Pub Date : 2024-11-08DOI: 10.1007/s11010-024-05141-7
Priscilla Listiyani, Ricky Sanjaya, Joshua Nathanael, Putu Suardana Chandra, Ida Bagus Made Artadana, Sulistyo Emantoko Dwi Putra
T2DM is a serious global health problem and usually caused by unhealthy diet, such diet with high carbohydrate or monosodium glutamate (MSG). In this study, we used the T2DM mice (BALB/c) model by exposing the mice with foods high in carbohydrate (HCD) or MSG (HMD) to determine the changes in molecular expression and methylation pattern of genes correlated to the development of T2DM. The data including clinical data, i.e. body weight, fasting blood glucose, and glucose tolerance, as well as gene expression, methylation pattern of glucose transport related gene (Slc2a4, FTO, and PPARγ) and also collagen deposition were measured. HCD and HMD diet for 18 weeks failed to show any clinical development of T2DM. However, it was shown that both diets significantly altered the methylation pattern and gene expression. A decrease in the expression level of Slc2a4 accompanied with a decreased methylation level in its NF-κB attachment site was observed in both groups. In addition, both treatments also showed a decrease in the expression of PPARγ in contrast to its elevated methylation level. On the other hand, a significant increase in the expression of FTO was apparent. Furthermore, an increase in collagen deposition in both groups was also detected. Overall, this study showed that an alteration on the expression and methylation pattern of the genes that are associated with glucose transportation was observed in HCD and HMD despite having no T2DM clinical development. It can potentially be a new biomarker for detection of pre-diabetes.
{"title":"Alteration of methylation pattern and gene expression of FTO, PPARγ and Slc2a4 on pre-diabetes-induced BALB/c mice.","authors":"Priscilla Listiyani, Ricky Sanjaya, Joshua Nathanael, Putu Suardana Chandra, Ida Bagus Made Artadana, Sulistyo Emantoko Dwi Putra","doi":"10.1007/s11010-024-05141-7","DOIUrl":"https://doi.org/10.1007/s11010-024-05141-7","url":null,"abstract":"<p><p>T2DM is a serious global health problem and usually caused by unhealthy diet, such diet with high carbohydrate or monosodium glutamate (MSG). In this study, we used the T2DM mice (BALB/c) model by exposing the mice with foods high in carbohydrate (HCD) or MSG (HMD) to determine the changes in molecular expression and methylation pattern of genes correlated to the development of T2DM. The data including clinical data, i.e. body weight, fasting blood glucose, and glucose tolerance, as well as gene expression, methylation pattern of glucose transport related gene (Slc2a4, FTO, and PPARγ) and also collagen deposition were measured. HCD and HMD diet for 18 weeks failed to show any clinical development of T2DM. However, it was shown that both diets significantly altered the methylation pattern and gene expression. A decrease in the expression level of Slc2a4 accompanied with a decreased methylation level in its NF-κB attachment site was observed in both groups. In addition, both treatments also showed a decrease in the expression of PPARγ in contrast to its elevated methylation level. On the other hand, a significant increase in the expression of FTO was apparent. Furthermore, an increase in collagen deposition in both groups was also detected. Overall, this study showed that an alteration on the expression and methylation pattern of the genes that are associated with glucose transportation was observed in HCD and HMD despite having no T2DM clinical development. It can potentially be a new biomarker for detection of pre-diabetes.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1007/s11010-024-05153-3
Yutaka Nakagawa, Shizuo Yamada
