Pub Date : 2021-11-16DOI: 10.3390/materproc2021005014
K. Galos, Alicja Kot-Niewiadomska, Jaroslaw Kamyk
The EU’s demand for numerous mineral raw materials is growing intensively, while the security of their supplies (mostly form outside the EU) is often at high risk. This is especially the case for critical raw materials (CRMs). Poland is now and may be in the future the most important supplier of numerous mineral raw materials to other EU countries. This is especially the case for coking coal, copper, silver and elemental sulfur. This article briefly evaluates the current and future possibilities for the supply of these raw materials from Poland to the EU market.
{"title":"The Role of Poland in the European Union Supply Chain of Raw Materials, Including Critical Raw Materials","authors":"K. Galos, Alicja Kot-Niewiadomska, Jaroslaw Kamyk","doi":"10.3390/materproc2021005014","DOIUrl":"https://doi.org/10.3390/materproc2021005014","url":null,"abstract":"The EU’s demand for numerous mineral raw materials is growing intensively, while the security of their supplies (mostly form outside the EU) is often at high risk. This is especially the case for critical raw materials (CRMs). Poland is now and may be in the future the most important supplier of numerous mineral raw materials to other EU countries. This is especially the case for coking coal, copper, silver and elemental sulfur. This article briefly evaluates the current and future possibilities for the supply of these raw materials from Poland to the EU market.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81388719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-16DOI: 10.3390/materproc2021005016
A. Benardos, I. Vlachogiannis, Christos Stenos, S. Pappas, Georgios Bourmas, Sotirios Koukoumtzis, N. Koronakis
The gradual elimination of rich and surficial-located Ni reserves mandates the assessment regarding the gradual switch from open-pit mines to underground mining schemes. This could allow for the continuation of the steady ore supply and furthermore could assist in minimizing the environmental footprint of the exploitations. This paper investigates the possibility of adopting an underground exploitation scheme and provides data on the preliminary feasibility of the endeavor for the Vrysakia deposit that was selected as a model project. It was found that such solutions proved to be technically sound, also yielding considerable results from a financial viewpoint.
{"title":"Going Underground for Ferronickel Mining in Greece: Preliminary Feasibility and Potential Benefits","authors":"A. Benardos, I. Vlachogiannis, Christos Stenos, S. Pappas, Georgios Bourmas, Sotirios Koukoumtzis, N. Koronakis","doi":"10.3390/materproc2021005016","DOIUrl":"https://doi.org/10.3390/materproc2021005016","url":null,"abstract":"The gradual elimination of rich and surficial-located Ni reserves mandates the assessment regarding the gradual switch from open-pit mines to underground mining schemes. This could allow for the continuation of the steady ore supply and furthermore could assist in minimizing the environmental footprint of the exploitations. This paper investigates the possibility of adopting an underground exploitation scheme and provides data on the preliminary feasibility of the endeavor for the Vrysakia deposit that was selected as a model project. It was found that such solutions proved to be technically sound, also yielding considerable results from a financial viewpoint.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78369934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09DOI: 10.3390/materproc2021005011
K. Kaklis, Z. Agioutantis, M. Masialeti, J. Yendaw, T. B. Betsi
The pillar stability factor (PSF) is calculated in three different mining stages for a sublevel open stoping mining project located in northern Botswana. Several three-dimensional finite element models were developed by varying the stope span. Pillar strength was estimated using the Lunder and Pakalnis equation and pillar stress was obtained from the numerical models. As mining progresses, both the first and second mining stages meet the rib pillar stability factor requirement for safe extraction. Geometrical improvements are suggested in the mining layout for the third mining stage to achieve the required PSF, which is based on international practices.
