Pub Date : 2021-12-03DOI: 10.3390/materproc2021005055
Olga Chernoburova, A. Chagnes
With growing demand for renewable and clean energy technologies, the need in rare earth metals is increasing. Scandium, which is often considered a rare earth element (REE), is a critical metal mainly used in solid oxide fuel cells (SOFCs) and high strength aluminum alloys used in aerospace and 3D printing applications. Furthermore, scandium supply is limited due to its scarcity and the high cost of its production in Asia and Russia while Europe has no production of scandium. Therefore, scandium extraction from alternative resources such as secondary resources located in Europe is of great concern. Within this context, this work provides a condensed state-of-art review of the issue of scandium recovery from industrial wastes. Priority was given to addressing the technological and economic challenges associated with the recovery of scandium from the said residues, with particular emphasis on the bauxite residue from alumina production, which represents nearly 5 million tons on dry basis per year in Europe.
{"title":"The Future of Scandium Recovery from Wastes","authors":"Olga Chernoburova, A. Chagnes","doi":"10.3390/materproc2021005055","DOIUrl":"https://doi.org/10.3390/materproc2021005055","url":null,"abstract":"With growing demand for renewable and clean energy technologies, the need in rare earth metals is increasing. Scandium, which is often considered a rare earth element (REE), is a critical metal mainly used in solid oxide fuel cells (SOFCs) and high strength aluminum alloys used in aerospace and 3D printing applications. Furthermore, scandium supply is limited due to its scarcity and the high cost of its production in Asia and Russia while Europe has no production of scandium. Therefore, scandium extraction from alternative resources such as secondary resources located in Europe is of great concern. Within this context, this work provides a condensed state-of-art review of the issue of scandium recovery from industrial wastes. Priority was given to addressing the technological and economic challenges associated with the recovery of scandium from the said residues, with particular emphasis on the bauxite residue from alumina production, which represents nearly 5 million tons on dry basis per year in Europe.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87481258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.3390/materproc2021005044
G. Louloudis, C. Roumpos, Eleni Mertiri, Georgios Kasfikis, F. Pavloudakis
Future investment feasibility studies concerning post-mining repurposing utilities and economic transitions should focus on regional water resource management and the hydraulic protection of any utilities. Satellite images in different bands and Digital Elevation Models (DEM) of the Ptolemais basin were processed, leading to a more accurate estimation of the runoff ratio and percolation ratio. Furthermore, the saturated and unsaturated areas were delineated, leading to the recognition of potential artificial ground water recharge zones and zones where appropriate hydraulic protection measures are necessary.
{"title":"Rational and Sustainable Water Resource Management in the Ptolemais Lignite Basin Using Remotely Sensed Data","authors":"G. Louloudis, C. Roumpos, Eleni Mertiri, Georgios Kasfikis, F. Pavloudakis","doi":"10.3390/materproc2021005044","DOIUrl":"https://doi.org/10.3390/materproc2021005044","url":null,"abstract":"Future investment feasibility studies concerning post-mining repurposing utilities and economic transitions should focus on regional water resource management and the hydraulic protection of any utilities. Satellite images in different bands and Digital Elevation Models (DEM) of the Ptolemais basin were processed, leading to a more accurate estimation of the runoff ratio and percolation ratio. Furthermore, the saturated and unsaturated areas were delineated, leading to the recognition of potential artificial ground water recharge zones and zones where appropriate hydraulic protection measures are necessary.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81727101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.3390/materproc2021005052
Chara Sakellari, C. Roumpos, G. Louloudis, E. Vasileiou
At the end of surface mining activities, the remnant voids are of great concern regarding rehabilitating the final open pits. The investigation of the sustainability of pit lakes in post-mining regions constitutes a challenging research problem. This paper aims to highlight the effectiveness of pit lakes as a rehabilitation factor. In this framework, several cases worldwide and in Greece were examined in detail and evaluated. The results indicate that mine pit lakes must be evaluated as dynamic systems, natural or artificial, which demand rational mine water management to ensure their sustainability. Specifically in Greece, it is of great importance during the transition to the post-lignite era.
