Pub Date : 2024-12-01Epub Date: 2024-02-22DOI: 10.1007/s11010-024-04950-0
Zujie Xu, Zheying Ma, Xiaoqin Zhao, Bing Zhang
Obesity has been identified as an independent risk factor for cardiovascular disease. Recent reports have highlighted the significance of stimulator of interferon genes (STING)-NOD-like receptor protein 3 (NLRP3) signaling pathway mediated pyroptosis, and inflammation in cardiovascular disease. Previous studies have demonstrated that exercise training effectively prevents cardiac pyroptosis and inflammation in high-fat diet (HFD)-fed mice. However, it is currently unknown whether exercise reduces pyroptosis and inflammation in obese hearts by targeting the STING-NLRP3 signaling pathway. We investigated the impact of an 8-week aerobic exercise regimen on cardiac function, pyroptosis, inflammation, and the STING-NLRP3 signaling pathway in HFD-induced obese mice. Additionally, to explore the underlying mechanism of STING in exercise-mediated cardioprotection, we administered intraperitoneal injections of the STING agonist diABZI to the mice. Furthermore, to investigate the role of the STING-NLRP3 signaling pathway in HFD-induced cardiac dysfunction, we administered adeno-associated virus 9 (AAV9) encoding shRNA targeting STING (shRNA-STING) via tail vein injection to knockdown STING expression specifically in mouse hearts. After one week of AAV9 injection, we intraperitoneally injected nigericin as an NLRP3 agonist. We first found that aerobic exercise effectively suppressed HFD-mediated upregulation of STING and NLRP3 in the hearts. Moreover, we demonstrated that the protective effect of aerobic exercise in HFD-induced cardiac dysfunction, pyroptosis, and inflammation was impaired by stimulating the STING pathway using diABZI. Additionally, activation of the NLRP3 with nigericin abolished the ameliorative effect of STING deficiency in HFD-induced cardiac dysfunction, pyroptosis, and inflammation. Based on these findings, we concluded that 8-week aerobic exercise alleviates HFD-induced cardiac dysfunction, pyroptosis, and inflammation by targeting STING-NLRP3 signaling pathway. Inhibition of STING-NLRP3 signaling pathway may serve as a promising therapeutic strategy against obesity-induced cardiomyopathy.
{"title":"Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway.","authors":"Zujie Xu, Zheying Ma, Xiaoqin Zhao, Bing Zhang","doi":"10.1007/s11010-024-04950-0","DOIUrl":"10.1007/s11010-024-04950-0","url":null,"abstract":"<p><p>Obesity has been identified as an independent risk factor for cardiovascular disease. Recent reports have highlighted the significance of stimulator of interferon genes (STING)-NOD-like receptor protein 3 (NLRP3) signaling pathway mediated pyroptosis, and inflammation in cardiovascular disease. Previous studies have demonstrated that exercise training effectively prevents cardiac pyroptosis and inflammation in high-fat diet (HFD)-fed mice. However, it is currently unknown whether exercise reduces pyroptosis and inflammation in obese hearts by targeting the STING-NLRP3 signaling pathway. We investigated the impact of an 8-week aerobic exercise regimen on cardiac function, pyroptosis, inflammation, and the STING-NLRP3 signaling pathway in HFD-induced obese mice. Additionally, to explore the underlying mechanism of STING in exercise-mediated cardioprotection, we administered intraperitoneal injections of the STING agonist diABZI to the mice. Furthermore, to investigate the role of the STING-NLRP3 signaling pathway in HFD-induced cardiac dysfunction, we administered adeno-associated virus 9 (AAV9) encoding shRNA targeting STING (shRNA-STING) via tail vein injection to knockdown STING expression specifically in mouse hearts. After one week of AAV9 injection, we intraperitoneally injected nigericin as an NLRP3 agonist. We first found that aerobic exercise effectively suppressed HFD-mediated upregulation of STING and NLRP3 in the hearts. Moreover, we demonstrated that the protective effect of aerobic exercise in HFD-induced cardiac dysfunction, pyroptosis, and inflammation was impaired by stimulating the STING pathway using diABZI. Additionally, activation of the NLRP3 with nigericin abolished the ameliorative effect of STING deficiency in HFD-induced cardiac dysfunction, pyroptosis, and inflammation. Based on these findings, we concluded that 8-week aerobic exercise alleviates HFD-induced cardiac dysfunction, pyroptosis, and inflammation by targeting STING-NLRP3 signaling pathway. Inhibition of STING-NLRP3 signaling pathway may serve as a promising therapeutic strategy against obesity-induced cardiomyopathy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3459-3470"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-02DOI: 10.1007/s11010-024-04964-8
Siqi Li, Jinfa Wan, Zhenyu Peng, Qiong Huang, Baimei He
Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.