{"title":"Parametric Analysis of Rib Pillar Stability in a Longitudinal Sublevel Open Stoping Operation in an Underground Copper Mine in Southern Africa","authors":"K. Kaklis, Z. Agioutantis, M. Masialeti, J. Yendaw, T. B. Betsi","doi":"10.3390/materproc2021005011","DOIUrl":"https://doi.org/10.3390/materproc2021005011","url":null,"abstract":"The pillar stability factor (PSF) is calculated in three different mining stages for a sublevel open stoping mining project located in northern Botswana. Several three-dimensional finite element models were developed by varying the stope span. Pillar strength was estimated using the Lunder and Pakalnis equation and pillar stress was obtained from the numerical models. As mining progresses, both the first and second mining stages meet the rib pillar stability factor requirement for safe extraction. Geometrical improvements are suggested in the mining layout for the third mining stage to achieve the required PSF, which is based on international practices.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88959400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09DOI: 10.3390/materproc2021005013
Paulina Quintanilla, S. Neethling, P. Brito-Parada
In mining, froth flotation is the largest tonnage separation process used to separate valuable minerals from waste rock [...]
在采矿中,泡沫浮选是最大吨位的分离过程,用于从废石中分离有价值的矿物[…]
{"title":"Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics","authors":"Paulina Quintanilla, S. Neethling, P. Brito-Parada","doi":"10.3390/materproc2021005013","DOIUrl":"https://doi.org/10.3390/materproc2021005013","url":null,"abstract":"In mining, froth flotation is the largest tonnage separation process used to separate valuable minerals from waste rock [...]","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"184 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80553940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09DOI: 10.3390/materproc2021005010
Effrosyni Varvitsioti, Georgios Tsifoutidis
Greece is gifted with geologic features that promote geothermal heat flow. Geothermal energy exploration began in the late 60s, culminating in the first geothermal energy law in 1984 and the introduction of geothermal energy as a mineral resource under the amendment of the Greek Mining Code. Since then, low- and high-temperature geothermal activities followed their separate ways, with a modest utilization of the energy product in the primary sector (agriculture, aquaculture) and attempts for electricity production stalled since the mid-1990s. The adoption of green policies by both the EU and Greece, the acceptance of global warming as an existing threat, the adhesion to CO2 reduction goals, energy efficiency and the application on renewable energy solutions as means to combat the increase in global temperature have led to an increasing interest in the utilization of the geothermal energy applications. This paper presents the new legal framework for geothermal energy established by Law 4602/2019, as introduced by the Greek Ministry of Environment and Energy, Directorate-General for Mineral Raw Materials and discusses its scope and goals set by the implementation of its provisions. The paper offers a roadmap to successfully test those new policies and regulatory provisions and, finally, it maps the interfaces of stakeholders and geothermal industry in an attempt to highlight the steps of the necessary administrative procedures towards the facilitation of viable geothermal projects.
{"title":"A Regulatory Roadmap to the Past, Present and Future of Geothermal Energy in Greece","authors":"Effrosyni Varvitsioti, Georgios Tsifoutidis","doi":"10.3390/materproc2021005010","DOIUrl":"https://doi.org/10.3390/materproc2021005010","url":null,"abstract":"Greece is gifted with geologic features that promote geothermal heat flow. Geothermal energy exploration began in the late 60s, culminating in the first geothermal energy law in 1984 and the introduction of geothermal energy as a mineral resource under the amendment of the Greek Mining Code. Since then, low- and high-temperature geothermal activities followed their separate ways, with a modest utilization of the energy product in the primary sector (agriculture, aquaculture) and attempts for electricity production stalled since the mid-1990s. The adoption of green policies by both the EU and Greece, the acceptance of global warming as an existing threat, the adhesion to CO2 reduction goals, energy efficiency and the application on renewable energy solutions as means to combat the increase in global temperature have led to an increasing interest in the utilization of the geothermal energy applications. This paper presents the new legal framework for geothermal energy established by Law 4602/2019, as introduced by the Greek Ministry of Environment and Energy, Directorate-General for Mineral Raw Materials and discusses its scope and goals set by the implementation of its provisions. The paper offers a roadmap to successfully test those new policies and regulatory provisions and, finally, it maps the interfaces of stakeholders and geothermal industry in an attempt to highlight the steps of the necessary administrative procedures towards the facilitation of viable geothermal projects.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83617965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09DOI: 10.3390/materproc2021005012
I. Kapageridis, C. Albanopoulos, Steve Sullivan, Gary Buchanan, Evangelos Gialamas
Machine learning is constantly gaining ground in the mining industry. Machine learning-based systems take advantage of the computing power of personal, embedded and cloud systems of today to rapidly build models of real processes, something that would have been impossible or extremely time-consuming a couple of decades ago. The widespread access to the internet and the availability of cheap and powerful cloud computing systems led to the development and acceptance of tools to automate resource modelling processes or optimise mine scheduling, using machine learning methodologies. The domain modelling system discussed in this paper, called DomainMCF, has been developed by Maptek, using artificial neural network technology. In the application presented in this paper, DomainMCF is used to model the spatial distribution of marble quality categorical parameters, and the results are combined to produce a final marble quality classification using drillhole and quarry face samples from an operational marble quarry in NE Greece. DomainMCF was made available for this study as a cloud processing service through an early access program for individuals or companies interested in testing its capabilities and suitability in various modelling scenarios and geological settings. The resulting marble product classifications are compared with those produced by the already established classification system that is based on a more conventional estimation method. The produced results show that DomainMCF can be effectively applied to the modelling of marble quality spatial distribution and similar domaining problems.