Irritable bowel syndrome is a gastrointestinal disorder due to multiple pathologies. While patients with this condition experience anxiety and depressed mood more frequently than healthy individuals, it is unclear how gastrointestinal dysfunction interacts with such neuropsychiatric symptoms. Data suggest that irritable bowel syndrome patients predominantly display a lower zinc intake, which presumably impairs enterochromaffin cells producing 5-hydroxytryptamine, gut bacteria fermenting short-chain fatty acids, and barrier system in the intestine, with the accompanying constipation, diarrhea, low-grade mucosal inflammation, and visceral pain. Dyshomeostasis of copper and zinc concentrations as well as elevated pro-inflammatory cytokine levels in the blood can disrupt blood-cerebrospinal fluid barrier function, leading to locus coeruleus neuroinflammation and hyperactivation with resultant amygdalar overactivation and dorsolateral prefrontal cortex hypoactivation as found in neuropsychiatric disorders. The dysregulation between the dorsolateral prefrontal cortex and amygdala is likely responsible for visceral pain-related anxiety, depressed mood caused by anticipatory anxiety, and visceral pain catastrophizing due to catastrophic thinking or cognitive distortion. Collectively, these events can result in a spiral of gastrointestinal symptoms and neuropsychiatric signs, prompting the progression of irritable bowel syndrome. Given that the negative feedback mechanism in regulation of the hypothalamic-pituitary-adrenal axis is preserved in a subset of neuropsychiatric cases, dorsolateral prefrontal cortex abnormality accompanied by neuropsychiatric symptoms may be a more significant contributing factor in brain-gut axis malfunction than activation of the hypothalamic corticotropin-releasing hormone system. The proposed mechanistic model could predict novel therapeutic interventions for comorbid irritable bowel syndrome and neuropsychiatric disorders.
{"title":"Novel hypothesis and therapeutic interventions for irritable bowel syndrome: interplay between metal dyshomeostasis, gastrointestinal dysfunction, and neuropsychiatric symptoms.","authors":"Yutaka Nakagawa, Shizuo Yamada","doi":"10.1007/s11010-024-05153-3","DOIUrl":"https://doi.org/10.1007/s11010-024-05153-3","url":null,"abstract":"<p><p>Irritable bowel syndrome is a gastrointestinal disorder due to multiple pathologies. While patients with this condition experience anxiety and depressed mood more frequently than healthy individuals, it is unclear how gastrointestinal dysfunction interacts with such neuropsychiatric symptoms. Data suggest that irritable bowel syndrome patients predominantly display a lower zinc intake, which presumably impairs enterochromaffin cells producing 5-hydroxytryptamine, gut bacteria fermenting short-chain fatty acids, and barrier system in the intestine, with the accompanying constipation, diarrhea, low-grade mucosal inflammation, and visceral pain. Dyshomeostasis of copper and zinc concentrations as well as elevated pro-inflammatory cytokine levels in the blood can disrupt blood-cerebrospinal fluid barrier function, leading to locus coeruleus neuroinflammation and hyperactivation with resultant amygdalar overactivation and dorsolateral prefrontal cortex hypoactivation as found in neuropsychiatric disorders. The dysregulation between the dorsolateral prefrontal cortex and amygdala is likely responsible for visceral pain-related anxiety, depressed mood caused by anticipatory anxiety, and visceral pain catastrophizing due to catastrophic thinking or cognitive distortion. Collectively, these events can result in a spiral of gastrointestinal symptoms and neuropsychiatric signs, prompting the progression of irritable bowel syndrome. Given that the negative feedback mechanism in regulation of the hypothalamic-pituitary-adrenal axis is preserved in a subset of neuropsychiatric cases, dorsolateral prefrontal cortex abnormality accompanied by neuropsychiatric symptoms may be a more significant contributing factor in brain-gut axis malfunction than activation of the hypothalamic corticotropin-releasing hormone system. The proposed mechanistic model could predict novel therapeutic interventions for comorbid irritable bowel syndrome and neuropsychiatric disorders.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1007/s11010-024-05148-0
Chengjiang Fan, Ziyang Luo, Qingfang Zheng, Yuhang Xu, Yao Xu, Jianing Chen, You Meng, Haizhong Jiang, Kaitai Liu, Yang Xi
Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.