{"title":"A Review about the Sustainability of Pit Lakes as a Rehabilitation Factor after Mine Closure","authors":"Chara Sakellari, C. Roumpos, G. Louloudis, E. Vasileiou","doi":"10.3390/materproc2021005052","DOIUrl":"https://doi.org/10.3390/materproc2021005052","url":null,"abstract":"At the end of surface mining activities, the remnant voids are of great concern regarding rehabilitating the final open pits. The investigation of the sustainability of pit lakes in post-mining regions constitutes a challenging research problem. This paper aims to highlight the effectiveness of pit lakes as a rehabilitation factor. In this framework, several cases worldwide and in Greece were examined in detail and evaluated. The results indicate that mine pit lakes must be evaluated as dynamic systems, natural or artificial, which demand rational mine water management to ensure their sustainability. Specifically in Greece, it is of great importance during the transition to the post-lignite era.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78360064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.3390/materproc2021005053
Andriani Manataki, J. Mwase, C. van der Eijk
The Pedersen process is an alumina production process, which combines pyrometallurgical and hydrometallurgical methods. In the pyrometallurgical stage, limestone is calcined and CO2 is generated. This off-gas can be captured with a high CO2 concentration. At the end of the hydrometallurgical process, aluminum hydroxides, like bayerite, are precipitated using CO2. In this paper, experimental work on precipitation of aluminum hydroxides through the addition of a mixture of CO2, O2 and N2 is presented. The parameters varied, as were the percentages of each gas and the temperature. The indicators measured were the time until the beginning of precipitation and the time that the precipitation lasts. These tests simulate the use of a smelter furnace off-gas in the precipitation stage of the Pedersen process and have shown promising results.
{"title":"Simulating the Use of a Smelter Off-Gas in the Precipitation Stage of the Pedersen Process","authors":"Andriani Manataki, J. Mwase, C. van der Eijk","doi":"10.3390/materproc2021005053","DOIUrl":"https://doi.org/10.3390/materproc2021005053","url":null,"abstract":"The Pedersen process is an alumina production process, which combines pyrometallurgical and hydrometallurgical methods. In the pyrometallurgical stage, limestone is calcined and CO2 is generated. This off-gas can be captured with a high CO2 concentration. At the end of the hydrometallurgical process, aluminum hydroxides, like bayerite, are precipitated using CO2. In this paper, experimental work on precipitation of aluminum hydroxides through the addition of a mixture of CO2, O2 and N2 is presented. The parameters varied, as were the percentages of each gas and the temperature. The indicators measured were the time until the beginning of precipitation and the time that the precipitation lasts. These tests simulate the use of a smelter furnace off-gas in the precipitation stage of the Pedersen process and have shown promising results.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77801547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.3390/materproc2021005054
Dimitrios Kotsanis, P. Nomikos, D. Rozos
This study aimed to investigate the statistical correlation between the static and dynamic Young’s modulus of prasinites, a metabasic rock type that outcrops at various localities in the southern part of the Attica peninsula. A total of 39 cylindrical specimens was prepared and an extensive experimental program was carried out to determine the static and dynamic deformational properties for each specimen. Using ordinary least squares regression techniques, a new empirical linear equation was established between the aforementioned properties that can be used in the study region, or elsewhere where metabasic rocks with similar characteristics are investigated.
