Pub Date : 2021-12-11DOI: 10.3390/materproc2021005079
Magda Maniou, M. Perraki, A. Mavrikos, M. Menegaki
In the era of Industry 4.0, gender discrimination still exists especially in be male-dominated workplaces, such as the stone sector. Combating gender discrimination in the stone sector is a demanding task that calls for integrated planning and targeted interventions. This paper presents the results of the “WinSTONE” Erasmus+ project, aiming at the development of suitable training tools for the integration of women in the stone industry. Based on the main challenges, as well as on the emerging opportunities for women in the sector, a training methodology is being developed to deal with the actual needs.
{"title":"Women in the Stone Sector: Challenges and Opportunities from an Educational Point of View","authors":"Magda Maniou, M. Perraki, A. Mavrikos, M. Menegaki","doi":"10.3390/materproc2021005079","DOIUrl":"https://doi.org/10.3390/materproc2021005079","url":null,"abstract":"In the era of Industry 4.0, gender discrimination still exists especially in be male-dominated workplaces, such as the stone sector. Combating gender discrimination in the stone sector is a demanding task that calls for integrated planning and targeted interventions. This paper presents the results of the “WinSTONE” Erasmus+ project, aiming at the development of suitable training tools for the integration of women in the stone industry. Based on the main challenges, as well as on the emerging opportunities for women in the sector, a training methodology is being developed to deal with the actual needs.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78413020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-11DOI: 10.3390/materproc2021005078
Juan Diaz, Z. Agioutantis, D. Hristopulos, S. Schafrik
Underground coal mining Atmospheric Monitoring Systems (AMS) have been implemented for real-time or near real-time monitoring and evaluation of the mine atmosphere and related parameters such as gas concentration (e.g., CH4, CO, O2), fan performance (e.g., power, speed), barometric pressure, ambient temperature, humidity, etc. Depending on the sampling frequency, AMS can collect and manage a tremendous amount of data, which mine operators typically consult for everyday operations as well as long-term planning and more effective management of ventilation systems. The raw data collected by AMS need considerable pre-processing and filtering before they can be used for analysis. This paper discusses different challenges related to filtering raw AMS data in order to identify and remove values due to sensor breakdowns, sensor calibration periods, transient values due to operational considerations, etc., as well as to homogenize time series for different variables. The statistical challenges involve the removal of faulty values and outliers (due to systematic problems) and transient effects, gap-filling (by means of interpolation methods), and homogenization (setting a common time reference and time step) of the respective time series. The objective is to derive representative and synchronous time series values that can subsequently be used to estimate summary statistics of AMS and to infer correlations or nonlinear dependence between different data streams. Identification and modeling of statistical dependencies can be further exploited to develop predictive equations based on time series models.
{"title":"Managing and Utilizing Big Data in Atmospheric Monitoring Systems for Underground Coal Mines","authors":"Juan Diaz, Z. Agioutantis, D. Hristopulos, S. Schafrik","doi":"10.3390/materproc2021005078","DOIUrl":"https://doi.org/10.3390/materproc2021005078","url":null,"abstract":"Underground coal mining Atmospheric Monitoring Systems (AMS) have been implemented for real-time or near real-time monitoring and evaluation of the mine atmosphere and related parameters such as gas concentration (e.g., CH4, CO, O2), fan performance (e.g., power, speed), barometric pressure, ambient temperature, humidity, etc. Depending on the sampling frequency, AMS can collect and manage a tremendous amount of data, which mine operators typically consult for everyday operations as well as long-term planning and more effective management of ventilation systems. The raw data collected by AMS need considerable pre-processing and filtering before they can be used for analysis. This paper discusses different challenges related to filtering raw AMS data in order to identify and remove values due to sensor breakdowns, sensor calibration periods, transient values due to operational considerations, etc., as well as to homogenize time series for different variables. The statistical challenges involve the removal of faulty values and outliers (due to systematic problems) and transient effects, gap-filling (by means of interpolation methods), and homogenization (setting a common time reference and time step) of the respective time series. The objective is to derive representative and synchronous time series values that can subsequently be used to estimate summary statistics of AMS and to infer correlations or nonlinear dependence between different data streams. Identification and modeling of statistical dependencies can be further exploited to develop predictive equations based on time series models.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"195 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75909871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005075
G. Christidis, M. Dimitriadi, G. Triantafyllou, C. Tsoumeleas
Six ordinary Portland cement (OPC) clinkers and one white cement clinker were analyzed with the Rietveld method, using ZnO internal standard (IC), to determine the presence of amorphous matter (AM). All clinkers contain abundant AM and have lower silicate phase contents when compared with the same clinkers analyzed without IC, whereas the abundances of the aluminate and ferrate phases were not affected by AM. The white cement clinker had the highest AM content. Determination of AM is important for complete characterization of the OPC clinker and might contribute to a better understanding of the mechanical properties of the clinker.