{"title":"Cytoglobin augments ferroptosis through autophagic degradation of ferritin in colorectal cancer cells.","authors":"Chengjiang Fan, Ziyang Luo, Qingfang Zheng, Yuhang Xu, Yao Xu, Jianing Chen, You Meng, Haizhong Jiang, Kaitai Liu, Yang Xi","doi":"10.1007/s11010-024-05148-0","DOIUrl":"10.1007/s11010-024-05148-0","url":null,"abstract":"<p><p>Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1007/s11010-024-05151-5
Mannthalah Abubaker, Janelle E Stanton, Olwyn Mahon, Andreas M Grabrucker, David Newport, John J E Mulvihill
The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.
{"title":"Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response.","authors":"Mannthalah Abubaker, Janelle E Stanton, Olwyn Mahon, Andreas M Grabrucker, David Newport, John J E Mulvihill","doi":"10.1007/s11010-024-05151-5","DOIUrl":"https://doi.org/10.1007/s11010-024-05151-5","url":null,"abstract":"<p><p>The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11010-024-05145-3
Yaping Xu, Yuexin Yu, Zhikun Guo
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
{"title":"Hydrogels in cardiac tissue engineering: application and challenges.","authors":"Yaping Xu, Yuexin Yu, Zhikun Guo","doi":"10.1007/s11010-024-05145-3","DOIUrl":"https://doi.org/10.1007/s11010-024-05145-3","url":null,"abstract":"<p><p>Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.
中风作为一种整体预后不良的神经系统疾病,长期以来一直困扰着患者。目前的中风治疗缺乏有效的治疗方法。近年来,铁突变已成为各种疾病的一个突出话题。作为一个新兴的治疗靶点,尽管它最初是在与脑部疾病相关的肿瘤细胞中被发现的,但最近又被认为是中风病理进展的关键因素。Acyl-CoA synthetase long-chain family member 4(ACSL4)是催化不饱和脂肪酸介导中风铁中毒的潜在靶点和生物标志物。具体来说,ACSL4 的上调会导致脂质过氧化产物和活性氧(ROS)的积累增加,从而加剧神经细胞中铁细胞凋亡的进展。ACSL4存在于多种组织中,并参与了多种铁中毒途径。目前,靶向ACSL4抑制铁氧化的药理机制已在多种药物中发现,但靶向ACSL4的分子机制仍处于探索阶段。本文介绍了ACSL4的生理病理机制以及铁突变串联和表观遗传学的研究现状,总结了ACSL4在现代药理学研究中的应用现状,并探讨了ACSL4在脑卒中领域的潜在应用价值。
{"title":"The role of ACSL4 in stroke: mechanisms and potential therapeutic target.","authors":"Bifang Zhuo, Chenyang Qin, Shizhe Deng, Hailun Jiang, Shangkun Si, Feng Tao, Fei Cai, Zhihong Meng","doi":"10.1007/s11010-024-05150-6","DOIUrl":"https://doi.org/10.1007/s11010-024-05150-6","url":null,"abstract":"<p><p>Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11010-024-05146-2
S I Panpan, G E Wei, W U Kaiming, Renquan Zhang
Non-small cell lung cancer (NSCLC) stands as the prevailing manifestation of lung cancer, with current therapeutic modalities linked to a dismal prognosis, necessitating further advancements. Hexokinase 2 (HK2), a critical enzyme positioned on the mitochondrial membrane, exerts control over diverse biological pathways, thereby regulating cancer. Nevertheless, the precise role and mechanism of HK2 in NSCLC remain inadequately elucidated, warranting comprehensive investigation. HK2 expression in NSCLC tissues and cell lines was detected through immunohistochemistry and western blot analysis. Concurrently, shRNA assays were applied to scrutinize the impact of HK2 on cell proliferation, apoptosis, migration, and invasion processes in NSCLC cell lines, utilizing CCK8, flow cytometry, wound-healing assay, and transwell techniques. The involvement of HK2 in mitochondrial dynamics was probed through western blot analysis, mitochondrial membrane potential assay, and assessment of ROS generation. Next, the functional role of HK2 was assessed by examining its influence on xenograft tumor growth in nude mice in vivo. Further research has demonstrated that HK2 played a role in NSCLC through its O-GlcNAcylation process. The results of the study revealed that HK2 O-GlcNAcylation promoted the proliferation, migration, and invasive characteristics of NSCLC cells, while alleviating mitochondrial damage, whereas O-GlcNAcylation inactivation yielded the opposite effect. Furthermore, in vivo experiments in nude mice illustrated that HK2 O-GlcNAcylation could stimulate tumor growth in NSCLC. These results suggested that HK2 may impact mitochondrial dynamics in NSCLC through its O-GlcNAcylation, thereby contributing to the progression of NSCLC.
