111632","DOIUrl":"10.1016/j.molbiopara.2024.111632","url":null,"abstract":"<div><p><em>Spirocerca lupi</em> is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of <em>S. lupi</em> consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in <em>S. lupi</em> by comparing orthologs of <em>C. elegans</em> anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111632"},"PeriodicalIF":1.5,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000252/pdfft?md5=30536aa8d35ccf82718a7e1b8f5f1cd6&pid=1-s2.0-S0166685124000252-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.molbiopara.2024.111634
Wouter Graumans , Alex van der Starre , Rianne Stoter , Geert-Jan van Gemert , Chiara Andolina , Jordache Ramjith , Taco Kooij , Teun Bousema , Nicholas Proellochs
Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20–24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.
{"title":"AlbuMAX supplemented media induces the formation of transmission-competent P. falciparum gametocytes","authors":"Wouter Graumans , Alex van der Starre , Rianne Stoter , Geert-Jan van Gemert , Chiara Andolina , Jordache Ramjith , Taco Kooij , Teun Bousema , Nicholas Proellochs","doi":"10.1016/j.molbiopara.2024.111634","DOIUrl":"10.1016/j.molbiopara.2024.111634","url":null,"abstract":"<div><p>Asexual blood stage culture of <em>Plasmodium falciparum</em> is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20–24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111634"},"PeriodicalIF":1.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000276/pdfft?md5=bcb32bafd94f80edeeb2f5ed2394903c&pid=1-s2.0-S0166685124000276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.molbiopara.2024.111633
Gabriel Cabral, William J. Moss, Kevin M. Brown
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
{"title":"Proteomic approaches for protein kinase substrate identification in Apicomplexa","authors":"Gabriel Cabral, William J. Moss, Kevin M. Brown","doi":"10.1016/j.molbiopara.2024.111633","DOIUrl":"10.1016/j.molbiopara.2024.111633","url":null,"abstract":"<div><p>Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111633"},"PeriodicalIF":1.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.molbiopara.2024.111630
An Yan, Jing Tian, Jianjun Ye, Chuanliang Gao, Liying Ye, Dongchao Zhang, Qiqi Song
<div><p><em>Toxoplasma gondii</em> is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in <em>Toxoplasma gondii</em> control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with <em>Toxoplasma gondii</em> SRS29C as the target gene. We explored the nucleic acid vaccine with <em>Toxoplasma</em> surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against <em>Toxoplasma gondii.</em> To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4<sup>+</sup> and CD8<sup>+</sup> T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4<sup>+</sup>/CD8<sup>+</sup> T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed <em>Toxoplasma gondii</em> nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to
{"title":"Construction of Toxoplasma gondii SRS29C nucleic acid vaccine and comparative immunoprotective study of an SRS29C and SAG1 combination","authors":"An Yan, Jing Tian, Jianjun Ye, Chuanliang Gao, Liying Ye, Dongchao Zhang, Qiqi Song","doi":"10.1016/j.molbiopara.2024.111630","DOIUrl":"10.1016/j.molbiopara.2024.111630","url":null,"abstract":"<div><p><em>Toxoplasma gondii</em> is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in <em>Toxoplasma gondii</em> control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with <em>Toxoplasma gondii</em> SRS29C as the target gene. We explored the nucleic acid vaccine with <em>Toxoplasma</em> surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against <em>Toxoplasma gondii.</em> To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4<sup>+</sup> and CD8<sup>+</sup> T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4<sup>+</sup>/CD8<sup>+</sup> T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed <em>Toxoplasma gondii</em> nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111630"},"PeriodicalIF":1.5,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.molbiopara.2024.111629
Monica A. das Neves , Jessyane R. do Nascimento , Vera Lucia Maciel-Silva , Alberto M. dos Santos , Jaldyr de Jesus G.V. Junior , Ana Jessica S. Coelho , Mayara Ingrid S. Lima , Silma Regina F. Pereira , Cláudia Q. da Rocha
Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.