代谢性疾病,如肥胖症、糖尿病和非酒精性脂肪肝(NAFLD),是新陈代谢紊乱导致的异常病症。随着生活条件的改善,代谢性疾病的发病率和死亡率持续上升,对全球人类健康构成重大威胁。因此,寻找新的有效靶点治疗代谢性疾病至关重要。越来越多的证据表明,二硫键 A 氧化还原酶样蛋白(DsbA-L)能延缓代谢性疾病的发生。然而,DsbA-L 在代谢性疾病中的潜在机制仍不清楚。在这篇综述中,我们将讨论 DsbA-L 在肥胖症、糖尿病和非酒精性脂肪肝等代谢性疾病的发病机制中的作用,并强调其潜在机制。这些发现表明,DsbA-L 可能为代谢性疾病提供一种新的治疗策略。
{"title":"New insights of DsbA-L in the pathogenesis of metabolic diseases.","authors":"Siqi Li, Jinfa Wan, Zhenyu Peng, Qiong Huang, Baimei He","doi":"10.1007/s11010-024-04964-8","DOIUrl":"10.1007/s11010-024-04964-8","url":null,"abstract":"<p><p>Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3293-3303"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-21DOI: 10.1007/s11010-023-04915-9
Shuo An, Hongchen Bi, Xiaoli Luo, Caiying Zhu, Min Wang, Aiming Pang, Yujie Cui
Diabetic cardiomyopathy (DbCM) is one of the most common vascular complications of diabetes, and can cause heart failure and threaten the life of patients. The pathogenesis is complex, and key genes have not fully identified. In this study, bioinformatics analysis was used to predict DbCM-related gene targets. Published datasets from the NCBI Gene Expression Omnibus with accession numbers GSE62203 and GSE197850 were selected for analysis. Differentially expressed genes (DEGs) were identified by the online tool GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID online database. Protein-protein interaction network construction and hub gene identification were performed using STRING and Cytoscape. We used 30 mM and 1 μM hydrocortisone-stimulated AC16 cells as an in vitro model of diabetic cardiomyopathy. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of hub genes. A total of 73 common DEGs were identified in both datasets, including 47 upregulated and 26 downregulated genes. GO and KEGG pathway enrichment analyses revealed that the DEGs were significantly enriched in metabolism, hypoxia response, apoptosis, cell proliferation regulation, and cytoplasmic and HIF signalling pathways. The top 10 hub genes were LDHA, PGK1, SLC2A1, ENO1, PFKFB3, EGLN1, MYC, PDK1, EGLN3 and BNIP3. In our in vitro study, we found that PGK1, SLC2A1, PFKFB3, EGLN1, MYC, EGLN3 and BNIP3 were upregulated, ENO1 was downregulated, and LDHA was unchanged. Except for PGK1 and ENO1, these hub genes have been previously reported to be involved in DbCM. In summary, we identified DEGs and hub genes and first reported PGK1 and ENO1 in DbCM, which may serve as potential candidate genes for DbCM targeted therapy.
{"title":"Identification of key genes of diabetic cardiomyopathy in hiPSCs-CMs based on bioinformatics analysis.","authors":"Shuo An, Hongchen Bi, Xiaoli Luo, Caiying Zhu, Min Wang, Aiming Pang, Yujie Cui","doi":"10.1007/s11010-023-04915-9","DOIUrl":"10.1007/s11010-023-04915-9","url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DbCM) is one of the most common vascular complications of diabetes, and can cause heart failure and threaten the life of patients. The pathogenesis is complex, and key genes have not fully identified. In this study, bioinformatics analysis was used to predict DbCM-related gene targets. Published datasets from the NCBI Gene Expression Omnibus with accession numbers GSE62203 and GSE197850 were selected for analysis. Differentially expressed genes (DEGs) were identified by the online tool GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID online database. Protein-protein interaction network construction and hub gene identification were performed using STRING and Cytoscape. We used 30 mM and 1 μM hydrocortisone-stimulated AC16 cells as an in vitro model of diabetic cardiomyopathy. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of hub genes. A total of 73 common DEGs were identified in both datasets, including 47 upregulated and 26 downregulated genes. GO and KEGG pathway enrichment analyses revealed that the DEGs were significantly enriched in metabolism, hypoxia response, apoptosis, cell proliferation regulation, and cytoplasmic and HIF signalling pathways. The top 10 hub genes were LDHA, PGK1, SLC2A1, ENO1, PFKFB3, EGLN1, MYC, PDK1, EGLN3 and BNIP3. In our in vitro study, we found that PGK1, SLC2A1, PFKFB3, EGLN1, MYC, EGLN3 and BNIP3 were upregulated, ENO1 was downregulated, and LDHA was unchanged. Except for PGK1 and ENO1, these hub genes have been previously reported to be involved in DbCM. In summary, we identified DEGs and hub genes and first reported PGK1 and ENO1 in DbCM, which may serve as potential candidate genes for DbCM targeted therapy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3447-3458"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-01DOI: 10.1007/s11010-024-04948-8
Anton Tkachenko, Ondrej Havranek
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
{"title":"Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells.","authors":"Anton Tkachenko, Ondrej Havranek","doi":"10.1007/s11010-024-04948-8","DOIUrl":"10.1007/s11010-024-04948-8","url":null,"abstract":"<p><p>Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3273-3291"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-13DOI: 10.1007/s11010-024-04934-0
Mansour Almouh, Katayoon Pakravan, Mohammad H Ghazimoradi, Romina Motamed, Babak Bakhshinejad, Zuhair Mohammad Hassan, Sadegh Babashah
Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.