{"title":"O-GlcNAcylation of hexokinase 2 modulates mitochondrial dynamics and enhances the progression of lung cancer.","authors":"S I Panpan, G E Wei, W U Kaiming, Renquan Zhang","doi":"10.1007/s11010-024-05146-2","DOIUrl":"https://doi.org/10.1007/s11010-024-05146-2","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) stands as the prevailing manifestation of lung cancer, with current therapeutic modalities linked to a dismal prognosis, necessitating further advancements. Hexokinase 2 (HK2), a critical enzyme positioned on the mitochondrial membrane, exerts control over diverse biological pathways, thereby regulating cancer. Nevertheless, the precise role and mechanism of HK2 in NSCLC remain inadequately elucidated, warranting comprehensive investigation. HK2 expression in NSCLC tissues and cell lines was detected through immunohistochemistry and western blot analysis. Concurrently, shRNA assays were applied to scrutinize the impact of HK2 on cell proliferation, apoptosis, migration, and invasion processes in NSCLC cell lines, utilizing CCK8, flow cytometry, wound-healing assay, and transwell techniques. The involvement of HK2 in mitochondrial dynamics was probed through western blot analysis, mitochondrial membrane potential assay, and assessment of ROS generation. Next, the functional role of HK2 was assessed by examining its influence on xenograft tumor growth in nude mice in vivo. Further research has demonstrated that HK2 played a role in NSCLC through its O-GlcNAcylation process. The results of the study revealed that HK2 O-GlcNAcylation promoted the proliferation, migration, and invasive characteristics of NSCLC cells, while alleviating mitochondrial damage, whereas O-GlcNAcylation inactivation yielded the opposite effect. Furthermore, in vivo experiments in nude mice illustrated that HK2 O-GlcNAcylation could stimulate tumor growth in NSCLC. These results suggested that HK2 may impact mitochondrial dynamics in NSCLC through its O-GlcNAcylation, thereby contributing to the progression of NSCLC.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s11010-024-05143-5
Pan Feng, Fan Yang, Dongmei Zang, Dapeng Bai, Liyan Xu, Yueyun Fu, Ranran You, Tao Liu, Xinyu Yang
Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.
{"title":"Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity.","authors":"Pan Feng, Fan Yang, Dongmei Zang, Dapeng Bai, Liyan Xu, Yueyun Fu, Ranran You, Tao Liu, Xinyu Yang","doi":"10.1007/s11010-024-05143-5","DOIUrl":"https://doi.org/10.1007/s11010-024-05143-5","url":null,"abstract":"<p><p>Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2023-12-20DOI: 10.1007/s11010-023-04910-0
Nagesh Kishan Panchal, Shruti Mohanty, Sabina Evan Prince
The NEK6 (NIMA-related kinase 6) serine/threonine kinase is a pivotal player in a multitude of cellular processes, including the regulation of the cell cycle and the response to DNA damage. Its significance extends to disease pathogenesis, as changes in NEK6 activity have been linked to the development of cancer. Non-synonymous single nucleotide polymorphisms (nsSNPs) in NEK6 have been linked to cancer as they alter the protein's native structure and function. The association between NEK6 activity and cancer development has prompted researchers to explore the effects of genetic variations within the NEK6 gene. Therefore, we utilized advanced computational tools to analyze 155 high-confidence nsSNPs in the NEK6 gene. From this analysis, 21 nsSNPs were identified as potentially harmful, raising concerns about their impact on NEK6 activity and cancer risk. These 21 mutations were then examined for structural alterations, and eight of nsSNPs (I51M, V76A, I134N, Y152D, R171Q, V186G, L237R, and C285S) were found to destabilize the protein. Among the destabilizing mutations screened, a specific mutation, R171Q, stood out due to its conserved nature. To understand its impact on the protein and conformation, all-atom molecular dynamics simulations (MDS) for 100 ns were performed for both Wildtype NEK6 (WT-NEK6) and R171Q. The simulations revealed that the R171Q variant was unstable and led to significant conformational changes in NEK6. This study provides valuable insights into NEK6 dysfunction caused by single amino acid alterations, offering a novel understanding of the molecular mechanisms underlying NEK6-related cancer progression.