{"title":"Application of Machine Learning to Resource Modelling of a Marble Quarry with DomainMCF","authors":"I. Kapageridis, C. Albanopoulos, Steve Sullivan, Gary Buchanan, Evangelos Gialamas","doi":"10.3390/materproc2021005012","DOIUrl":"https://doi.org/10.3390/materproc2021005012","url":null,"abstract":"Machine learning is constantly gaining ground in the mining industry. Machine learning-based systems take advantage of the computing power of personal, embedded and cloud systems of today to rapidly build models of real processes, something that would have been impossible or extremely time-consuming a couple of decades ago. The widespread access to the internet and the availability of cheap and powerful cloud computing systems led to the development and acceptance of tools to automate resource modelling processes or optimise mine scheduling, using machine learning methodologies. The domain modelling system discussed in this paper, called DomainMCF, has been developed by Maptek, using artificial neural network technology. In the application presented in this paper, DomainMCF is used to model the spatial distribution of marble quality categorical parameters, and the results are combined to produce a final marble quality classification using drillhole and quarry face samples from an operational marble quarry in NE Greece. DomainMCF was made available for this study as a cloud processing service through an early access program for individuals or companies interested in testing its capabilities and suitability in various modelling scenarios and geological settings. The resulting marble product classifications are compared with those produced by the already established classification system that is based on a more conventional estimation method. The produced results show that DomainMCF can be effectively applied to the modelling of marble quality spatial distribution and similar domaining problems.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89454445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Jeremiah D. Barba, Patricia Nyn L. Heruela, Patrick Jay E. Cabalar, John Andrew A. Luna, A. Yago, Jordan F. Madrid
Optical sensors based on surface plasmon resonance (SPR) have made great strides in the detection of various chemical and biological analytes. A surface plasmon is a bound, non-radiative evanescent wave generated as resonant electrons on a metal–dielectric surface to absorb energy from an incident light. As analytes bind to a functionalized metal substrate, the refractometric response generated can be used for quantitation with great selectivity, sensitivity, and capacity for label-free real-time analysis. Polymer nanobrushes are ideal recognition elements because of their greater surface area and their wide range of functional versatility. Here, we introduce a simple “grafting-from” method to covalently attach nanometer-thick polymer chains on a gold surface. Nanografting on gold-coated BK-7 glass was performed in two steps: (1) self-assembly of organosulfur compounds; and (2) RAFT-mediated radiation-induced graft polymerization (RAFT-RIGP) of polyglycidyl methacrylate (PGMA). Surface modification was monitored and verified using FTIR and SPR. Layer-by-layer thickness calculated based on Winspall 3.02 simulation fitted with experimental SPR curves showed successful self-assembly of 1-dodecanethiol (DDT) monolayer with thickness measuring 1.4 nm. These alkane chains of DDT served as the graft initiation sites for RAFT-RIGP. Nanografting was controlled by adjusting the absorbed dose in the presence of chain transfer agent, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid. The molecular weight of grafted polymers measuring 2.8 and 4.3 kDa corresponded to a thickness increase of 3.6 and 7.9 nm, respectively. These stable nanografted gold substrates may be further functionalized for sensing applications.