利什曼病是由不同种类的利什曼原虫引起的一组传染性寄生虫病,被认为是全球重大的公共卫生问题。目前的疗法面临着严重的局限性,包括疗效低、成本高、给药途径需要医院支持且已出现抗药性。此外,目前只有有限的几种药物,如抗锑酸甲克鲁明、两性霉素 B 和米替福新,所有这些药物都有严重的副作用。在这种情况下,显然需要新的有效且不良反应较少的药物。因此,本研究调查了从箭毒树根中提取的二氯甲烷馏分(DCMF)的抗利什曼原虫活性。该馏分可抑制 L.infantum、L.braziliensis 和 L. Mexicana 原虫的活力,其 IC50 值分别为 10.13、11.44 和 11.16µg/mL,并可抑制 L. infantum 母细胞(IC50 = 4.81µg/mL)。此外,DCMF 对 RAW264.7 巨噬细胞具有中等程度的细胞毒性(CC50 = 25.15),选择性指数(SI)为 5.2。值得注意的是,DCMF 只有在 40µg/mL 时才会对巨噬细胞基因组造成破坏,这高于所有利什曼病菌的 IC50。此外,还研究了布拉克丁的潜在作用机制。结果表明,DCMF 与分离出的 brachydin B 具有类似的抗利什曼病效果,但不会对哺乳动物细胞造成基因毒性影响。这一发现至关重要,因为化合物的分离需要多个步骤,成本非常高昂,而获得 DCMF 部分则是一个简单而经济有效的过程。此外,计算分析表明,布拉奇丁化合物通过两种主要机制与磷酸三糖异构酶(TIM)结合:破坏同源二聚体之间界面的稳定性以及与位于结合部位的催化残基相互作用。根据所有研究结果,DCMF有望成为利什曼病的治疗药物,因为与目前的参考疗法相比,它的毒性大大降低。
{"title":"Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae)","authors":"Monica A. das Neves , Jessyane R. do Nascimento , Vera Lucia Maciel-Silva , Alberto M. dos Santos , Jaldyr de Jesus G.V. Junior , Ana Jessica S. Coelho , Mayara Ingrid S. Lima , Silma Regina F. Pereira , Cláudia Q. da Rocha","doi":"10.1016/j.molbiopara.2024.111629","DOIUrl":"10.1016/j.molbiopara.2024.111629","url":null,"abstract":"<div><p>Leishmaniases comprise a group of infectious parasitic diseases caused by various species of <em>Leishmania</em> and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-<em>Leishmania</em> activity of a dichloromethane fraction (DCMF) extracted from <em>Arrabidaea brachypoda</em> roots. This fraction inhibited the viability of <em>L. infantum</em>, <em>L. braziliensis</em>, and <em>L. Mexicana</em> promastigotes, with IC<sub>50</sub> values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against <em>L. infantum</em> amastigotes (IC<sub>50</sub> = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC<sub>50</sub> = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC<sub>50</sub> found for all <em>Leishmania</em> species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111629"},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1016/j.molbiopara.2024.111628
Dima Hajj Ali, Rajshekhar Y. Gaji
Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens’ (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
{"title":"TKL family kinases in human apicomplexan pathogens","authors":"Dima Hajj Ali, Rajshekhar Y. Gaji","doi":"10.1016/j.molbiopara.2024.111628","DOIUrl":"10.1016/j.molbiopara.2024.111628","url":null,"abstract":"<div><p>Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens’ (<em>Toxoplasma gondii, Plasmodium falciparum</em> and <em>Cryptosporidium parvum</em>) biology and pathogenesis.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111628"},"PeriodicalIF":1.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685124000215/pdfft?md5=4523ee32bae5769151264bfe91047782&pid=1-s2.0-S0166685124000215-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.molbiopara.2024.111621
Nancy Chile , Edson G. Bernal-Teran , Beth J. Condori , Taryn Clark , Hector H. Garcia , Robert H. Gilman , Manuela R. Verastegui , for The Cysticercosis Working Group in Peru
Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite Taenia solium. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. T. solium activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46–48 kDa. The 46–48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.