间充质干细胞(MSCs)在塑造肿瘤微环境(TME)、影响肿瘤生长方面可能起着举足轻重的作用。然而,关于间充质干细胞对肿瘤进展的不同影响,存在着相互矛盾的证据,一些研究表明会促进肿瘤细胞的生长,而另一些研究则表明会抑制肿瘤细胞的生长。考虑到氧化应激与TME成分和肿瘤细胞之间的动态相互作用有关,我们研究了经过氧化氢(H2O2)处理的间充质干细胞释放的外泌体对小鼠乳腺肿瘤生长和进展的影响。此外,我们还旨在确定间充质干细胞衍生的外泌体影响乳腺肿瘤生长和血管生成的潜在机制。我们的研究结果表明,经 H2O2 处理的应激诱导间充质干细胞(St-MSC Exo)释放的外泌体通过诱导血管内皮生长因子(VEGF)和上皮细胞向间质转化相关标志物的表达,促进了乳腺癌细胞的进展。进一步的研究表明,St-间充质干细胞外泌体对血管内皮生长因子表达的促进作用可能部分取决于激活 BC 细胞中的 STAT3 信号。相反,从未经处理的间充质干细胞中提取的外泌体可延缓JAK1/STAT3磷酸化并降低血管内皮生长因子的表达。此外,我们的观察还发现,在 St-MSC 外泌体的刺激下,BC 细胞中转录因子 NF-κB 的激活与细胞内 ROS 生成的增加同时发生。此外,我们还观察到,在 St-MSC Exo 的介导下,4T1 BC 条件培养基中血管内皮生长因子分泌的增加对体外内皮细胞的增殖、迁移和血管行为产生了积极影响。反过来,我们的体内研究也证实,St-间充质干细胞外泌体(而非来自未经处理的间充质干细胞的外泌体)对乳腺癌的致病性有显著的促进作用。总之,我们的研究结果为了解间充质干细胞如何调节TME提供了新的视角。我们提出了一种新的机制,即氧化应激诱导的间充质干细胞产生的外泌体可能有助于肿瘤的进展和血管生成。
{"title":"Exosomes released by oxidative stress-induced mesenchymal stem cells promote murine mammary tumor progression through activating the STAT3 signaling pathway.","authors":"Mansour Almouh, Katayoon Pakravan, Mohammad H Ghazimoradi, Romina Motamed, Babak Bakhshinejad, Zuhair Mohammad Hassan, Sadegh Babashah","doi":"10.1007/s11010-024-04934-0","DOIUrl":"10.1007/s11010-024-04934-0","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H<sub>2</sub>O<sub>2</sub>-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3375-3391"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-29DOI: 10.1007/s11010-024-04947-9
Serge Yaacoub, Ammar Boudaka, Ali AlKhatib, Gianfranco Pintus, Amirhossein Sahebkar, Firas Kobeissy, Ali H Eid
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
{"title":"The pharmaco-epigenetics of hypertension: a focus on microRNA.","authors":"Serge Yaacoub, Ammar Boudaka, Ali AlKhatib, Gianfranco Pintus, Amirhossein Sahebkar, Firas Kobeissy, Ali H Eid","doi":"10.1007/s11010-024-04947-9","DOIUrl":"10.1007/s11010-024-04947-9","url":null,"abstract":"<p><p>Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3255-3271"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis (AS) is a pivotal pathological basis of cardiovascular and cerebrovascular diseases, and circular RNAs (circRNAs) has been disclosed to exert a vital part in the progression of AS. However, the functions of circ_0004872 in the progression of AS is indistinct. In this context, we aimed to elucidate the role of circ_0004872 and the potential mechanism in AS. The level of circ_0004872, miR-424-5p and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine (EDU) assays. The invasion and migration capabilities of VSMCs were tested by transwell assays and wound-healing assay, respectively. Western blot was adopted to check the protein levels of CyclinD1, Vimentin and FRS2. Dual-luciferase reporter and RNA immunoprecipitation assay were executed to manifest the interaction between miR-424-5p and circ_0004872 or FRS2. The level of circ_0004872 was increased in the serum samples of AS patients and ox-LDL-exposed VSMCs. Ox-LDL exposure triggered cell proliferation, invasion and migration ability of VSMCs. depletion of circ_0004872 partly weakened ox-LDL-mediated effects in VSMCs. Mechanistically, circ_0004872 functioned as a sponge of miR-424-5p, and miR-424-5p inhibition partly alleviated circ_0004872 deficiency-mediated influences in VSMCs. Additionally, miR-424-5p interacted with FRS2, and miR-424-5p constrained dysfunction in ox-LDL-stimulated VSMCs via reducing FRS2 level. Notably, circ_0004872 functioned as a sponge of miR-424-5p to elevate FRS2 expression. Circ_0004872 accelerated ox-LDL-induced damage via mediating miR-424-5p/FRS2 axis.