{"title":"Nanografting of Polymer Brushes on Gold Substrate by RAFT-RIGP","authors":"Bin Jeremiah D. Barba, Patricia Nyn L. Heruela, Patrick Jay E. Cabalar, John Andrew A. Luna, A. Yago, Jordan F. Madrid","doi":"10.3390/iocps2021-11587","DOIUrl":"https://doi.org/10.3390/iocps2021-11587","url":null,"abstract":"Optical sensors based on surface plasmon resonance (SPR) have made great strides in the detection of various chemical and biological analytes. A surface plasmon is a bound, non-radiative evanescent wave generated as resonant electrons on a metal–dielectric surface to absorb energy from an incident light. As analytes bind to a functionalized metal substrate, the refractometric response generated can be used for quantitation with great selectivity, sensitivity, and capacity for label-free real-time analysis. Polymer nanobrushes are ideal recognition elements because of their greater surface area and their wide range of functional versatility. Here, we introduce a simple “grafting-from” method to covalently attach nanometer-thick polymer chains on a gold surface. Nanografting on gold-coated BK-7 glass was performed in two steps: (1) self-assembly of organosulfur compounds; and (2) RAFT-mediated radiation-induced graft polymerization (RAFT-RIGP) of polyglycidyl methacrylate (PGMA). Surface modification was monitored and verified using FTIR and SPR. Layer-by-layer thickness calculated based on Winspall 3.02 simulation fitted with experimental SPR curves showed successful self-assembly of 1-dodecanethiol (DDT) monolayer with thickness measuring 1.4 nm. These alkane chains of DDT served as the graft initiation sites for RAFT-RIGP. Nanografting was controlled by adjusting the absorbed dose in the presence of chain transfer agent, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid. The molecular weight of grafted polymers measuring 2.8 and 4.3 kDa corresponded to a thickness increase of 3.6 and 7.9 nm, respectively. These stable nanografted gold substrates may be further functionalized for sensing applications.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"119 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91539845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Panagiotopoulos, Dimitrios N. Korres, S. Vouyiouka
Vitrimers constitute a new class of covalent adaptable networks (CANs), in which thermally stimulated associative exchange reactions allow the topological rearrangement of the dynamic network while keeping the number of bonds and the crosslink density constant. The current study proposed a solvent-free method to synthesize vitrimers by reactive melt mixing using a commercial biobased/biodegradable polyester, poly(butylene succinate), PBS. More specifically, a two-step process was followed; the first step involved reactive mixing of PBS with the crosslinker (diglycidyl ether of bisphenol A, DGEBA) and the transesterification catalyst (Zinc(II) acetylacetonate hydrate, Zn(acac)2) in a twin-screw mini-compounder, in order to incorporate the epoxy groups in the polymer backbone. The second step (vitrimerization) comprised a crosslinking process of the homogenous mixtures in a vacuum oven at 170 °C, resulting in the formation of a dynamic crosslinked network with epoxy moieties serving as the crosslinkers. By tuning the crosslinker content (0–10% mol with respect to PBS repeating unit) and the Zinc(II) catalyst to crosslinker ratio (0 to 1), tailor-made vitrimers were prepared with high insolubility and improved melt strength. Moreover, PBS vitrimers could still be reprocessed by compression molding after the crosslinking, which enables the recycling process. This work was made possible by the “Basic Research Programme, NTUA, PEVE 2020 NTUA” [PEVE0050] of the National Technical University of Athens and is gratefully acknowledged.