{"title":"Comparison of Static and Dynamic Young’s Modulus of Prasinites","authors":"Dimitrios Kotsanis, P. Nomikos, D. Rozos","doi":"10.3390/materproc2021005054","DOIUrl":"https://doi.org/10.3390/materproc2021005054","url":null,"abstract":"This study aimed to investigate the statistical correlation between the static and dynamic Young’s modulus of prasinites, a metabasic rock type that outcrops at various localities in the southern part of the Attica peninsula. A total of 39 cylindrical specimens was prepared and an extensive experimental program was carried out to determine the static and dynamic deformational properties for each specimen. Using ordinary least squares regression techniques, a new empirical linear equation was established between the aforementioned properties that can be used in the study region, or elsewhere where metabasic rocks with similar characteristics are investigated.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75641625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.3390/materproc2021005049
S. Papaefthymiou, M. Bouzouni, Vasilis Loukadakis
The rapid penetration of Artificial Intelligence (AI) and all related developments of the fourth industrial revolution is paving the way for a more sophisticated production sequence that strives for higher quality, lower emissions and lower cost production. This work reviews and discusses these developments and correlates them with state-of-the-art changes in materials engineering. We highlight penetration paradigms of modern computation tools. These technologies sound very promising in terms of maximizing the production efficiency of modern industries and, thus, minimizing the required energy input, greenhouse gas emissions and leading the way to a more ecofriendly economy.
{"title":"Opportunities of AI and ICME in Metals Recycling, Production and Processing","authors":"S. Papaefthymiou, M. Bouzouni, Vasilis Loukadakis","doi":"10.3390/materproc2021005049","DOIUrl":"https://doi.org/10.3390/materproc2021005049","url":null,"abstract":"The rapid penetration of Artificial Intelligence (AI) and all related developments of the fourth industrial revolution is paving the way for a more sophisticated production sequence that strives for higher quality, lower emissions and lower cost production. This work reviews and discusses these developments and correlates them with state-of-the-art changes in materials engineering. We highlight penetration paradigms of modern computation tools. These technologies sound very promising in terms of maximizing the production efficiency of modern industries and, thus, minimizing the required energy input, greenhouse gas emissions and leading the way to a more ecofriendly economy.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77986799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.3390/materproc2021005051
M. Theocharis, P. Tsakiridis, P. Kousi, A. Hatzikioseyian, I. Zarkadas, E. Remoundaki, G. Lyberatos
This study presents experimental results for the development of a process for the recovery of indium and gallium from EoL CIGS (CuGa1−xInxSe2) panels. The process consists of a thermal treatment of the panels, followed by a hydrometallurgical treatment, where quantitative leaching of In, Ga, Mo, Cu and Zn is achieved. The elements are subsequently separated and recovered from the leachate by solvent extraction. For the development of the process, samples of EoL CIGS PV panels were used, which contained a thin film of Mo (metal base electrode), sputtered on the supporting soda-lime glass and covered by the thin film containing In, Ga, Cu and Se (1 μm). These films were detected by SEM-EDS in polished sections. The thermal treatment at 550 °C for 15 min, in excess of air, led to the successful disintegration of ethyl vinyl acetate (EVA) and delamination of the thin film-coated glass from the front protective glass. The glass fragments coated by the thin film contained the following: Se: 0.03–0.05%; In: 0.02%; Cu: 0.05%; Ga: 0.004–0.006%; and Mo: 0.04%. Following thermal treatment, thin film-coated glass fragments of about 1.5 cm × 1.5 cm were used in acid leaching experiments using HNO3, HCl and H2SO4. Quantitative leaching of Cu, Ga, In, Mo, Zn and Cu was achieved by HNO3 at ambient temperature. The effects of pulp density and acid concentration on the efficiency of metal leaching were investigated. Part of Se volatilized during the thermal treatment, whereas the rest was insoluble and separated from the solution by filtration. Finally, the separation of the elements was achieved via solvent extraction by D2EHPA.
