Clonorchis sinensis (C. sinensis) is a fish-borne trematode that inhabits the bile duct of mammals including humans, cats, dogs, rats, and so on. In the complex life cycle of C. sinensis, the worm develops successively in two intermediate hosts in fresh water and one definitive host. What’s more, it undergoes eight developmental stages with a distinct morphology. Clonorchiasis, caused by C. sinensis infection, is an important food-borne parasitic disease and one of the most common zoonoses. C. sinensis infection could result in hyperplasia of the bile duct epithelium, obstructive jaundice, gall-stones, cholecystitis and cholangitis, even liver cirrhosis and cholangiocarcinoma. Thus, clonorchiasis is a serious public health problem in endemic areas. Integrated strategies should be adopted in the prevention and control of clonorchiasis due to the epidemiological characteristics. The recent advances in high-throughput technologies have made available the profiling of multiple layers of a biological system, genomics, transcriptomics, proteomics, and metabolomics. These data can help us to get more information about the development, physiology, metabolism, and reproduction of the parasite as well as pathogenesis and parasite-host interactions in clonorchiasis. In the present study, we summarized recent progresses in omics studies on C. sinensis providing insights into the studies and future directions on treating and preventing C. sinensis associated diseases.