首页 > 最新文献

Molecular Autism最新文献

英文 中文
Characterizing genetic pathways unique to autism spectrum disorder at multiple levels of biological analysis. 通过多层次的生物分析,确定自闭症谱系障碍特有的遗传途径。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-15 DOI: 10.1186/s13229-024-00624-2
Lukas S Schaffer, Sophie Breunig, Jeremy M Lawrence, Isabelle F Foote, Andrew D Grotzinger

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by atypical patterns of social functioning and repetitive/restricted behaviors. ASD commonly co-occurs with ADHD and, despite their clinical distinctiveness, the two share considerable genetic overlap. Given their shared genetic liability, it is unclear which genetic pathways increase the likelihood of ASD independently of ADHD.

Methods: We applied Genomic Structural Equation Modeling (SEM) to GWAS summary statistics for ASD and childhood-diagnosed ADHD, decomposing the genetic variance for ASD into that which is unique to ASD (uASD) and that which is shared with ADHD. We computed genetic correlations between uASD and 83 external traits to estimate genetic overlap between uASD and other clinically relevant phenotypes. We went on to apply Stratified Genomic SEM to identify classes of genes enriched for uASD. Finally, we implemented Transcriptome-Wide SEM (T-SEM) to explore patterns of gene-expression associated with uASD.

Results: We observed positive genetic correlations between uASD and several external traits, most notably those relating to cognitive/educational outcomes and internalizing psychiatric traits. Stratified Genomic SEM showed that heritability for uASD was significantly enriched in genes involved in evolutionarily conserved processes, as well as for a histone mark in the germinal matrix. T-SEM revealed 83 unique genes with expression associated with uASD, 34 of which were novel with respect to univariate analyses. These genes were overrepresented in skin-related pathologies.

Limitations: Our study was limited by summary statistics derived exclusively from individuals of European ancestry. Additionally, using data based on a general ASD diagnosis limits our ability to understand genetic factors contributing to the pronounced clinical heterogeneity in ASD.

Conclusions: Our findings delineate the unique genetic underpinnings of ASD that are independent of ADHD at the genome-wide, functional, and gene expression level of analysis. In addition, we identify novel associations previously masked by their diametric effects on ADHD. Collectively, these results provide insight into the processes that make ASD biologically unique.

背景:自闭症谱系障碍(ASD)是一种神经发育性疾病,其特征是不典型的社会功能模式和重复/受限行为。自闭症谱系障碍通常与多动症(ADHD)并发,尽管两者的临床表现截然不同,但在遗传学上却有相当大的重叠。鉴于二者具有共同的遗传责任,目前尚不清楚哪些遗传途径会增加ASD独立于ADHD的可能性:我们将基因组结构方程模型(SEM)应用于 ASD 和儿童诊断的 ADHD 的 GWAS 统计摘要,将 ASD 的遗传变异分解为 ASD 独有的遗传变异(uASD)和 ADHD 共有的遗传变异。我们计算了 uASD 与 83 个外部特征之间的遗传相关性,以估计 uASD 与其他临床相关表型之间的遗传重叠。我们接着应用分层基因组 SEM 来确定富含 uASD 的基因类别。最后,我们应用全转录组SEM(T-SEM)来探索与uASD相关的基因表达模式:结果:我们观察到uASD与几种外部特征之间存在正遗传相关性,其中最明显的是与认知/教育结果和内化精神特征相关的特征。分层基因组 SEM 显示,uASD 的遗传性显著富集于参与进化保守过程的基因以及生殖基质中的组蛋白标记。T-SEM发现了83个与uASD相关的独特基因,其中34个是单变量分析中发现的新基因。这些基因在皮肤相关病理中的代表性较高:局限性:我们的研究受限于仅来自欧洲血统个体的汇总统计数据。此外,使用基于一般 ASD 诊断的数据限制了我们了解导致 ASD 临床异质性明显的遗传因素的能力:我们的研究结果在全基因组、功能和基因表达水平的分析中勾勒出了独立于多动症的 ASD 独特遗传基础。此外,我们还发现了以前被其对多动症截然不同的影响所掩盖的新关联。总之,这些结果让我们深入了解了 ASD 独特的生物学过程。
{"title":"Characterizing genetic pathways unique to autism spectrum disorder at multiple levels of biological analysis.","authors":"Lukas S Schaffer, Sophie Breunig, Jeremy M Lawrence, Isabelle F Foote, Andrew D Grotzinger","doi":"10.1186/s13229-024-00624-2","DOIUrl":"10.1186/s13229-024-00624-2","url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by atypical patterns of social functioning and repetitive/restricted behaviors. ASD commonly co-occurs with ADHD and, despite their clinical distinctiveness, the two share considerable genetic overlap. Given their shared genetic liability, it is unclear which genetic pathways increase the likelihood of ASD independently of ADHD.</p><p><strong>Methods: </strong>We applied Genomic Structural Equation Modeling (SEM) to GWAS summary statistics for ASD and childhood-diagnosed ADHD, decomposing the genetic variance for ASD into that which is unique to ASD (uASD) and that which is shared with ADHD. We computed genetic correlations between uASD and 83 external traits to estimate genetic overlap between uASD and other clinically relevant phenotypes. We went on to apply Stratified Genomic SEM to identify classes of genes enriched for uASD. Finally, we implemented Transcriptome-Wide SEM (T-SEM) to explore patterns of gene-expression associated with uASD.</p><p><strong>Results: </strong>We observed positive genetic correlations between uASD and several external traits, most notably those relating to cognitive/educational outcomes and internalizing psychiatric traits. Stratified Genomic SEM showed that heritability for uASD was significantly enriched in genes involved in evolutionarily conserved processes, as well as for a histone mark in the germinal matrix. T-SEM revealed 83 unique genes with expression associated with uASD, 34 of which were novel with respect to univariate analyses. These genes were overrepresented in skin-related pathologies.</p><p><strong>Limitations: </strong>Our study was limited by summary statistics derived exclusively from individuals of European ancestry. Additionally, using data based on a general ASD diagnosis limits our ability to understand genetic factors contributing to the pronounced clinical heterogeneity in ASD.</p><p><strong>Conclusions: </strong>Our findings delineate the unique genetic underpinnings of ASD that are independent of ADHD at the genome-wide, functional, and gene expression level of analysis. In addition, we identify novel associations previously masked by their diametric effects on ADHD. Collectively, these results provide insight into the processes that make ASD biologically unique.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"46"},"PeriodicalIF":6.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population. 非临床人群中的颞上沟折叠、功能网络连接和自闭症样特征。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-08 DOI: 10.1186/s13229-024-00623-3
Igor Nenadić, Yvonne Schröder, Jonas Hoffmann, Ulrika Evermann, Julia-Katharina Pfarr, Aliénor Bergmann, Daniela Michelle Hohmann, Boris Keil, Ahmad Abu-Akel, Sanna Stroth, Inge Kamp-Becker, Andreas Jansen, Sarah Grezellschak, Tina Meller

Background: Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum.