{"title":"Vitrimerization of Poly(butylene succinate) By Reactive Melt Mixing Using Zn(II) Epoxy-Vitrimer Chemistry","authors":"C. Panagiotopoulos, Dimitrios N. Korres, S. Vouyiouka","doi":"10.3390/iocps2021-11588","DOIUrl":"https://doi.org/10.3390/iocps2021-11588","url":null,"abstract":"Vitrimers constitute a new class of covalent adaptable networks (CANs), in which thermally stimulated associative exchange reactions allow the topological rearrangement of the dynamic network while keeping the number of bonds and the crosslink density constant. The current study proposed a solvent-free method to synthesize vitrimers by reactive melt mixing using a commercial biobased/biodegradable polyester, poly(butylene succinate), PBS. More specifically, a two-step process was followed; the first step involved reactive mixing of PBS with the crosslinker (diglycidyl ether of bisphenol A, DGEBA) and the transesterification catalyst (Zinc(II) acetylacetonate hydrate, Zn(acac)2) in a twin-screw mini-compounder, in order to incorporate the epoxy groups in the polymer backbone. The second step (vitrimerization) comprised a crosslinking process of the homogenous mixtures in a vacuum oven at 170 °C, resulting in the formation of a dynamic crosslinked network with epoxy moieties serving as the crosslinkers. By tuning the crosslinker content (0–10% mol with respect to PBS repeating unit) and the Zinc(II) catalyst to crosslinker ratio (0 to 1), tailor-made vitrimers were prepared with high insolubility and improved melt strength. Moreover, PBS vitrimers could still be reprocessed by compression molding after the crosslinking, which enables the recycling process. This work was made possible by the “Basic Research Programme, NTUA, PEVE 2020 NTUA” [PEVE0050] of the National Technical University of Athens and is gratefully acknowledged.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80941478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-04DOI: 10.3390/materproc2021005009
K. Vatalis, Spyridon Platias, G. Charalampides
The increase in world population and the expected global development of the world economy after the COVID-19 pandemic will continue to impose unprecedented pressure on securing the supply of minerals. The World Bank report “Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition” finds that the production of minerals such as graphite, lithium and cobalt could increase by nearly 500% by 2050, to meet the growing demand for clean energy technologies. Many of these critical minerals are found in the deep seabed, the only place on earth where mineral resources have not been exploited yet. There is a strong need to ensure that these critical minerals will be extracted in a sustainable way, verifying the protection of the marine environment and biodiversity. The regulatory, financial and engineering challenges for deep sea mining are considerable, but in fact are not considered prohibitive, taking into account the remarkable achievements in recent years. On the other hand, it is evident that the existing modern ecosystem-based management approaches cannot be applied to deep sea areas without detailed knowledge of the individual species and ecosystems; most of the species living on the deep-sea floor remain unknown up until now. There is a need for the development of a new environmental management approach for each specific area. The successful procedures of Natura 2000 can be followed, and the necessary information on the existing environmental conditions has to be collected separately at every site for a minimum period of 10–15 years. Natura 2000, the world’s largest ecological network united under a single, uniform regulatory framework, is regarded as one of the conservations success stories in the global effort to protect biodiversity.
{"title":"Planning Sustainable Deep Sea Mining","authors":"K. Vatalis, Spyridon Platias, G. Charalampides","doi":"10.3390/materproc2021005009","DOIUrl":"https://doi.org/10.3390/materproc2021005009","url":null,"abstract":"The increase in world population and the expected global development of the world economy after the COVID-19 pandemic will continue to impose unprecedented pressure on securing the supply of minerals. The World Bank report “Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition” finds that the production of minerals such as graphite, lithium and cobalt could increase by nearly 500% by 2050, to meet the growing demand for clean energy technologies. Many of these critical minerals are found in the deep seabed, the only place on earth where mineral resources have not been exploited yet. There is a strong need to ensure that these critical minerals will be extracted in a sustainable way, verifying the protection of the marine environment and biodiversity. The regulatory, financial and engineering challenges for deep sea mining are considerable, but in fact are not considered prohibitive, taking into account the remarkable achievements in recent years. On the other hand, it is evident that the existing modern ecosystem-based management approaches cannot be applied to deep sea areas without detailed knowledge of the individual species and ecosystems; most of the species living on the deep-sea floor remain unknown up until now. There is a need for the development of a new environmental management approach for each specific area. The successful procedures of Natura 2000 can be followed, and the necessary information on the existing environmental conditions has to be collected separately at every site for a minimum period of 10–15 years. Natura 2000, the world’s largest ecological network united under a single, uniform regulatory framework, is regarded as one of the conservations success stories in the global effort to protect biodiversity.