{"title":"Circ_0004872 deficiency attenuates ox-LDL-induced vascular smooth muscle cell dysfunction by miR-424-5p-dependent regulation of FRS2.","authors":"Peng Qian, Xuanchao Cao, Qian Zhang, Meihua Gao, Xin Liu, Lijie Yan","doi":"10.1007/s11010-024-04929-x","DOIUrl":"10.1007/s11010-024-04929-x","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a pivotal pathological basis of cardiovascular and cerebrovascular diseases, and circular RNAs (circRNAs) has been disclosed to exert a vital part in the progression of AS. However, the functions of circ_0004872 in the progression of AS is indistinct. In this context, we aimed to elucidate the role of circ_0004872 and the potential mechanism in AS. The level of circ_0004872, miR-424-5p and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine (EDU) assays. The invasion and migration capabilities of VSMCs were tested by transwell assays and wound-healing assay, respectively. Western blot was adopted to check the protein levels of CyclinD1, Vimentin and FRS2. Dual-luciferase reporter and RNA immunoprecipitation assay were executed to manifest the interaction between miR-424-5p and circ_0004872 or FRS2. The level of circ_0004872 was increased in the serum samples of AS patients and ox-LDL-exposed VSMCs. Ox-LDL exposure triggered cell proliferation, invasion and migration ability of VSMCs. depletion of circ_0004872 partly weakened ox-LDL-mediated effects in VSMCs. Mechanistically, circ_0004872 functioned as a sponge of miR-424-5p, and miR-424-5p inhibition partly alleviated circ_0004872 deficiency-mediated influences in VSMCs. Additionally, miR-424-5p interacted with FRS2, and miR-424-5p constrained dysfunction in ox-LDL-stimulated VSMCs via reducing FRS2 level. Notably, circ_0004872 functioned as a sponge of miR-424-5p to elevate FRS2 expression. Circ_0004872 accelerated ox-LDL-induced damage via mediating miR-424-5p/FRS2 axis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3425-3435"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-19DOI: 10.1007/s11010-024-04940-2
Qun Zeng, Tingting Jiang
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
{"title":"Molecular mechanisms of ferroptosis in cardiovascular disease.","authors":"Qun Zeng, Tingting Jiang","doi":"10.1007/s11010-024-04940-2","DOIUrl":"10.1007/s11010-024-04940-2","url":null,"abstract":"<p><p>Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3181-3193"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.
{"title":"Human umbilical cord mesenchymal stem cells improve bone marrow hematopoiesis through regulation of bone marrow adipose tissue.","authors":"Jingyi Feng, Miao Zhang, Huanying Ren, Yan Ren, Zhuanghui Hao, Sicheng Bian, Jiangxia Cui, Shuo Li, Jing Xu, Muteb Muyey Daniel, Fanggang Ren, Zhifang Xu, Yanhong Tan, Xiuhua Chen, Yaofang Zhang, Jianmei Chang, Hongwei Wang","doi":"10.1007/s11010-024-05156-0","DOIUrl":"https://doi.org/10.1007/s11010-024-05156-0","url":null,"abstract":"<p><p>Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.
{"title":"M2 macrophage-derived exosomes promote cell proliferation, migration and EMT of non-small cell lung cancer by secreting miR-155-5p.","authors":"Hua Fang, Xiaowen Chi, Mengyao Wang, Jing Liu, Meiqi Sun, Jiashu Zhang, Wei Zhang","doi":"10.1007/s11010-024-05161-3","DOIUrl":"https://doi.org/10.1007/s11010-024-05161-3","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}