{"title":"Hydrometallurgical Treatment for the Extraction and Separation of Indium and Gallium from End-of-Life CIGS Photovoltaic Panels","authors":"M. Theocharis, P. Tsakiridis, P. Kousi, A. Hatzikioseyian, I. Zarkadas, E. Remoundaki, G. Lyberatos","doi":"10.3390/materproc2021005051","DOIUrl":"https://doi.org/10.3390/materproc2021005051","url":null,"abstract":"This study presents experimental results for the development of a process for the recovery of indium and gallium from EoL CIGS (CuGa1−xInxSe2) panels. The process consists of a thermal treatment of the panels, followed by a hydrometallurgical treatment, where quantitative leaching of In, Ga, Mo, Cu and Zn is achieved. The elements are subsequently separated and recovered from the leachate by solvent extraction. For the development of the process, samples of EoL CIGS PV panels were used, which contained a thin film of Mo (metal base electrode), sputtered on the supporting soda-lime glass and covered by the thin film containing In, Ga, Cu and Se (1 μm). These films were detected by SEM-EDS in polished sections. The thermal treatment at 550 °C for 15 min, in excess of air, led to the successful disintegration of ethyl vinyl acetate (EVA) and delamination of the thin film-coated glass from the front protective glass. The glass fragments coated by the thin film contained the following: Se: 0.03–0.05%; In: 0.02%; Cu: 0.05%; Ga: 0.004–0.006%; and Mo: 0.04%. Following thermal treatment, thin film-coated glass fragments of about 1.5 cm × 1.5 cm were used in acid leaching experiments using HNO3, HCl and H2SO4. Quantitative leaching of Cu, Ga, In, Mo, Zn and Cu was achieved by HNO3 at ambient temperature. The effects of pulp density and acid concentration on the efficiency of metal leaching were investigated. Part of Se volatilized during the thermal treatment, whereas the rest was insoluble and separated from the solution by filtration. Finally, the separation of the elements was achieved via solvent extraction by D2EHPA.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91305547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.3390/materproc2021005045
S. Kapelari, P. Gamaletsos, T. Van der Donck, Y. Pontikes, B. Blanpain
To tackle the challenge of bauxite residue (BR), generated during the alumina production, as well as to recover some of its metal content, three combinatory H2-based processes were utilized. Firstly, Greek BR was mixed with NaOH to produce water soluble Na-aluminates and was roasted under pure H2 gas in order to reduce the Fe+3 content. Then the first process combined water leaching and magnetic separation, the second water leaching and melting and the last included wet magnetic separation. The water media resulted in the dissolution of Na-aluminate phases and the production of Al, Na-ion rich leachates. From these, pregnant leaching solutions recovery of Al was 78%, 84% and for the third case it reached 91%. Concerning Na recovery, it could reach 94%. Both melting process and magnetic separation aimed for Fe recovery from the material. The former case however still needs to be optimized, here its concept is introduced. The magnetic fraction, after the dry magnetic separation, varied in Fe content from 31.57 wt.% to 38.50 wt.%, while after the wet magnetic separation it reached 31.85 wt.%.
{"title":"H2-Based Processes for Fe and Al Recovery from Bauxite Residue (Red Mud): Comparing the Options","authors":"S. Kapelari, P. Gamaletsos, T. Van der Donck, Y. Pontikes, B. Blanpain","doi":"10.3390/materproc2021005045","DOIUrl":"https://doi.org/10.3390/materproc2021005045","url":null,"abstract":"To tackle the challenge of bauxite residue (BR), generated during the alumina production, as well as to recover some of its metal content, three combinatory H2-based processes were utilized. Firstly, Greek BR was mixed with NaOH to produce water soluble Na-aluminates and was roasted under pure H2 gas in order to reduce the Fe+3 content. Then the first process combined water leaching and magnetic separation, the second water leaching and melting and the last included wet magnetic separation. The water media resulted in the dissolution of Na-aluminate phases and the production of Al, Na-ion rich leachates. From these, pregnant leaching solutions recovery of Al was 78%, 84% and for the third case it reached 91%. Concerning Na recovery, it could reach 94%. Both melting process and magnetic separation aimed for Fe recovery from the material. The former case however still needs to be optimized, here its concept is introduced. The magnetic fraction, after the dry magnetic separation, varied in Fe content from 31.57 wt.% to 38.50 wt.%, while after the wet magnetic separation it reached 31.85 wt.%.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87692188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.3390/materproc2021005050
Natalija Pavlovic, D. Ignjatović, T. Šubaranović
The rapid technology advancement and the significant decline of investment costs in wind and solar energy generation have opened up a significant opportunity to build these facilities on closed opencast mines or mines in the phase of closure around the world, where large available areas are almost ideal for such projects. In that sense, it is necessary to give an analysis of the possible application of wind and/or solar energy production in the Republic of Serbia’s mines, as well as the dynamics of such a generally ambitious and long-term project with conceptual solutions.