{"title":"Quantitative Analysis of Portland Cement Clinker with Rietveld Refinement: Implications of the Amorphous Matter","authors":"G. Christidis, M. Dimitriadi, G. Triantafyllou, C. Tsoumeleas","doi":"10.3390/materproc2021005075","DOIUrl":"https://doi.org/10.3390/materproc2021005075","url":null,"abstract":"Six ordinary Portland cement (OPC) clinkers and one white cement clinker were analyzed with the Rietveld method, using ZnO internal standard (IC), to determine the presence of amorphous matter (AM). All clinkers contain abundant AM and have lower silicate phase contents when compared with the same clinkers analyzed without IC, whereas the abundances of the aluminate and ferrate phases were not affected by AM. The white cement clinker had the highest AM content. Determination of AM is important for complete characterization of the OPC clinker and might contribute to a better understanding of the mechanical properties of the clinker.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72592221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005067
R. Jensen, C. van der Eijk, A. Wærnes
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However, the challenge to supply enough CO2-free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally, it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
{"title":"Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry","authors":"R. Jensen, C. van der Eijk, A. Wærnes","doi":"10.3390/materproc2021005067","DOIUrl":"https://doi.org/10.3390/materproc2021005067","url":null,"abstract":"Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However, the challenge to supply enough CO2-free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally, it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84349695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005073
Spyros Cheliotis-Chatzidimitriou, G. Christidis, I. Marantos
A set of samples with different textures from the sedimentary Fe–Ni deposits of Central Euboea, Greece, were studied with XRD and SEM-EDS to investigate the relationships between phyllosilicates present. The deposits are characterized by the coexistence of smectite, corrensite, R0 mixed-layer chlorite-smectite and discrete chlorite, which indicates disequilibrium conditions. It is suggested that chlorite, the main Ni-host in the deposits, formed by conversion of smectite (nontronite and possibly stevensite), via corrensite and R0 Chl-Sme during diagenesis. This is the first report for chloritization of Fe-rich dioctahedral smectite during diagenesis.
{"title":"Diagenesis of the Sedimentary Fe–Ni Deposits of Euboea: Evidence Based on Phyllosilicate Mineralogy","authors":"Spyros Cheliotis-Chatzidimitriou, G. Christidis, I. Marantos","doi":"10.3390/materproc2021005073","DOIUrl":"https://doi.org/10.3390/materproc2021005073","url":null,"abstract":"A set of samples with different textures from the sedimentary Fe–Ni deposits of Central Euboea, Greece, were studied with XRD and SEM-EDS to investigate the relationships between phyllosilicates present. The deposits are characterized by the coexistence of smectite, corrensite, R0 mixed-layer chlorite-smectite and discrete chlorite, which indicates disequilibrium conditions. It is suggested that chlorite, the main Ni-host in the deposits, formed by conversion of smectite (nontronite and possibly stevensite), via corrensite and R0 Chl-Sme during diagenesis. This is the first report for chloritization of Fe-rich dioctahedral smectite during diagenesis.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83847724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005072
S. Tsouli, A. Lekatou, S. Kleftakis, Pantelis Gkoutzos, I. Tragazikis, T. Matikas
The objective of this effort is to study the effect that the combination of fly ash (FA) with a liquid corrosion inhibitor has on the mechanical degradation of 316L rebars embedded in concrete specimens during salt fog testing for a period of four months, as well as the porosity of concrete. Partial replacement of Ordinary Portland Cement (OPC) by FA (0–25%) did not significantly affect the tensile properties of 316L except a small decrease in the elastic modulus and % elongation with FA increasing. Both FA and FA-liquid inhibitor combination resulted in significant reductions in the porosity of the reinforced concrete after 4 m of salt fog testing.
{"title":"Combined Corrosion Inhibitors and Mechanical Properties of Concrete Embedded Steel (AISI 316L) during Accelerated Saline Corrosion Test","authors":"S. Tsouli, A. Lekatou, S. Kleftakis, Pantelis Gkoutzos, I. Tragazikis, T. Matikas","doi":"10.3390/materproc2021005072","DOIUrl":"https://doi.org/10.3390/materproc2021005072","url":null,"abstract":"The objective of this effort is to study the effect that the combination of fly ash (FA) with a liquid corrosion inhibitor has on the mechanical degradation of 316L rebars embedded in concrete specimens during salt fog testing for a period of four months, as well as the porosity of concrete. Partial replacement of Ordinary Portland Cement (OPC) by FA (0–25%) did not significantly affect the tensile properties of 316L except a small decrease in the elastic modulus and % elongation with FA increasing. Both FA and FA-liquid inhibitor combination resulted in significant reductions in the porosity of the reinforced concrete after 4 m of salt fog testing.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91437167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005076
M. Kokkaliari, C. Kanellopoulos, Ioannis Illiopoulos
The present work aims to map kaolin occurrences on the Kefalos peninsula, SW Kos Island, Greece, through the elaboration of ASTER satellite imagery. The island of Kos is located on the eastern edge of the South Aegean Active Volcanic Arc (SAAVA) and is characterised by its complex geologic structure. During Plio-Pleistocene, the voluminous eruption of the Kos Plateau Tuff was recorded on Kefalos; the largest quaternary eruption in the Mediterranean. Kaolin is the product of hydrothermal alteration of the Pliocene volcanic rocks with rhyolitic composition. Our study emphasises the usefulness of satellite imagery combined with the Mixture Tuned Matched Filtering (MTMF) technique to detect occurrences of industrial minerals, kaolin-group minerals in this case, either in terms of raw mineral exploitation or by mapping hydrothermal alteration.
