Pub Date : 2024-07-01Epub Date: 2024-05-02DOI: 10.1091/mbc.E24-02-0096-T
Caroline Q Connors, Michael S Mauro, J Tristian Wiles, Andrew D Countryman, Sophia L Martin, Benjamin Lacroix, Mimi Shirasu-Hiza, Julien Dumont, Karen E Kasza, Timothy R Davies, Julie C Canman
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.
{"title":"Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the cell division plane.","authors":"Caroline Q Connors, Michael S Mauro, J Tristian Wiles, Andrew D Countryman, Sophia L Martin, Benjamin Lacroix, Mimi Shirasu-Hiza, Julien Dumont, Karen E Kasza, Timothy R Davies, Julie C Canman","doi":"10.1091/mbc.E24-02-0096-T","DOIUrl":"10.1091/mbc.E24-02-0096-T","url":null,"abstract":"<p><p>Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using <i>formin<sup>cyk-1</sup>(ts)</i> mutant <i>Caenorhabditis elegans</i> 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septin<sup>UNC-59</sup> and anillin<sup>ANI-1</sup> at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-29DOI: 10.1091/mbc.E24-01-0013
Russell J R Barkley, Jack C Crowley, Andrew J Brodrick, Warren R Zipfel, John S L Parker
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
{"title":"Fluorescent protein tags affect the condensation properties of a phase-separating viral protein.","authors":"Russell J R Barkley, Jack C Crowley, Andrew J Brodrick, Warren R Zipfel, John S L Parker","doi":"10.1091/mbc.E24-01-0013","DOIUrl":"10.1091/mbc.E24-01-0013","url":null,"abstract":"<p><p>Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-02DOI: 10.1091/mbc.E24-03-0130
Stephen M King, Miho Sakato-Antoku, Ramila S Patel-King, Jeremy L Balsbaugh
Cilia are highly complex motile, sensory, and secretory organelles that contain perhaps 1000 or more distinct protein components, many of which are subject to various posttranslational modifications such as phosphorylation, N-terminal acetylation, and proteolytic processing. Another common modification is the addition of one or more methyl groups to the side chains of arginine and lysine residues. These tunable additions delocalize the side-chain charge, decrease hydrogen bond capacity, and increase both bulk and hydrophobicity. Methylation is usually mediated by S-adenosylmethionine (SAM)-dependent methyltransferases and reversed by demethylases. Previous studies have identified several ciliary proteins that are subject to methylation including axonemal dynein heavy chains that are modified by a cytosolic methyltransferase. Here, we have performed an extensive proteomic analysis of multiple independently derived cilia samples to assess the potential for SAM metabolism and the extent of methylation in these organelles. We find that cilia contain all the enzymes needed for generation of the SAM methyl donor and recycling of the S-adenosylhomocysteine and tetrahydrofolate byproducts. In addition, we find that at least 155 distinct ciliary proteins are methylated, in some cases at multiple sites. These data provide a comprehensive resource for studying the consequences of methyl marks on ciliary biology.