{"title":"Computational insights into NIMA-related kinase 6: unraveling mutational effects on structure and function.","authors":"Nagesh Kishan Panchal, Shruti Mohanty, Sabina Evan Prince","doi":"10.1007/s11010-023-04910-0","DOIUrl":"10.1007/s11010-023-04910-0","url":null,"abstract":"<p><p>The NEK6 (NIMA-related kinase 6) serine/threonine kinase is a pivotal player in a multitude of cellular processes, including the regulation of the cell cycle and the response to DNA damage. Its significance extends to disease pathogenesis, as changes in NEK6 activity have been linked to the development of cancer. Non-synonymous single nucleotide polymorphisms (nsSNPs) in NEK6 have been linked to cancer as they alter the protein's native structure and function. The association between NEK6 activity and cancer development has prompted researchers to explore the effects of genetic variations within the NEK6 gene. Therefore, we utilized advanced computational tools to analyze 155 high-confidence nsSNPs in the NEK6 gene. From this analysis, 21 nsSNPs were identified as potentially harmful, raising concerns about their impact on NEK6 activity and cancer risk. These 21 mutations were then examined for structural alterations, and eight of nsSNPs (I51M, V76A, I134N, Y152D, R171Q, V186G, L237R, and C285S) were found to destabilize the protein. Among the destabilizing mutations screened, a specific mutation, R171Q, stood out due to its conserved nature. To understand its impact on the protein and conformation, all-atom molecular dynamics simulations (MDS) for 100 ns were performed for both Wildtype NEK6 (WT-NEK6) and R171Q. The simulations revealed that the R171Q variant was unstable and led to significant conformational changes in NEK6. This study provides valuable insights into NEK6 dysfunction caused by single amino acid alterations, offering a novel understanding of the molecular mechanisms underlying NEK6-related cancer progression.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2989-3009"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methyltransferase like 3 (METTL3) has been reported to promote tumorigenesis of multiple myeloma (MM), however, the molecular mechanism still needs further research. The N6-methyladenosine (m6A) level in tissues or cells was measured by m6A kit and dot blot assay. The mRNA and protein expression were detected by quantitative real-time PCR (RT-qPCR) and Western blot, respectively. The cell counting kit-8 and colony formation assay were used to detect the cell proliferation. Coimmunoprecipitation (Co-IP) experiment verified the binding of two proteins. The luciferase reporter experiment demonstrated the targeted binding of miR-182-5p and CaMKII inhibitor 1 (CAMK2N1). More importantly, tumor growth was measured in xenograft mice. Our data showed that the expression of METTL3 was significantly increased in MM patients' samples and MM cells. METTL3 overexpression promoted MM cells proliferation, and METTL3 knockdown inhibited MM cells proliferation. Mechanically, METTL3-dependent m6A participated in DiGeorge syndrome critical region 8 (DGCR8)-mediated maturation of pri-miR-182. Upregulation of miR-182-5p further enhanced the promoting proliferation effect of METTL3 overexpression on MM cells. Moreover, the luciferase reporter gene experiment proved that miR-182-5p targetedly regulated CAMK2N1 expression. Xenograft tumor in nude mice further verified that METTL3 promoted MM tumor growth through miR-182/CAMK2N1 signal axis. In summary, the METTL3/miR-182-5p/CAMK2N1 axis plays an important role in MM tumorigenesis, which may provide a new target for MM therapy.