Methods: In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis.

Results: Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (n = 233; all p < 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity.

Limitations: Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits.

Conclusions: Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.

背景:自闭症样特征(ALT)在普通人群中普遍存在,可能与更广泛的自闭症谱系障碍(ASD)表型的某些方面有关。最近的研究表明,这些特征与非自闭症患者的遗传和大脑结构标志物都有关联,显示了在自闭症谱系障碍中观察到的类似发现的空间位置,从而提示了潜在的神经生物学连续性:在这项研究中,我们首先测试了 ALTs(通过 AQ 问卷进行评估)与皮质复杂性(早期神经发育的皮质表面标志)之间的关联,然后测试了其与功能连接紊乱之间的关联。我们对 250 名无早期发育障碍史的精神健康人进行了结构性 T1 加权和静息态功能磁共振成像扫描分析,第一步使用 CAT12 工具箱进行皮层复杂性分析,第二步使用区域皮层复杂性结果应用 CONN 工具箱进行基于种子的功能连通性分析:结果:我们的研究结果表明,AQ总分和AQ注意转换分值与左侧颞上沟(STS)皮层折叠复杂性呈显著负相关,前者与STS与左侧枕叶外侧皮层的连通性显著相关,而后者与STS与左侧额叶下回/中回的连通性呈显著正相关(n = 233;所有P 限制:表型可能会影响关联结果(如清单的选择);此外,我们的研究仅限于自闭症样特征的亚临床表现:我们的研究结果为ALT的生物学相关性提供了进一步的证据,即使没有临床自闭症,同时也在早期发育起源的结构变异与功能连接之间建立了联系。
{"title":"Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population.","authors":"Igor Nenadić, Yvonne Schröder, Jonas Hoffmann, Ulrika Evermann, Julia-Katharina Pfarr, Aliénor Bergmann, Daniela Michelle Hohmann, Boris Keil, Ahmad Abu-Akel, Sanna Stroth, Inge Kamp-Becker, Andreas Jansen, Sarah Grezellschak, Tina Meller","doi":"10.1186/s13229-024-00623-3","DOIUrl":"10.1186/s13229-024-00623-3","url":null,"abstract":"<p><strong>Background: </strong>Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum.</p><p><strong>Methods: </strong>In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis.</p><p><strong>Results: </strong>Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (n = 233; all p < 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity.</p><p><strong>Limitations: </strong>Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits.</p><p><strong>Conclusions: </strong>Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"44"},"PeriodicalIF":6.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder. 白质的结构-功能耦合揭示了自闭症谱系障碍中的低连接性。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-10-04 DOI: 10.1186/s13229-024-00620-6
Peng Qing, Xiaodong Zhang, Qi Liu, Linghong Huang, Dan Xu, Jiao Le, Keith M Kendrick, Hua Lai, Weihua Zhao

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder associated with alterations in structural and functional coupling in gray matter. However, despite the detectability and modulation of brain signals in white matter, the structure-function coupling in white matter in autism remains less explored.

Methods: In this study, we investigated structural-functional coupling in white matter (WM) regions, by integrating diffusion tensor data that contain fiber orientation information from WM tracts, with functional connectivity tensor data that reflect local functional anisotropy information. Using functional and diffusion magnetic resonance images, we analyzed a cohort of 89 ASD and 63 typically developing (TD) individuals from the Autism Brain Imaging Data Exchange II (ABIDE-II). Subsequently, the associations between structural-functional coupling in WM regions and ASD severity symptoms assessed by Autism Diagnostic Observation Schedule-2 were examined via supervised machine learning in an independent test cohort of 29 ASD individuals. Furthermore, we also compared the performance of multi-model features (i.e. structural-functional coupling) with single-model features (i.e. functional or structural models alone).

Results: In the discovery cohort (ABIDE-II), individuals with ASD exhibited widespread reductions in structural-functional coupling in WM regions compared to TD individuals, particularly in commissural tracts (e.g. corpus callosum), association tracts (sagittal stratum), and projection tracts (e.g. internal capsule). Notably, supervised machine learning analysis in the independent test cohort revealed a significant correlation between these alterations in structural-functional coupling and ASD severity scores. Furthermore, compared to single-model features, the integration of multi-model features (i.e., structural-functional coupling) performed best in predicting ASD severity scores.

Conclusion: This work provides novel evidence for atypical structural-functional coupling in ASD in white matter regions, further refining our understanding of the critical role of WM networks in the pathophysiology of ASD.