纤毛是高度复杂的运动、感觉和分泌细胞器,包含大约 1,000 种或更多不同的蛋白质成分,其中许多都经过各种翻译后修饰,如磷酸化、N 端乙酰化和蛋白水解加工。另一种常见的修饰是在精氨酸和赖氨酸残基的侧链上添加一个或多个甲基。这些可调的添加可分散侧链电荷,降低氢键能力,增加体积和疏水性。甲基化通常由依赖 S-腺苷蛋氨酸(SAM)的甲基转移酶介导,并由去甲基化酶逆转。以前的研究已经发现了几种受甲基化影响的纤毛蛋白,包括由细胞质甲基转移酶修饰的轴突动力蛋白重链。在这里,我们对多个独立获得的纤毛样本进行了广泛的蛋白质组分析,以评估这些细胞器中 SAM 代谢的潜力和甲基化的程度。我们发现,纤毛含有生成 SAM 甲基供体以及回收 S-腺苷高半胱氨酸和四氢叶酸副产物所需的所有酶。此外,我们还发现至少有 155 种不同的纤毛蛋白被甲基化,在某些情况下是在多个位点被甲基化。这些数据为研究甲基标记对纤毛生物学的影响提供了全面的资源。
{"title":"The methylome of motile cilia.","authors":"Stephen M King, Miho Sakato-Antoku, Ramila S Patel-King, Jeremy L Balsbaugh","doi":"10.1091/mbc.E24-03-0130","DOIUrl":"10.1091/mbc.E24-03-0130","url":null,"abstract":"<p><p>Cilia are highly complex motile, sensory, and secretory organelles that contain perhaps 1000 or more distinct protein components, many of which are subject to various posttranslational modifications such as phosphorylation, N-terminal acetylation, and proteolytic processing. Another common modification is the addition of one or more methyl groups to the side chains of arginine and lysine residues. These tunable additions delocalize the side-chain charge, decrease hydrogen bond capacity, and increase both bulk and hydrophobicity. Methylation is usually mediated by S-adenosylmethionine (SAM)-dependent methyltransferases and reversed by demethylases. Previous studies have identified several ciliary proteins that are subject to methylation including axonemal dynein heavy chains that are modified by a cytosolic methyltransferase. Here, we have performed an extensive proteomic analysis of multiple independently derived cilia samples to assess the potential for SAM metabolism and the extent of methylation in these organelles. We find that cilia contain all the enzymes needed for generation of the SAM methyl donor and recycling of the S-adenosylhomocysteine and tetrahydrofolate byproducts. In addition, we find that at least 155 distinct ciliary proteins are methylated, in some cases at multiple sites. These data provide a comprehensive resource for studying the consequences of methyl marks on ciliary biology.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-08DOI: 10.1091/mbc.E24-01-0042
Joseph Yoniles, Jacob A Summers, Kara A Zielinski, Cali Antolini, Mayura Panjalingam, Stella Lisova, Frank R Moss, Maximus Aldo Di Perna, Christopher Kupitz, Mark S Hunter, Lois Pollack, Soichi Wakatsuki, Peter D Dahlberg
Cryogenic electron tomography (cryo-ET) is the highest resolution imaging technique applicable to the life sciences, enabling subnanometer visualization of specimens preserved in their near native states. The rapid plunge freezing process used to prepare samples lends itself to time-resolved studies, which researchers have pursued for in vitro samples for decades. Here, we focus on developing a freezing apparatus for time-resolved studies in situ. The device mixes cellular samples with solution-phase stimulants before spraying them directly onto an electron microscopy grid that is transiting into cryogenic liquid ethane. By varying the flow rates of cell and stimulant solutions within the device, we can control the reaction time from tens of milliseconds to over a second before freezing. In a proof-of-principle demonstration, the freezing method is applied to a model bacterium, Caulobacter crescentus, mixed with an acidic buffer. Through cryo-ET we resolved structural changes throughout the cell, including surface-layer protein dissolution, outer membrane deformation, and cytosolic rearrangement, all within 1.5 s of reaction time. This new approach, Time-Resolved cryo-ET (TR-cryo-ET), enhances the capabilities of cryo-ET by incorporating a subsecond temporal axis and enables the visualization of induced structural changes at the molecular, organelle, or cellular level.