{"title":"Characterization of antigenic proteins of the Taenia solium postoncospheral form","authors":"Nancy Chile , Edson G. Bernal-Teran , Beth J. Condori , Taryn Clark , Hector H. Garcia , Robert H. Gilman , Manuela R. Verastegui , for The Cysticercosis Working Group in Peru","doi":"10.1016/j.molbiopara.2024.111621","DOIUrl":"10.1016/j.molbiopara.2024.111621","url":null,"abstract":"<div><p>Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite <em>Taenia solium</em>. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. <em>T. solium</em> activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46–48 kDa. The 46–48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111621"},"PeriodicalIF":1.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-21DOI: 10.1016/j.molbiopara.2024.111620
Hina Durrani, James A. Bjork, Sara L. Zimmer
Kinetoplastids, a group of flagellated protists that are often insect intestinal parasites, encounter various sources of oxidative stress. Such stressors include reactive oxygen species, both internally produced within the protist, and induced externally by host immune responses. This investigation focuses on the role of a highly conserved aspartate-based protein phosphatase, PTP-Interacting protein (PIP39) in managing oxidative stress. In addition to its well accepted role in a Trypanosoma brucei life stage transition, there is evidence of PIP39 participation in the T. brucei oxidative stress response. To examine whether this latter PIP39 role may exist more broadly, we aimed to elucidate PIP39’s contribution to redox homeostasis in the monoxenous parasite Leptomonas seymouri. Utilizing CRISPR-Cas9-mediated elimination of PIP39 in conjunction with oxidative stress assays, we demonstrate that PIP39 is required for cellular tolerance to oxidative stress in L. seymouri, positing it as a putative regulatory node for adaptive stress responses. We propose that future analysis of L. seymouri PIP39 enzymatic activity, regulation, and potential localization to a specialized organelle termed a glycosome will contribute to a deeper understanding of the molecular mechanisms by which protozoan parasites adapt to oxidative environments. Our study also demonstrates success at using gene editing tools developed for Leishmania for the related L. seymouri.
{"title":"Role of PIP39 in oxidative stress response appears conserved in kinetoplastids","authors":"Hina Durrani, James A. Bjork, Sara L. Zimmer","doi":"10.1016/j.molbiopara.2024.111620","DOIUrl":"10.1016/j.molbiopara.2024.111620","url":null,"abstract":"<div><p>Kinetoplastids, a group of flagellated protists that are often insect intestinal parasites, encounter various sources of oxidative stress. Such stressors include reactive oxygen species, both internally produced within the protist, and induced externally by host immune responses. This investigation focuses on the role of a highly conserved aspartate-based protein phosphatase, PTP-Interacting protein (PIP39) in managing oxidative stress. In addition to its well accepted role in a <em>Trypanosoma brucei</em> life stage transition, there is evidence of PIP39 participation in the <em>T. brucei</em> oxidative stress response. To examine whether this latter PIP39 role may exist more broadly, we aimed to elucidate PIP39’s contribution to redox homeostasis in the monoxenous parasite <em>Leptomonas seymouri</em>. Utilizing CRISPR-Cas9-mediated elimination of PIP39 in conjunction with oxidative stress assays, we demonstrate that PIP39 is required for cellular tolerance to oxidative stress in <em>L. seymouri</em>, positing it as a putative regulatory node for adaptive stress responses. We propose that future analysis of <em>L. seymouri</em> PIP39 enzymatic activity, regulation, and potential localization to a specialized organelle termed a glycosome will contribute to a deeper understanding of the molecular mechanisms by which protozoan parasites adapt to oxidative environments. Our study also demonstrates success at using gene editing tools developed for <em>Leishmania</em> for the related <em>L. seymouri</em>.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"259 ","pages":"Article 111620"},"PeriodicalIF":1.5,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140758797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}