背景:自闭症谱系障碍(ASD)是一种与灰质结构和功能耦合改变有关的神经发育障碍。然而,尽管白质中的大脑信号具有可探测性和调节性,但对自闭症患者白质中结构-功能耦合的研究仍然较少:在这项研究中,我们通过整合包含自闭症白质束纤维方向信息的扩散张量数据和反映局部功能各向异性信息的功能连接张量数据,研究了白质(WM)区域的结构-功能耦合。我们使用功能和弥散磁共振图像分析了自闭症脑成像数据交换 II(ABIDE-II)中的 89 名 ASD 患者和 63 名典型发育(TD)患者。随后,我们在一个由 29 名 ASD 患者组成的独立测试队列中,通过监督机器学习检验了 WM 区域的结构-功能耦合与自闭症诊断观察表-2 评估的 ASD 严重症状之间的关联。此外,我们还比较了多模型特征(即结构-功能耦合)与单模型特征(即单独的功能或结构模型)的性能:结果:在发现队列(ABIDE-II)中,与TD患者相比,ASD患者在WM区域的结构-功能耦合方面表现出广泛的降低,尤其是在神经束(如胼胝体)、联结束(矢状层)和投射束(如内囊)。值得注意的是,在独立测试队列中进行的监督机器学习分析表明,这些结构-功能耦合的改变与 ASD 严重程度评分之间存在显著相关性。此外,与单一模型特征相比,多模型特征(即结构-功能耦合)的整合在预测ASD严重程度评分方面表现最佳:这项研究为ASD白质区域的非典型结构-功能耦合提供了新的证据,进一步完善了我们对WM网络在ASD病理生理学中的关键作用的认识。
{"title":"Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder.","authors":"Peng Qing, Xiaodong Zhang, Qi Liu, Linghong Huang, Dan Xu, Jiao Le, Keith M Kendrick, Hua Lai, Weihua Zhao","doi":"10.1186/s13229-024-00620-6","DOIUrl":"10.1186/s13229-024-00620-6","url":null,"abstract":"<p><strong>Background: </strong>Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder associated with alterations in structural and functional coupling in gray matter. However, despite the detectability and modulation of brain signals in white matter, the structure-function coupling in white matter in autism remains less explored.</p><p><strong>Methods: </strong>In this study, we investigated structural-functional coupling in white matter (WM) regions, by integrating diffusion tensor data that contain fiber orientation information from WM tracts, with functional connectivity tensor data that reflect local functional anisotropy information. Using functional and diffusion magnetic resonance images, we analyzed a cohort of 89 ASD and 63 typically developing (TD) individuals from the Autism Brain Imaging Data Exchange II (ABIDE-II). Subsequently, the associations between structural-functional coupling in WM regions and ASD severity symptoms assessed by Autism Diagnostic Observation Schedule-2 were examined via supervised machine learning in an independent test cohort of 29 ASD individuals. Furthermore, we also compared the performance of multi-model features (i.e. structural-functional coupling) with single-model features (i.e. functional or structural models alone).</p><p><strong>Results: </strong>In the discovery cohort (ABIDE-II), individuals with ASD exhibited widespread reductions in structural-functional coupling in WM regions compared to TD individuals, particularly in commissural tracts (e.g. corpus callosum), association tracts (sagittal stratum), and projection tracts (e.g. internal capsule). Notably, supervised machine learning analysis in the independent test cohort revealed a significant correlation between these alterations in structural-functional coupling and ASD severity scores. Furthermore, compared to single-model features, the integration of multi-model features (i.e., structural-functional coupling) performed best in predicting ASD severity scores.</p><p><strong>Conclusion: </strong>This work provides novel evidence for atypical structural-functional coupling in ASD in white matter regions, further refining our understanding of the critical role of WM networks in the pathophysiology of ASD.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"43"},"PeriodicalIF":6.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenome-wide profiling identifies genotype-phenotype associations in Phelan-McDermid syndrome using family-sourced data from an international registry. 利用来自国际登记处的家族数据,全表型分析确定了佩兰-麦克德米综合征的基因型与表型之间的关联。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-30 DOI: 10.1186/s13229-024-00619-z
Rui Yin, Maxime Wack, Claire Hassen-Khodja, Michael T McDuffie, Geraldine Bliss, Elizabeth J Horn, Cartik Kothari, Brittany McLarney, Rebecca Davis, Kristen Hanson, Megan O'Boyle, Catalina Betancur, Paul Avillach

Background: Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by 22q13 deletions that include the SHANK3 gene or pathogenic sequence variants in SHANK3. It is characterized by global developmental delay, intellectual disability, speech impairment, autism spectrum disorder, and hypotonia; other variable features include epilepsy, brain and renal malformations, and mild dysmorphic features. Here, we conducted genotype-phenotype correlation analyses using the PMS International Registry, a family-driven registry that compiles clinical data in the form of family-reported outcomes and family-sourced genetic test results.

Methods: Data from the registry were harmonized and integrated into the i2b2/tranSMART clinical and genomics data warehouse. We gathered information from 401 individuals with 22q13 deletions including SHANK3 (n = 350, ranging in size from 10 kb to 9.1 Mb) or pathogenic or likely pathogenic SHANK3 sequence variants (n = 51), and used regression models with deletion size as a potential predictor of clinical outcomes for 328 phenotypes.

Results: Our results showed that increased deletion size was significantly associated with delay in gross and fine motor acquisitions, a spectrum of conditions related to poor muscle tone, renal malformations, mild dysmorphic features (e.g., large fleshy hands, sacral dimple, dysplastic toenails, supernumerary teeth), lymphedema, congenital heart defects, and more frequent neuroimaging abnormalities and infections. These findings indicate that genes upstream of SHANK3 also contribute to some of the manifestations of PMS in individuals with larger deletions. We also showed that self-help skills, verbal ability and a range of psychiatric diagnoses (e.g., autism, ADHD, anxiety disorder) were more common among individuals with smaller deletions and SHANK3 variants.

Limitations: Some participants were tested with targeted 22q microarrays rather than genome-wide arrays, and karyotypes were unavailable in many cases, thus precluding the analysis of the effect of other copy number variants or chromosomal rearrangements on the phenotype.

Conclusions: This is the largest reported case series of individuals with PMS. Overall, we demonstrate the feasibility of using data from a family-sourced registry to conduct genotype-phenotype analyses in rare genetic disorders. We replicate and strengthen previous findings, and reveal novel associations between larger 22q13 deletions and congenital heart defects, neuroimaging abnormalities and recurrent infections.