据报道,类甲基转移酶3(METTL3)可促进多发性骨髓瘤(MM)的肿瘤发生,但其分子机制仍有待进一步研究。组织或细胞中的 N6-甲基腺苷(m6A)水平通过 m6A 试剂盒和点印迹法测定。mRNA 和蛋白表达分别通过实时定量 PCR(RT-qPCR)和 Western 印迹进行检测。细胞计数试剂盒-8 和菌落形成检测法用于检测细胞增殖。共免疫沉淀(Co-IP)实验验证了两种蛋白的结合。荧光素酶报告实验证明了 miR-182-5p 和 CaMKII 抑制剂 1(CAMK2N1)的靶向结合。更重要的是,在异种移植小鼠中测量了肿瘤的生长情况。我们的数据显示,在 MM 患者样本和 MM 细胞中,METTL3 的表达明显增加。METTL3的过表达促进了MM细胞的增殖,而METTL3的敲除抑制了MM细胞的增殖。从机制上讲,METTL3依赖的m6A参与了迪乔治综合征临界区8(DGCR8)介导的pri-miR-182的成熟。miR-182-5p的上调进一步增强了METTL3过表达对MM细胞的增殖促进作用。此外,荧光素酶报告基因实验证明,miR-182-5p 能靶向调控 CAMK2N1 的表达。裸鼠移植肿瘤进一步验证了METTL3通过miR-182/CAMK2N1信号轴促进MM肿瘤生长。综上所述,METTL3/miR-182-5p/CAMK2N1轴在MM肿瘤发生中起着重要作用,这可能为MM治疗提供了一个新靶点。
{"title":"N6-methyladenosine-induced miR-182-5p promotes multiple myeloma tumorigenesis by regulating CAMK2N1.","authors":"Jing Bao, Tingting Xu, Wanjie Wang, Han Xu, Xiaowen Chen, Ruixiang Xia","doi":"10.1007/s11010-023-04906-w","DOIUrl":"10.1007/s11010-023-04906-w","url":null,"abstract":"<p><p>Methyltransferase like 3 (METTL3) has been reported to promote tumorigenesis of multiple myeloma (MM), however, the molecular mechanism still needs further research. The N6-methyladenosine (m6A) level in tissues or cells was measured by m6A kit and dot blot assay. The mRNA and protein expression were detected by quantitative real-time PCR (RT-qPCR) and Western blot, respectively. The cell counting kit-8 and colony formation assay were used to detect the cell proliferation. Coimmunoprecipitation (Co-IP) experiment verified the binding of two proteins. The luciferase reporter experiment demonstrated the targeted binding of miR-182-5p and CaMKII inhibitor 1 (CAMK2N1). More importantly, tumor growth was measured in xenograft mice. Our data showed that the expression of METTL3 was significantly increased in MM patients' samples and MM cells. METTL3 overexpression promoted MM cells proliferation, and METTL3 knockdown inhibited MM cells proliferation. Mechanically, METTL3-dependent m6A participated in DiGeorge syndrome critical region 8 (DGCR8)-mediated maturation of pri-miR-182. Upregulation of miR-182-5p further enhanced the promoting proliferation effect of METTL3 overexpression on MM cells. Moreover, the luciferase reporter gene experiment proved that miR-182-5p targetedly regulated CAMK2N1 expression. Xenograft tumor in nude mice further verified that METTL3 promoted MM tumor growth through miR-182/CAMK2N1 signal axis. In summary, the METTL3/miR-182-5p/CAMK2N1 axis plays an important role in MM tumorigenesis, which may provide a new target for MM therapy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3077-3089"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}