{"title":"Time-resolved cryogenic electron tomography for the study of transient cellular processes.","authors":"Joseph Yoniles, Jacob A Summers, Kara A Zielinski, Cali Antolini, Mayura Panjalingam, Stella Lisova, Frank R Moss, Maximus Aldo Di Perna, Christopher Kupitz, Mark S Hunter, Lois Pollack, Soichi Wakatsuki, Peter D Dahlberg","doi":"10.1091/mbc.E24-01-0042","DOIUrl":"10.1091/mbc.E24-01-0042","url":null,"abstract":"<p><p>Cryogenic electron tomography (cryo-ET) is the highest resolution imaging technique applicable to the life sciences, enabling subnanometer visualization of specimens preserved in their near native states. The rapid plunge freezing process used to prepare samples lends itself to time-resolved studies, which researchers have pursued for in vitro samples for decades. Here, we focus on developing a freezing apparatus for time-resolved studies in situ. The device mixes cellular samples with solution-phase stimulants before spraying them directly onto an electron microscopy grid that is transiting into cryogenic liquid ethane. By varying the flow rates of cell and stimulant solutions within the device, we can control the reaction time from tens of milliseconds to over a second before freezing. In a proof-of-principle demonstration, the freezing method is applied to a model bacterium, <i>Caulobacter crescentus,</i> mixed with an acidic buffer. Through cryo-ET we resolved structural changes throughout the cell, including surface-layer protein dissolution, outer membrane deformation, and cytosolic rearrangement, all within 1.5 s of reaction time. This new approach, Time-Resolved cryo-ET (TR-cryo-ET), enhances the capabilities of cryo-ET by incorporating a subsecond temporal axis and enables the visualization of induced structural changes at the molecular, organelle, or cellular level.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-17DOI: 10.1091/mbc.E24-04-0154
Tomohiro Kubo, Rinka Sasaki, Toshiyuki Oda
Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on β-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of β-tubulin.
{"title":"Tubulin glycylation controls ciliary motility through modulation of outer-arm dyneins.","authors":"Tomohiro Kubo, Rinka Sasaki, Toshiyuki Oda","doi":"10.1091/mbc.E24-04-0154","DOIUrl":"10.1091/mbc.E24-04-0154","url":null,"abstract":"<p><p>Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel <i>Chlamydomonas</i> mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, <i>ttll3(ex5)</i>, completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the <i>ttll3(ex5)</i> mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on β-tubulin in <i>Chlamydomonas</i>, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of β-tubulin.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-29DOI: 10.1091/mbc.E23-11-0430
Angelo Antiguas, Martine Dunnwald
Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.
{"title":"A novel noncanonical function for IRF6 in the recycling of E-cadherin.","authors":"Angelo Antiguas, Martine Dunnwald","doi":"10.1091/mbc.E23-11-0430","DOIUrl":"10.1091/mbc.E23-11-0430","url":null,"abstract":"<p><p>Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-17DOI: 10.1091/mbc.E23-09-0365
Jordan M Barrows, Barbara K Talavera-Figueroa, Isaac P Payne, Erika L Smith, Erin D Goley
Bacterial cell division is crucial for replication and requires careful coordination via proteins collectively called the divisome. The tubulin-like GTPase FtsZ is the master regulator of this process and serves to recruit downstream divisome proteins and regulate their activities. Upon assembling at mid-cell, FtsZ exhibits treadmilling motion driven by GTP binding and hydrolysis. Treadmilling is proposed to play roles in Z-ring condensation and in distribution and regulation of peptidoglycan (PG) cell wall enzymes. FtsZ polymer superstructure and dynamics are central to its function, yet their regulation is incompletely understood. We addressed these gaps in knowledge by evaluating the contribution of GTPase activity to FtsZ's function in vitro and in Caulobacter crescentus cells. We observed that a lethal mutation that abrogates FtsZ GTP hydrolysis impacts FtsZ dynamics and Z-ring positioning, but not constriction. Aberrant Z-ring positioning was due to insensitivity to the FtsZ regulator MipZ when GTPase activity is reduced. Z-ring mislocalization resulted in DNA damage, likely due to constriction over the nucleoid. Collectively, our results indicate that GTP hydrolysis serves primarily to position the Z-ring at mid-cell in Caulobacter. Proper Z-ring localization is required for effective coordination with chromosome segregation to prevent DNA damage and ensure successful cell division.