{"title":"Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island","authors":"M. Kokkaliari, C. Kanellopoulos, Ioannis Illiopoulos","doi":"10.3390/materproc2021005076","DOIUrl":"https://doi.org/10.3390/materproc2021005076","url":null,"abstract":"The present work aims to map kaolin occurrences on the Kefalos peninsula, SW Kos Island, Greece, through the elaboration of ASTER satellite imagery. The island of Kos is located on the eastern edge of the South Aegean Active Volcanic Arc (SAAVA) and is characterised by its complex geologic structure. During Plio-Pleistocene, the voluminous eruption of the Kos Plateau Tuff was recorded on Kefalos; the largest quaternary eruption in the Mediterranean. Kaolin is the product of hydrothermal alteration of the Pliocene volcanic rocks with rhyolitic composition. Our study emphasises the usefulness of satellite imagery combined with the Mixture Tuned Matched Filtering (MTMF) technique to detect occurrences of industrial minerals, kaolin-group minerals in this case, either in terms of raw mineral exploitation or by mapping hydrothermal alteration.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73442091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005074
F. Coelho, S. Abrahami, Yongxiang Yang, B. Sprecher, Zhiji Li, N. Menad, K. Bru, Thibaut Marcon, C. Rado, B. Saje, Marie-Lise Sablayrolles, V. Decottignies
Neodymium-Iron-Boron (NdFeB) based permanent magnets are indispensable in today’s technology-driven society. Moreover, their use is likely to increase since they are key in clean energy applications such as wind turbines, hybrid/electric vehicles, and electric bikes. They contain critical raw materials as rare earth elements are used. Indeed, permanent magnets are considered strategic materials by the EU, and their recycling represents a potential secondary supply to decrease the import dependence. The VALOMAG project is developing a technical solution to recover rare earth (RE) based permanent magnets by dismantling end-of-life (EoL) products such as computer hard disc drives, electric motors, and generators from electric vehicles and wind turbines. It also assesses two short loop recycling technologies: Hydrogen Decrepitation (HD) or Hydrogenation–Disproportionation–Desorption–Recombination (HDDR) and strip-casting for high and medium quality magnet wastes; and hydrometallurgical processes for EoL low-quality magnets. Moreover, Life Cycle Assessment (LCA) and Process Integration with a Flowsheet simulation tool will integrate the whole recycling value chain (collection, dismantling, physical and chemical treatment options, and re-manufacturing) and assess the environmental impact and processes efficiency. A market study on the types and expected future quantities for the scrap magnets and the characterisation of the EoL magnets from hard disc drives (HDD) will be presented as preliminary results. Pre-treatment and sorting of 2.5 tons of NdFeB magnets scraps were carried out, and the two short loop recycling routes and the hydrometallurgical route are under investigation at the lab and pilot scale. The results will be used to develop a process integration and to assess the three routes through LCA.