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84881646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Yagolovich, A. Kuskov, P. Kulikov, L. Kurbanova, A. Gileva, E. Markvicheva
Self-assembled nanoparticles based on amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) were proposed earlier as a new drug delivery system. In the current work, we study the antitumor activity of Amph-PVP-based self-assembled polymeric micelles covalently conjugated with the antitumor receptor-specific TRAIL variant DR5-B (P-DR5-B). The Amph-PVP polymer was synthesized by the earlier developed one-step technique (Kulikov et al., Polym. Sci. Ser. D, 2017). To stabilize Amph-PVP associates, the hydrophobic core was loaded with the model substance prothionamide. For the covalent conjugation with DR5-B, the hydrophilic ends of polymeric chains were modified with maleimide, and a DR5-B N-terminal amino acid residue valine was mutated to cysteine (DR5-B/V114C). DR5-B/V114C was conjugated to the surface of polymeric micelles by the selective covalent interaction of N-terminal cysteine residue with maleimide on Amph-PVP. The cytotoxicity of DR5-B-conjugated Amph-PVP polymeric nanoparticles was investigated in 3D multicellular tumor spheroids (MCTS) of human colon carcinoma HCT116 and HT29 cells, generated by the RGD-induced self-assembly technique (Akasov et al., Int. J. Pharm., 2016). In DR5-B-sensitive HCT116 MCTS, the P-DR5-B activity slightly increased compared to that of DR5-B. However, in DR5-B-resistant HT29 MCTS, P-DR5-B significantly surpassed DR5-B in the antitumor activity. Thus, the conjugation of DR5-B with the Amph-PVP nanoparticles enhanced its tumor-cell killing capacity. In the current study, we obtain a new nano-scaled delivery system based on Amph-PVP self-aggregates coated with covalently conjugated antitumor DR5-specific cytokine DR5-B. P-DR5-B overcomes DR5-B-resistance of the human colon carcinoma MCTS in vitro. This makes Amph-PVP polymeric nanoparticles a prospective and versatile nano-scaled delivery system for the targeted proteins.
{"title":"Antitumor Cytokine DR5-B-Conjugated Polymeric Poly(N-vinylpyrrolidone) Nanoparticles with Enhanced Cytotoxicity in Human Colon Carcinoma 3D Cell Spheroids","authors":"A. V. Yagolovich, A. Kuskov, P. Kulikov, L. Kurbanova, A. Gileva, E. Markvicheva","doi":"10.3390/iocps2021-11281","DOIUrl":"https://doi.org/10.3390/iocps2021-11281","url":null,"abstract":"Self-assembled nanoparticles based on amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) were proposed earlier as a new drug delivery system. In the current work, we study the antitumor activity of Amph-PVP-based self-assembled polymeric micelles covalently conjugated with the antitumor receptor-specific TRAIL variant DR5-B (P-DR5-B). The Amph-PVP polymer was synthesized by the earlier developed one-step technique (Kulikov et al., Polym. Sci. Ser. D, 2017). To stabilize Amph-PVP associates, the hydrophobic core was loaded with the model substance prothionamide. For the covalent conjugation with DR5-B, the hydrophilic ends of polymeric chains were modified with maleimide, and a DR5-B N-terminal amino acid residue valine was mutated to cysteine (DR5-B/V114C). DR5-B/V114C was conjugated to the surface of polymeric micelles by the selective covalent interaction of N-terminal cysteine residue with maleimide on Amph-PVP. The cytotoxicity of DR5-B-conjugated Amph-PVP polymeric nanoparticles was investigated in 3D multicellular tumor spheroids (MCTS) of human colon carcinoma HCT116 and HT29 cells, generated by the RGD-induced self-assembly technique (Akasov et al., Int. J. Pharm., 2016). In DR5-B-sensitive HCT116 MCTS, the P-DR5-B activity slightly increased compared to that of DR5-B. However, in DR5-B-resistant HT29 MCTS, P-DR5-B significantly surpassed DR5-B in the antitumor activity. Thus, the conjugation of DR5-B with the Amph-PVP nanoparticles enhanced its tumor-cell killing capacity. In the current study, we obtain a new nano-scaled delivery system based on Amph-PVP self-aggregates coated with covalently conjugated antitumor DR5-specific cytokine DR5-B. P-DR5-B overcomes DR5-B-resistance of the human colon carcinoma MCTS in vitro. This makes Amph-PVP polymeric nanoparticles a prospective and versatile nano-scaled delivery system for the targeted proteins.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82128851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}