细菌细胞分裂对复制至关重要,需要通过统称为 "分裂体 "的蛋白质进行精心协调。管蛋白样 GTP 酶 FtsZ 是这一过程的主调节器,它能招募下游的 divisome 蛋白并调节它们的活动。FtsZ 在细胞中段组装后,在 GTP 结合和水解的驱动下表现出踩踏运动。据推测,踩踏运动在 Z 环缩合以及肽聚糖(PG)细胞壁酶的分布和调控中发挥作用。FtsZ 聚合物的上层结构和动力学是其功能的核心,但人们对它们的调控却知之甚少。我们通过评估体外和新月杆菌细胞中 GTPase 活性对 FtsZ 功能的贡献,填补了这些知识空白。我们观察到,终止 FtsZ GTP 水解的致死突变会影响 FtsZ 的动态和 Z 环定位,但不会影响收缩。Z环定位异常是由于当GTP酶活性降低时对FtsZ调节剂MipZ不敏感。Z环定位错误会导致DNA损伤,这可能是由于核膜收缩造成的。总之,我们的研究结果表明,GTP水解的主要作用是将Z环定位在钙杆菌的细胞中部。正确的 Z 环定位需要与染色体分离有效协调,以防止 DNA 损伤并确保细胞分裂成功。
{"title":"GTPase activity regulates FtsZ ring positioning in <i>Caulobacter crescentus</i>.","authors":"Jordan M Barrows, Barbara K Talavera-Figueroa, Isaac P Payne, Erika L Smith, Erin D Goley","doi":"10.1091/mbc.E23-09-0365","DOIUrl":"10.1091/mbc.E23-09-0365","url":null,"abstract":"<p><p>Bacterial cell division is crucial for replication and requires careful coordination via proteins collectively called the divisome. The tubulin-like GTPase FtsZ is the master regulator of this process and serves to recruit downstream divisome proteins and regulate their activities. Upon assembling at mid-cell, FtsZ exhibits treadmilling motion driven by GTP binding and hydrolysis. Treadmilling is proposed to play roles in Z-ring condensation and in distribution and regulation of peptidoglycan (PG) cell wall enzymes. FtsZ polymer superstructure and dynamics are central to its function, yet their regulation is incompletely understood. We addressed these gaps in knowledge by evaluating the contribution of GTPase activity to FtsZ's function in vitro and in <i>Caulobacter crescentus</i> cells. We observed that a lethal mutation that abrogates FtsZ GTP hydrolysis impacts FtsZ dynamics and Z-ring positioning, but not constriction. Aberrant Z-ring positioning was due to insensitivity to the FtsZ regulator MipZ when GTPase activity is reduced. Z-ring mislocalization resulted in DNA damage, likely due to constriction over the nucleoid. Collectively, our results indicate that GTP hydrolysis serves primarily to position the Z-ring at mid-cell in <i>Caulobacter</i>. Proper Z-ring localization is required for effective coordination with chromosome segregation to prevent DNA damage and ensure successful cell division.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-22DOI: 10.1091/mbc.E23-08-0324
Carla E Lanze, James B Konopka
The human fungal pathogen Candida albicans can cause lethal systemic infections due to its ability to resist stress from the host and to undergo invasive hyphal growth. Previous studies showed that plasma membrane MCC/eisosome domains were important for virulence by promoting the ability of Sur7 to mediate normal cell wall morphogenesis and stress resistance. The sur7Δ mutant displayed abnormal clusters of PI4,5P2, suggesting that misregulation of this lipid underlies the sur7Δ phenotype. To test this, we increased PI4,5P2 levels by deleting combinations of the three PI4,5P2 5' phosphatase genes (INP51, INP52, and INP54) and found that some combinations, such as inp51Δ inp52Δ, gave phenotypes similar the sur7Δ mutant. In contrast, deleting one copy of MSS4, the gene that encodes the 5' kinase needed to create PI4,5P2, reduced the abnormal PI4,5P2 clusters and also decreased the abnormal cell wall and stress sensitive phenotypes of the sur7Δ mutant. Additional studies support a model that the abnormal PI4,5P2 patches recruit septin proteins, which in turn promote aberrant cell wall growth. These results identify Sur7 as a novel regulator of PI4,5P2 and highlight the critical role of PI4,5P2 in the regulation of C. albicans virulence properties.