背景:Phelan-McDermid综合征(PMS)是一种罕见的神经发育障碍性疾病,由包括SHANK3基因的22q13缺失或SHANK3的致病序列变异引起。其特征为全身发育迟缓、智力障碍、语言障碍、自闭症谱系障碍和肌张力低下;其他可变特征包括癫痫、脑和肾畸形以及轻度畸形特征。在此,我们利用 PMS 国际登记处进行了基因型与表型的相关性分析。PMS 国际登记处是一个由家庭驱动的登记处,以家庭报告结果和家庭提供的基因检测结果的形式汇编临床数据:方法:对登记处的数据进行了统一,并将其整合到 i2b2/tranSMART 临床和基因组学数据仓库中。我们收集了 401 例 22q13 缺失个体的信息,其中包括 SHANK3(n = 350,大小从 10 kb 到 9.1 Mb 不等)或致病性或可能致病的 SHANK3 序列变异(n = 51),并使用回归模型将缺失大小作为 328 种表型临床结果的潜在预测因子:我们的研究结果表明,基因缺失大小的增加与粗大运动和精细运动发育迟缓、一系列与肌肉张力差、肾脏畸形、轻度畸形特征(如大肉手、骶骨凹陷、趾甲发育不良、超常牙齿)、淋巴水肿、先天性心脏缺陷以及更常见的神经影像异常和感染有显著相关性。这些研究结果表明,SHANK3 上游的基因也会导致有较大缺失的个体出现经前期综合征的某些表现。我们还发现,在较小缺失和SHANK3变异的个体中,自助技能、语言能力和一系列精神疾病(如自闭症、多动症、焦虑症)的诊断更为常见:局限性:一些参与者使用靶向 22q 芯片而非全基因组芯片进行检测,许多病例无法获得核型,因此无法分析其他拷贝数变异或染色体重排对表型的影响:这是目前所报道的最大的 PMS 患者病例系列。总之,我们证明了利用来自家庭的登记数据对罕见遗传疾病进行基因型-表型分析的可行性。我们复制并加强了之前的研究结果,并揭示了较大的 22q13 缺失与先天性心脏缺陷、神经影像异常和反复感染之间的新关联。
{"title":"Phenome-wide profiling identifies genotype-phenotype associations in Phelan-McDermid syndrome using family-sourced data from an international registry.","authors":"Rui Yin, Maxime Wack, Claire Hassen-Khodja, Michael T McDuffie, Geraldine Bliss, Elizabeth J Horn, Cartik Kothari, Brittany McLarney, Rebecca Davis, Kristen Hanson, Megan O'Boyle, Catalina Betancur, Paul Avillach","doi":"10.1186/s13229-024-00619-z","DOIUrl":"10.1186/s13229-024-00619-z","url":null,"abstract":"<p><strong>Background: </strong>Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by 22q13 deletions that include the SHANK3 gene or pathogenic sequence variants in SHANK3. It is characterized by global developmental delay, intellectual disability, speech impairment, autism spectrum disorder, and hypotonia; other variable features include epilepsy, brain and renal malformations, and mild dysmorphic features. Here, we conducted genotype-phenotype correlation analyses using the PMS International Registry, a family-driven registry that compiles clinical data in the form of family-reported outcomes and family-sourced genetic test results.</p><p><strong>Methods: </strong>Data from the registry were harmonized and integrated into the i2b2/tranSMART clinical and genomics data warehouse. We gathered information from 401 individuals with 22q13 deletions including SHANK3 (n = 350, ranging in size from 10 kb to 9.1 Mb) or pathogenic or likely pathogenic SHANK3 sequence variants (n = 51), and used regression models with deletion size as a potential predictor of clinical outcomes for 328 phenotypes.</p><p><strong>Results: </strong>Our results showed that increased deletion size was significantly associated with delay in gross and fine motor acquisitions, a spectrum of conditions related to poor muscle tone, renal malformations, mild dysmorphic features (e.g., large fleshy hands, sacral dimple, dysplastic toenails, supernumerary teeth), lymphedema, congenital heart defects, and more frequent neuroimaging abnormalities and infections. These findings indicate that genes upstream of SHANK3 also contribute to some of the manifestations of PMS in individuals with larger deletions. We also showed that self-help skills, verbal ability and a range of psychiatric diagnoses (e.g., autism, ADHD, anxiety disorder) were more common among individuals with smaller deletions and SHANK3 variants.</p><p><strong>Limitations: </strong>Some participants were tested with targeted 22q microarrays rather than genome-wide arrays, and karyotypes were unavailable in many cases, thus precluding the analysis of the effect of other copy number variants or chromosomal rearrangements on the phenotype.</p><p><strong>Conclusions: </strong>This is the largest reported case series of individuals with PMS. Overall, we demonstrate the feasibility of using data from a family-sourced registry to conduct genotype-phenotype analyses in rare genetic disorders. We replicate and strengthen previous findings, and reveal novel associations between larger 22q13 deletions and congenital heart defects, neuroimaging abnormalities and recurrent infections.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"40"},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling. 利用诱导多能干细胞和神经疾病模型确定 SETBP1 单倍异位症分子通路,以改进对患者的诊断。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-30 DOI: 10.1186/s13229-024-00625-1
Nicole C Shaw, Kevin Chen, Kathryn O Farley, Mitchell Hedges, Catherine Forbes, Gareth Baynam, Timo Lassmann, Vanessa S Fear

Background: SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain.

Methods: Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes.

Results: The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype.

Limitations: The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids.

Conclusions: We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.

背景介绍SETBP1 单倍体缺乏症(SETBP1-HD)的特征是轻度至中度智力障碍、言语和语言障碍、轻度运动发育迟缓、行为问题、肌张力低下、轻度面部畸形和视力障碍。尽管 SETBP1 基因突变与神经发育障碍之间存在着明确的联系,但 SETBP1 在神经发育中的确切作用仍然难以捉摸。我们研究了三个 SETBP1 基因变异的功能影响,包括两个致病突变 p.Glu545Ter 和 SETBP1 p.Tyr1066Ter(导致 SKI 和/或 SET 结构域被移除),以及 SET 结构域中的一个点突变 p.Thr1387Met:将基因变异引入诱导多能干细胞(iPSCs),随后分化成神经元,以模拟该疾病。我们测量了细胞分化、SETBP1 蛋白定位和基因表达的变化:结果:数据表明,WNT通路、RNA聚合酶II通路发生了变化,并确定GATA2是疾病扰动的核心转录因子。此外,基因变异还改变了与神经前脑发育相关的基因组的表达,这与 SETBP1-HD 表型的典型特征相吻合:该研究调查了作为 SETBP1 HD 疾病人类模型的 iPSC 向神经祖细胞分化过程中细胞功能的变化。未来的研究可能会提供更多与神经细胞进一步分化有关的疾病信息,以衍生出成熟的神经元、神经前脑细胞或脑器官组织:我们建立了人类 SETBP1-HD 模型,并确定了受 GATA2 调控的基因 WNT 和 POL2RA 通路的干扰。令人震惊的是,SETBP1截断突变和单核苷酸变异的神经细胞都显示出类似SETBP1-HD的表型。
{"title":"Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling.","authors":"Nicole C Shaw, Kevin Chen, Kathryn O Farley, Mitchell Hedges, Catherine Forbes, Gareth Baynam, Timo Lassmann, Vanessa S Fear","doi":"10.1186/s13229-024-00625-1","DOIUrl":"10.1186/s13229-024-00625-1","url":null,"abstract":"<p><strong>Background: </strong>SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain.</p><p><strong>Methods: </strong>Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes.</p><p><strong>Results: </strong>The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype.</p><p><strong>Limitations: </strong>The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids.</p><p><strong>Conclusions: </strong>We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"42"},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D approach to understanding heterogeneity in early developing autisms. 用三维方法了解早期发育自闭症的异质性。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-30 DOI: 10.1186/s13229-024-00613-5
Veronica Mandelli, Ines Severino, Lisa Eyler, Karen Pierce, Eric Courchesne, Michael V Lombardo

Background: Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology.