{"title":"Possibility of Using Wind and Solar Sources for Electric Power Generation on Serbian Opencast Coal Mines","authors":"Natalija Pavlovic, D. Ignjatović, T. Šubaranović","doi":"10.3390/materproc2021005050","DOIUrl":"https://doi.org/10.3390/materproc2021005050","url":null,"abstract":"The rapid technology advancement and the significant decline of investment costs in wind and solar energy generation have opened up a significant opportunity to build these facilities on closed opencast mines or mines in the phase of closure around the world, where large available areas are almost ideal for such projects. In that sense, it is necessary to give an analysis of the possible application of wind and/or solar energy production in the Republic of Serbia’s mines, as well as the dynamics of such a generally ambitious and long-term project with conceptual solutions.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"260 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75388766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.3390/materproc2021005046
M. Nomikou, V. Kaloidas, Christos Triantafyllos Galmpenis, Nicolaos Anagnostopoulos, Georgios Tzouvalas
Pumice quarried by LAVA MINING AND QUARRYING SA from Yali Island, Dodecanese, is used in domestic and foreign markets mainly as concrete lightweight aggregate, masonry unit constituents, road substrate, and loose soil stabilization. It is a porous natural volcanic rock with low density, low thermal and noise transmission, and the highest strength among all the natural or artificial lightweight materials of mineral origin. Nowadays, pumice is of additional interest as it has a reduced CO2 footprint because thermal energy is not needed for its expansion compared with the artificial lightweight aggregates. In this context, HERACLES GROUP in collaboration with Sika Hellas has launched a new product containing pumice stone under the brand name GUNITECH®. GUNITECH® is an innovative bagged material for spraying concrete applications. It is a ready lightweight concrete, for building repairs certified as EN 1504-3.
由LAVA MINING AND QUARRYING SA采石公司从十二岛亚里岛开采的浮石,在国内外市场上主要用作混凝土轻骨料、砌体单元成分、道路基材、松散土稳定等。它是一种多孔的天然火山岩,密度低,热传导和噪声传导低,是所有天然或人工轻质矿物材料中强度最高的。如今,浮石引起了人们的额外兴趣,因为与人造轻质骨料相比,浮石的膨胀不需要热能,因此它的二氧化碳足迹减少。在此背景下,HERACLES集团与西卡海拉斯(Sika Hellas)合作推出了一种新的含浮石的产品,品牌名为GUNITECH®。GUNITECH®是一种用于喷射混凝土应用的创新袋装材料。它是一种现成的轻质混凝土,用于通过EN 1504-3认证的建筑维修。
{"title":"GUNITECH®: An Innovative Pumice Based Dry Shotcrete Application","authors":"M. Nomikou, V. Kaloidas, Christos Triantafyllos Galmpenis, Nicolaos Anagnostopoulos, Georgios Tzouvalas","doi":"10.3390/materproc2021005046","DOIUrl":"https://doi.org/10.3390/materproc2021005046","url":null,"abstract":"Pumice quarried by LAVA MINING AND QUARRYING SA from Yali Island, Dodecanese, is used in domestic and foreign markets mainly as concrete lightweight aggregate, masonry unit constituents, road substrate, and loose soil stabilization. It is a porous natural volcanic rock with low density, low thermal and noise transmission, and the highest strength among all the natural or artificial lightweight materials of mineral origin. Nowadays, pumice is of additional interest as it has a reduced CO2 footprint because thermal energy is not needed for its expansion compared with the artificial lightweight aggregates. In this context, HERACLES GROUP in collaboration with Sika Hellas has launched a new product containing pumice stone under the brand name GUNITECH®. GUNITECH® is an innovative bagged material for spraying concrete applications. It is a ready lightweight concrete, for building repairs certified as EN 1504-3.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89538253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}