{"title":"Upscaling of Permanent Magnet Dismantling and Recycling through VALOMAG Project","authors":"F. Coelho, S. Abrahami, Yongxiang Yang, B. Sprecher, Zhiji Li, N. Menad, K. Bru, Thibaut Marcon, C. Rado, B. Saje, Marie-Lise Sablayrolles, V. Decottignies","doi":"10.3390/materproc2021005074","DOIUrl":"https://doi.org/10.3390/materproc2021005074","url":null,"abstract":"Neodymium-Iron-Boron (NdFeB) based permanent magnets are indispensable in today’s technology-driven society. Moreover, their use is likely to increase since they are key in clean energy applications such as wind turbines, hybrid/electric vehicles, and electric bikes. They contain critical raw materials as rare earth elements are used. Indeed, permanent magnets are considered strategic materials by the EU, and their recycling represents a potential secondary supply to decrease the import dependence. The VALOMAG project is developing a technical solution to recover rare earth (RE) based permanent magnets by dismantling end-of-life (EoL) products such as computer hard disc drives, electric motors, and generators from electric vehicles and wind turbines. It also assesses two short loop recycling technologies: Hydrogen Decrepitation (HD) or Hydrogenation–Disproportionation–Desorption–Recombination (HDDR) and strip-casting for high and medium quality magnet wastes; and hydrometallurgical processes for EoL low-quality magnets. Moreover, Life Cycle Assessment (LCA) and Process Integration with a Flowsheet simulation tool will integrate the whole recycling value chain (collection, dismantling, physical and chemical treatment options, and re-manufacturing) and assess the environmental impact and processes efficiency. A market study on the types and expected future quantities for the scrap magnets and the characterisation of the EoL magnets from hard disc drives (HDD) will be presented as preliminary results. Pre-treatment and sorting of 2.5 tons of NdFeB magnets scraps were carried out, and the two short loop recycling routes and the hydrometallurgical route are under investigation at the lab and pilot scale. The results will be used to develop a process integration and to assess the three routes through LCA.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85201660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.3390/materproc2021005070
V. Makri, G. Panagopoulos, K. Nikolaou, S. Bellas, N. Pasadakis
It is evident that the increased focus on energy transition, will increase the demand for gas as it is the transitional fuel to the net zero CO2 emission era. The West Katakolo field is the only oil and gas discovery in Western Greece, and it is operated by Energean. The three offshore West Katakolo wells have defined both the oil and the gas zones, while onshore exploration wells have penetrated biogenic gas-saturated Plio-Pleistocene sands. This study assesses the gas generation potential of the local Plio-Pleistocene and Triassic sources using thermal maturity modelling based on the available legacy data, with limitations being addressed by running several case-scenarios. In conclusion, this study supports the generation of thermogenic and biogenic gas from the Triassic and Plio-Pleistocene sources respectively, demonstrating the importance of maturity modelling in hydrocarbon exploration, applied on the Katakolo case; a potential gas source to facilitate the energy transition in Greece.
{"title":"Evaluation of Gas Generation Potential Using Thermal Maturity Modelling—The Katakolo Case: A Probable Pathway to Energy Transition","authors":"V. Makri, G. Panagopoulos, K. Nikolaou, S. Bellas, N. Pasadakis","doi":"10.3390/materproc2021005070","DOIUrl":"https://doi.org/10.3390/materproc2021005070","url":null,"abstract":"It is evident that the increased focus on energy transition, will increase the demand for gas as it is the transitional fuel to the net zero CO2 emission era. The West Katakolo field is the only oil and gas discovery in Western Greece, and it is operated by Energean. The three offshore West Katakolo wells have defined both the oil and the gas zones, while onshore exploration wells have penetrated biogenic gas-saturated Plio-Pleistocene sands. This study assesses the gas generation potential of the local Plio-Pleistocene and Triassic sources using thermal maturity modelling based on the available legacy data, with limitations being addressed by running several case-scenarios. In conclusion, this study supports the generation of thermogenic and biogenic gas from the Triassic and Plio-Pleistocene sources respectively, demonstrating the importance of maturity modelling in hydrocarbon exploration, applied on the Katakolo case; a potential gas source to facilitate the energy transition in Greece.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79845792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-09DOI: 10.3390/materproc2021005071
Iason Tsilogeorgis, E. Tzamos, E. Kokkinos, A. Zouboulis
Grecian Magnesite S.A., located in Gerakini, Chalkidiki, N. Greece, is a magnesite mining company, which produces and commercializes several Mg-based products. For production purposes, water is applied in large quantities for several uses. As a result, 5 × 106–7 × 106 m3 of wastewater, consisting mainly of muddy water, is produced from the magnesite ore washing facilities each year. In this study, the environmental impact of mining and industrial activities is examined, and the water management issues are addressed through its recovery. Water recovery reaches up to 96% (v/v), whereas the remaining sludge waste is safely deposited in tailings ponds.
{"title":"Magnesite Ore Washing Facilities’ Wastewater Treatment and Recovered Water Reuse","authors":"Iason Tsilogeorgis, E. Tzamos, E. Kokkinos, A. Zouboulis","doi":"10.3390/materproc2021005071","DOIUrl":"https://doi.org/10.3390/materproc2021005071","url":null,"abstract":"Grecian Magnesite S.A., located in Gerakini, Chalkidiki, N. Greece, is a magnesite mining company, which produces and commercializes several Mg-based products. For production purposes, water is applied in large quantities for several uses. As a result, 5 × 106–7 × 106 m3 of wastewater, consisting mainly of muddy water, is produced from the magnesite ore washing facilities each year. In this study, the environmental impact of mining and industrial activities is examined, and the water management issues are addressed through its recovery. Water recovery reaches up to 96% (v/v), whereas the remaining sludge waste is safely deposited in tailings ponds.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"106 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76530432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}