Methods: Unsupervised data-driven subtypes were identified using stability-based relative clustering validation on publicly available Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) data (n = 615; age = 24-68 months) from the National Institute of Mental Health Data Archive (NDA). Differential developmental trajectories between subtypes were tested on longitudinal data from NDA and from an independent in-house dataset from UCSD. A subset of the UCSD dataset was also tested for subtype differences in functional and structural neuroimaging phenotypes and relationships with blood gene expression. The current subtyping model was also compared to early language outcome subtypes derived from past work.

Results: Two autism subtypes can be identified based on early phenotypic LIMA features. These data-driven subtypes are robust in the population and can be identified in independent data with 98% accuracy. The subtypes can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression and may highlight unique biological mechanisms.

Limitations: Sample sizes for the neuroimaging and gene expression dataset are relatively small and require further independent replication. The current work is also limited to subtyping based on MSEL and VABS phenotypic measures.

Conclusions: This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.

背景:早期语言、智力、运动和适应功能(LIMA)特征的表型异质性是区分不同类型自闭症患者的最显著特征之一。然而,目前的诊断标准使用单一的自闭症标签,并隐含地强调个体的共同点,即核心的社交-沟通和限制性重复行为障碍。基于 LIMA 非核心特征的亚型标签可能有助于更有意义地区分具有不同发展路径和不同潜在生物学特征的自闭症类型:方法:采用基于稳定性的相对聚类验证,对美国国家心理健康研究所数据档案(NDA)中公开提供的穆伦早期学习量表(MSEL)和文兰适应行为量表(VABS)数据(n = 615;年龄 = 24-68 个月)进行无监督数据驱动的亚型鉴定。亚型之间的差异发展轨迹通过 NDA 的纵向数据和加州大学圣地亚哥分校的独立内部数据集进行了测试。此外,还对加州大学旧金山分校数据集的一个子集进行了测试,以了解亚型在功能和结构神经影像表型方面的差异以及与血液基因表达的关系。目前的亚型模型还与过去工作中得出的早期语言结果亚型进行了比较:结果:根据 LIMA 的早期表型特征,可以确定两种自闭症亚型。这些数据驱动的亚型在人群中是稳健的,并能在独立数据中以 98% 的准确率识别出来。这些亚型可被描述为 I 型和 II 型自闭症,根据 LIMA 特征的相对高分和低分加以区分。这两类自闭症在出生后前十年的发展轨迹也有所不同。最后,这两种类型的自闭症在功能和结构神经影像表型及其与基因表达的关系方面存在显著差异,并可能突显出独特的生物学机制:局限性:神经影像和基因表达数据集的样本量相对较小,需要进一步独立复制。目前的工作还仅限于基于 MSEL 和 VABS 表型测量的亚型划分:这项工作强调了根据 LIMA 特征对自闭症进行 I 型和 II 型分层的潜在重要性,这可能具有很高的预后和生物学意义。
{"title":"A 3D approach to understanding heterogeneity in early developing autisms.","authors":"Veronica Mandelli, Ines Severino, Lisa Eyler, Karen Pierce, Eric Courchesne, Michael V Lombardo","doi":"10.1186/s13229-024-00613-5","DOIUrl":"10.1186/s13229-024-00613-5","url":null,"abstract":"<p><strong>Background: </strong>Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology.</p><p><strong>Methods: </strong>Unsupervised data-driven subtypes were identified using stability-based relative clustering validation on publicly available Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) data (n = 615; age = 24-68 months) from the National Institute of Mental Health Data Archive (NDA). Differential developmental trajectories between subtypes were tested on longitudinal data from NDA and from an independent in-house dataset from UCSD. A subset of the UCSD dataset was also tested for subtype differences in functional and structural neuroimaging phenotypes and relationships with blood gene expression. The current subtyping model was also compared to early language outcome subtypes derived from past work.</p><p><strong>Results: </strong>Two autism subtypes can be identified based on early phenotypic LIMA features. These data-driven subtypes are robust in the population and can be identified in independent data with 98% accuracy. The subtypes can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression and may highlight unique biological mechanisms.</p><p><strong>Limitations: </strong>Sample sizes for the neuroimaging and gene expression dataset are relatively small and require further independent replication. The current work is also limited to subtyping based on MSEL and VABS phenotypic measures.</p><p><strong>Conclusions: </strong>This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"41"},"PeriodicalIF":6.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome. 药理抑制 CB1 大麻受体可恢复大脑线粒体 CB1 受体的异常表达,并挽救雷特综合征雌性小鼠模型的生物能和认知缺陷。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-19 DOI: 10.1186/s13229-024-00617-1
Livia Cosentino, Chiara Urbinati, Chiara Lanzillotta, Domenico De Rasmo, Daniela Valenti, Mattia Pellas, Maria Cristina Quattrini, Fabiana Piscitelli, Magdalena Kostrzewa, Fabio Di Domenico, Donatella Pietraforte, Tiziana Bisogno, Anna Signorile, Rosa Anna Vacca, Bianca De Filippis

Background: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT.

Methods: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed.

Results: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice.

Limitations: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions.

Conclusions: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.