{"title":"Sur7 mediates a novel pathway for PI<sub>4,5</sub>P<sub>2</sub> regulation in <i>C. albicans</i> that promotes stress resistance and cell wall morphogenesis.","authors":"Carla E Lanze, James B Konopka","doi":"10.1091/mbc.E23-08-0324","DOIUrl":"10.1091/mbc.E23-08-0324","url":null,"abstract":"<p><p>The human fungal pathogen <i>Candida albicans</i> can cause lethal systemic infections due to its ability to resist stress from the host and to undergo invasive hyphal growth. Previous studies showed that plasma membrane MCC/eisosome domains were important for virulence by promoting the ability of Sur7 to mediate normal cell wall morphogenesis and stress resistance. The <i>sur7Δ</i> mutant displayed abnormal clusters of PI<sub>4,5</sub>P<sub>2</sub>, suggesting that misregulation of this lipid underlies the <i>sur7Δ</i> phenotype. To test this, we increased PI<sub>4,5</sub>P<sub>2</sub> levels by deleting combinations of the three PI<sub>4,5</sub>P<sub>2</sub> 5' phosphatase genes (<i>INP51</i>, <i>INP52</i>, and <i>INP54</i>) and found that some combinations, such as <i>inp51Δ inp52Δ</i>, gave phenotypes similar the <i>sur7Δ</i> mutant. In contrast, deleting one copy of <i>MSS4</i>, the gene that encodes the 5' kinase needed to create PI<sub>4,5</sub>P<sub>2</sub>, reduced the abnormal PI<sub>4,5</sub>P<sub>2</sub> clusters and also decreased the abnormal cell wall and stress sensitive phenotypes of the <i>sur7Δ</i> mutant. Additional studies support a model that the abnormal PI<sub>4,5</sub>P<sub>2</sub> patches recruit septin proteins, which in turn promote aberrant cell wall growth. These results identify Sur7 as a novel regulator of PI<sub>4,5</sub>P<sub>2</sub> and highlight the critical role of PI<sub>4,5</sub>P<sub>2</sub> in the regulation of <i>C. albicans</i> virulence properties.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-17DOI: 10.1091/mbc.E23-04-0139
Piyush Daga, Basil Thurakkal, Simran Rawal, Tamal Das
Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.
{"title":"Matrix stiffening promotes perinuclear clustering of mitochondria.","authors":"Piyush Daga, Basil Thurakkal, Simran Rawal, Tamal Das","doi":"10.1091/mbc.E23-04-0139","DOIUrl":"10.1091/mbc.E23-04-0139","url":null,"abstract":"<p><p>Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-29DOI: 10.1091/mbc.E23-12-0488
Courtney J Matheny, Hiroshi Qadota, Aaron O Bailey, Silvana Valdebenito-Silva, Andres F Oberhauser, Guy M Benian
C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.
{"title":"The myosin chaperone UNC-45 has an important role in maintaining the structure and function of muscle sarcomeres during adult aging.","authors":"Courtney J Matheny, Hiroshi Qadota, Aaron O Bailey, Silvana Valdebenito-Silva, Andres F Oberhauser, Guy M Benian","doi":"10.1091/mbc.E23-12-0488","DOIUrl":"10.1091/mbc.E23-12-0488","url":null,"abstract":"<p><p><i>C. elegans</i> undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in <i>age-1</i> delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}