背景:线粒体缺陷和大脑线粒体生物能异常是综合智力障碍疾病的一致特征,如雷特综合征(RTT),这是一种罕见的神经系统疾病,主要严重影响携带 X 连锁 MECP2 基因突变的女性。CB1大麻素受体(CB1R)是脑内大麻素系统的主要受体亚型,它位于脑线粒体膜(mtCB1R)上,可通过抑制线粒体内蛋白激酶A(mtPKA)局部调节能量产生、突触传递和记忆能力。在本研究中,我们提出了一个问题:mtCB1R-mtPKA 信号过度活跃是否可能是 RTT 中大脑线粒体改变的基础,以及通过全身给药 CB1R 反向激动剂利莫那班是否可能改善 RTT 模型小鼠的生物能和认知缺陷:结果:mtCB1R在RTT小鼠大脑中过度表达。使用利莫那班进行亚慢性治疗可使 RTT 小鼠大脑中的 mtCB1R 表达正常化,促进 mtPKA 信号传导,恢复 RTT 小鼠大脑线粒体生物能缺陷、外周氧化还原平衡异常和认知能力受损:局限性:由于利莫那班治疗对 mtCB1R 缺乏选择性,我们不能排除在 RTT 小鼠模型中治疗产生的有益效应可能更广泛地归因于对 CB1R 活性和在细胞内各区室分布的调节,而不是对 mtCB1R 介导的信号传导的选择性效应。少数实验的样本量较少是另一个限制因素,在不同的实验条件下复制主要发现可以解决这个问题:本研究数据发现,mtCB1R 过表达是 RTT 小鼠大脑中的一种新的分子改变,可能是大脑线粒体生物能缺陷和认知功能障碍的基础。
{"title":"Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome.","authors":"Livia Cosentino, Chiara Urbinati, Chiara Lanzillotta, Domenico De Rasmo, Daniela Valenti, Mattia Pellas, Maria Cristina Quattrini, Fabiana Piscitelli, Magdalena Kostrzewa, Fabio Di Domenico, Donatella Pietraforte, Tiziana Bisogno, Anna Signorile, Rosa Anna Vacca, Bianca De Filippis","doi":"10.1186/s13229-024-00617-1","DOIUrl":"10.1186/s13229-024-00617-1","url":null,"abstract":"<p><strong>Background: </strong>Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT.</p><p><strong>Methods: </strong>Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed.</p><p><strong>Results: </strong>mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice.</p><p><strong>Limitations: </strong>The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions.</p><p><strong>Conclusions: </strong>The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"39"},"PeriodicalIF":6.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contracted functional connectivity profiles in autism 自闭症患者的收缩功能连接特征
IF 6.2 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-11 DOI: 10.1186/s13229-024-00616-2
Clara F. Weber, Valeria Kebets, Oualid Benkarim, Sara Lariviere, Yezhou Wang, Alexander Ngo, Hongxiu Jiang, Xiaoqian Chai, Bo-yong Park, Michael P. Milham, Adriana Di Martino, Sofie Valk, Seok-Jun Hong, Boris C. Bernhardt
Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
自闭症谱系障碍(ASD)是一种与非典型大脑网络组织相关的神经发育疾病,先前的研究表明,功能连接的长度会导致不同的连接改变。在此,我们测试了 ASD 的功能连接病变是否与长程功能连接的中断有关。我们的方法将功能连接组学与测地距离绘图相结合,研究了宏观网络、微观结构模式以及社会人口学和临床表型之间的关联。我们研究了来自 ABIDE-I 数据集三个站点的 211 名男性,其中包括 103 名确诊为 ASD 的参与者(平均 ± SD 年龄 = 20.8 ± 8.1 岁)和 108 名神经典型对照者(NT,19.2 ± 7.2 岁)。对于每位参与者,我们通过结合大地测量距离映射和静息态功能连通性分析,计算了皮层范围内的连通性距离(CD)测量值。我们使用基于表面的线性模型比较了ASD和NT参与者的连接距离,并研究了连接距离与年龄、症状严重程度和智力评分的关系。我们将CD改变与典型网络联系起来,并探讨了与功能和微结构皮质梯度以及细胞结构皮质类型的空间关联。与NT相比,ASD患者的CD普遍减少,一般表明平均连接长度缩短,从而表明长程连接减少,但短程连接增加。减少的峰值集中在跨模态系统(即前额叶、颞叶、顶叶和颞顶枕叶皮层的异模态和旁模态区域),效应大小与大脑功能的感觉-跨模态梯度相关。与 ASD 相关的 CD 减少似乎与年龄和症状严重程度的个体间差异一致,而且我们观察到 CD 与智商分数呈正相关。尽管在三个不同的采集地点进行了严格的协调,但自闭症的异质性可能会限制我们结果的推广性。此外,我们的研究对象以男性为主,因此未来的研究需要更均衡的群体。我们的研究表明,CD 的减少是 ASD 的一种相对稳定的成像表型,它优先影响边缘系统和异模式联想系统。ASD 中 CD 的减少证实了之前关于 ASD 相关的短程过度连接和长程连接不足之间不平衡的报道。
{"title":"Contracted functional connectivity profiles in autism","authors":"Clara F. Weber, Valeria Kebets, Oualid Benkarim, Sara Lariviere, Yezhou Wang, Alexander Ngo, Hongxiu Jiang, Xiaoqian Chai, Bo-yong Park, Michael P. Milham, Adriana Di Martino, Sofie Valk, Seok-Jun Hong, Boris C. Bernhardt","doi":"10.1186/s13229-024-00616-2","DOIUrl":"https://doi.org/10.1186/s13229-024-00616-2","url":null,"abstract":"Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"24 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task-based functional neural correlates of social cognition across autism and schizophrenia spectrum disorders 基于任务的自闭症和精神分裂症谱系障碍社交认知的功能神经相关性
IF 6.2 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-04 DOI: 10.1186/s13229-024-00615-3
Lindsay D. Oliver, Iska Moxon-Emre, Colin Hawco, Erin W. Dickie, Arla Dakli, Rachael E. Lyon, Peter Szatmari, John D. Haltigan, Anna Goldenberg, Ayesha G. Rashidi, Vinh Tan, Maria T. Secara, Pushpal Desarkar, George Foussias, Robert W. Buchanan, Anil K. Malhotra, Meng-Chuan Lai, Aristotle N. Voineskos, Stephanie H. Ameis
Autism and schizophrenia spectrum disorders (SSDs) both feature atypical social cognition. Despite evidence for comparable group-level performance in lower-level emotion processing and higher-level mentalizing, limited research has examined the neural basis of social cognition across these conditions. Our goal was to compare the neural correlates of social cognition in autism, SSDs, and typically developing controls (TDCs). Data came from two harmonized studies in individuals diagnosed with autism or SSDs and TDCs (aged 16–35 years), including behavioral social cognitive metrics and two functional magnetic resonance imaging (fMRI) tasks: a social mirroring Imitate/Observe (ImObs) task and the Empathic Accuracy (EA) task. Group-level comparisons, and transdiagnostic analyses incorporating social cognitive performance, were run using FSL’s PALM for each task, covarying for age and sex (1000 permutations, thresholded at p < 0.05 FWE-corrected). Exploratory region of interest (ROI)-based analyses were also conducted. ImObs and EA analyses included 164 and 174 participants, respectively (autism N = 56/59, SSD N = 50/56, TDC N = 58/59). EA and both lower- and higher-level social cognition scores differed across groups. While canonical social cognitive networks were activated, no significant whole-brain or ROI-based group-level differences in neural correlates for either task were detected. Transdiagnostically, neural activity during the EA task, but not the ImObs task, was associated with lower- and higher-level social cognitive performance. Despite attempting to match our groups on age, sex, and race, significant group differences remained. Power to detect regional brain differences is also influenced by sample size and multiple comparisons in whole-brain analyses. Our findings may not generalize to autism and SSD individuals with co-occurring intellectual disabilities. The lack of whole-brain and ROI-based group-level differences identified and the dimensional EA brain-behavior relationship observed across our sample suggest that the EA task may be well-suited to target engagement in novel intervention testing. Our results also emphasize the potential utility of cross-condition approaches to better understand social cognition across autism and SSDs.
自闭症和精神分裂症谱系障碍(SSD)都具有不典型的社会认知特征。尽管有证据表明这两种疾病在低级情绪处理和高级心智化方面的表现具有可比性,但对这两种疾病的社会认知神经基础的研究却十分有限。我们的目标是比较自闭症患者、社会功能障碍患者和发育正常对照组(TDCs)的社会认知神经相关性。数据来自两项统一的研究,研究对象是被诊断为自闭症或 SSD 的患者和 TDCs(年龄在 16-35 岁之间),包括行为社会认知指标和两项功能磁共振成像(fMRI)任务:社会镜像模仿/观察(ImObs)任务和移情准确性(EA)任务。使用 FSL 的 PALM 对每项任务进行了组级比较,并结合社会认知表现进行了跨诊断分析,同时对年龄和性别进行了协变量分析(1000 次排列,阈值为 P < 0.05 FWE 校正)。此外,还进行了基于兴趣区域(ROI)的探索性分析。ImObs 和 EA 分析分别包括 164 和 174 名参与者(自闭症 N = 56/59,SSD N = 50/56,TDC N = 58/59)。各组的 EA 以及低级和高级社会认知得分均有所不同。虽然典型的社会认知网络被激活,但在这两项任务的神经相关性方面,均未发现明显的全脑或基于 ROI 的组间差异。从横向诊断的角度看,EA 任务中的神经活动与低级和高级社会认知表现相关,而 ImObs 任务中的神经活动与低级和高级社会认知表现无关。尽管我们试图在年龄、性别和种族上对各组进行匹配,但仍存在显著的组间差异。在全脑分析中,检测大脑区域差异的能力还受到样本大小和多重比较的影响。我们的研究结果可能无法推广到自闭症和并发智力障碍的 SSD 患者。在我们的样本中,没有发现全脑和基于 ROI 的群体水平差异,也没有观察到 EA 大脑与行为之间的维度关系,这表明 EA 任务可能非常适合用于新型干预测试中的目标参与。我们的研究结果还强调了跨条件方法在更好地理解自闭症和特殊障碍儿童的社会认知方面的潜在作用。
{"title":"Task-based functional neural correlates of social cognition across autism and schizophrenia spectrum disorders","authors":"Lindsay D. Oliver, Iska Moxon-Emre, Colin Hawco, Erin W. Dickie, Arla Dakli, Rachael E. Lyon, Peter Szatmari, John D. Haltigan, Anna Goldenberg, Ayesha G. Rashidi, Vinh Tan, Maria T. Secara, Pushpal Desarkar, George Foussias, Robert W. Buchanan, Anil K. Malhotra, Meng-Chuan Lai, Aristotle N. Voineskos, Stephanie H. Ameis","doi":"10.1186/s13229-024-00615-3","DOIUrl":"https://doi.org/10.1186/s13229-024-00615-3","url":null,"abstract":"Autism and schizophrenia spectrum disorders (SSDs) both feature atypical social cognition. Despite evidence for comparable group-level performance in lower-level emotion processing and higher-level mentalizing, limited research has examined the neural basis of social cognition across these conditions. Our goal was to compare the neural correlates of social cognition in autism, SSDs, and typically developing controls (TDCs). Data came from two harmonized studies in individuals diagnosed with autism or SSDs and TDCs (aged 16–35 years), including behavioral social cognitive metrics and two functional magnetic resonance imaging (fMRI) tasks: a social mirroring Imitate/Observe (ImObs) task and the Empathic Accuracy (EA) task. Group-level comparisons, and transdiagnostic analyses incorporating social cognitive performance, were run using FSL’s PALM for each task, covarying for age and sex (1000 permutations, thresholded at p < 0.05 FWE-corrected). Exploratory region of interest (ROI)-based analyses were also conducted. ImObs and EA analyses included 164 and 174 participants, respectively (autism N = 56/59, SSD N = 50/56, TDC N = 58/59). EA and both lower- and higher-level social cognition scores differed across groups. While canonical social cognitive networks were activated, no significant whole-brain or ROI-based group-level differences in neural correlates for either task were detected. Transdiagnostically, neural activity during the EA task, but not the ImObs task, was associated with lower- and higher-level social cognitive performance. Despite attempting to match our groups on age, sex, and race, significant group differences remained. Power to detect regional brain differences is also influenced by sample size and multiple comparisons in whole-brain analyses. Our findings may not generalize to autism and SSD individuals with co-occurring intellectual disabilities. The lack of whole-brain and ROI-based group-level differences identified and the dimensional EA brain-behavior relationship observed across our sample suggest that the EA task may be well-suited to target engagement in novel intervention testing. Our results also emphasize the potential utility of cross-condition approaches to better understand social cognition across autism and SSDs.","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"38 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced motor noise in an autism subtype with poor motor skills. 自闭症亚型中运动技能较差者的运动噪音增强。
IF 6.3 1区 医学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-03 DOI: 10.1186/s13229-024-00618-0
Veronica Mandelli, Isotta Landi, Silvia Busti Ceccarelli, Massimo Molteni, Maria Nobile, Alessandro D'Ausilio, Luciano Fadiga, Alessandro Crippa, Michael V Lombardo

Background: Motor difficulties are common in many, but not all, autistic individuals. These difficulties can co-occur with other problems, such as delays in language, intellectual, and adaptive functioning. Biological mechanisms underpinning such difficulties are less well understood. Poor motor skills tend to be more common in individuals carrying highly penetrant rare genetic mutations. Such mechanisms may have downstream consequences of altering neurophysiological excitation-inhibition balance and lead to enhanced behavioral motor noise.

Methods: This study combined publicly available and in-house datasets of autistic (n = 156), typically-developing (TD, n = 149), and developmental coordination disorder (DCD, n = 23) children (age 3-16 years). Autism motor subtypes were identified based on patterns of motor abilities measured from the Movement Assessment Battery for Children 2nd edition. Stability-based relative clustering validation was used to identify autism motor subtypes and evaluate generalization accuracy in held-out data. Autism motor subtypes were tested for differences in motor noise, operationalized as the degree of dissimilarity between repeated motor kinematic trajectories recorded during a simple reach-to-drop task.

Results: Relatively 'high' (n = 87) versus 'low' (n = 69) autism motor subtypes could be detected and which generalize with 89% accuracy in held-out data. The relatively 'low' subtype was lower in general intellectual ability and older at age of independent walking, but did not differ in age at first words or autistic traits or symptomatology. Motor noise was considerably higher in the 'low' subtype compared to 'high' (Cohen's d = 0.77) or TD children (Cohen's d = 0.85), but similar between autism 'high' and TD children (Cohen's d = 0.08). Enhanced motor noise in the 'low' subtype was also most pronounced during the feedforward phase of reaching actions.

Limitations: The sample size of this work is limited. Future work in larger samples along with independent replication is important. Motor noise was measured only on one specific motor task. Thus, a more comprehensive assessment of motor noise on many other motor tasks is needed.

Conclusions: Autism can be split into at least two discrete motor subtypes that are characterized by differing levels of motor noise. This suggests that autism motor subtypes may be underpinned by different biological mechanisms.

背景:运动障碍常见于许多自闭症患者,但并非所有自闭症患者。这些困难可能与其他问题同时出现,如语言、智力和适应功能方面的迟缓。人们对造成这些障碍的生物学机制还不甚了解。运动能力差往往更常见于携带高渗透性罕见基因突变的个体。这些机制可能会产生改变神经生理兴奋-抑制平衡的下游后果,并导致行为运动噪声增强:本研究结合了自闭症儿童(156 人)、典型发育障碍儿童(149 人)和发育协调障碍儿童(23 人)(3-16 岁)的公开数据集和内部数据集。自闭症运动亚型是根据儿童运动评估电池第二版测量的运动能力模式确定的。采用基于稳定性的相对聚类验证来识别自闭症运动亚型,并评估保留数据的泛化准确性。测试了自闭症运动亚型在运动噪音方面的差异,运动噪音是指在简单的 "伸手投掷 "任务中记录的重复运动轨迹之间的差异程度:结果:可以检测出相对 "高"(87 人)和 "低"(69 人)的自闭症运动亚型,这些亚型在保留数据中的通用准确率为 89%。相对 "低 "亚型的一般智力水平较低,独立行走的年龄较大,但在首次开口说话的年龄、自闭症特征或症状方面没有差异。与 "高"(Cohen's d = 0.77)或 TD 儿童(Cohen's d = 0.85)相比,"低 "亚型儿童的运动噪音要高得多,但自闭症 "高 "儿童与 TD 儿童的运动噪音相似(Cohen's d = 0.08)。在伸手动作的前馈阶段,"低 "亚型儿童的运动噪声增强也最为明显:局限性:这项研究的样本量有限。局限性:这项研究的样本量有限,未来在更大样本中进行独立重复研究非常重要。仅在一项特定的运动任务中测量了运动噪音。因此,需要对许多其他运动任务的运动噪音进行更全面的评估:结论:自闭症至少可分为两种不同的运动亚型,它们的运动噪声水平各不相同。这表明自闭症运动亚型可能由不同的生物机制支撑。
{"title":"Enhanced motor noise in an autism subtype with poor motor skills.","authors":"Veronica Mandelli, Isotta Landi, Silvia Busti Ceccarelli, Massimo Molteni, Maria Nobile, Alessandro D'Ausilio, Luciano Fadiga, Alessandro Crippa, Michael V Lombardo","doi":"10.1186/s13229-024-00618-0","DOIUrl":"10.1186/s13229-024-00618-0","url":null,"abstract":"<p><strong>Background: </strong>Motor difficulties are common in many, but not all, autistic individuals. These difficulties can co-occur with other problems, such as delays in language, intellectual, and adaptive functioning. Biological mechanisms underpinning such difficulties are less well understood. Poor motor skills tend to be more common in individuals carrying highly penetrant rare genetic mutations. Such mechanisms may have downstream consequences of altering neurophysiological excitation-inhibition balance and lead to enhanced behavioral motor noise.</p><p><strong>Methods: </strong>This study combined publicly available and in-house datasets of autistic (n = 156), typically-developing (TD, n = 149), and developmental coordination disorder (DCD, n = 23) children (age 3-16 years). Autism motor subtypes were identified based on patterns of motor abilities measured from the Movement Assessment Battery for Children 2nd edition. Stability-based relative clustering validation was used to identify autism motor subtypes and evaluate generalization accuracy in held-out data. Autism motor subtypes were tested for differences in motor noise, operationalized as the degree of dissimilarity between repeated motor kinematic trajectories recorded during a simple reach-to-drop task.</p><p><strong>Results: </strong>Relatively 'high' (n = 87) versus 'low' (n = 69) autism motor subtypes could be detected and which generalize with 89% accuracy in held-out data. The relatively 'low' subtype was lower in general intellectual ability and older at age of independent walking, but did not differ in age at first words or autistic traits or symptomatology. Motor noise was considerably higher in the 'low' subtype compared to 'high' (Cohen's d = 0.77) or TD children (Cohen's d = 0.85), but similar between autism 'high' and TD children (Cohen's d = 0.08). Enhanced motor noise in the 'low' subtype was also most pronounced during the feedforward phase of reaching actions.</p><p><strong>Limitations: </strong>The sample size of this work is limited. Future work in larger samples along with independent replication is important. Motor noise was measured only on one specific motor task. Thus, a more comprehensive assessment of motor noise on many other motor tasks is needed.</p><p><strong>Conclusions: </strong>Autism can be split into at least two discrete motor subtypes that are characterized by differing levels of motor noise. This suggests that autism motor subtypes may be underpinned by different biological mechanisms.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"15 1","pages":"36"},"PeriodicalIF":6.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Autism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1