首页 > 最新文献

Modern Physics Letters A最新文献

英文 中文
Efficient and secure semi-quantum private comparison protocol using three-particle GHZ-like states against participant attack 利用三粒子 GHZ 类态对抗参与者攻击的高效安全半量子私密比较协议
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-09 DOI: 10.1142/s0217732324500378
Chun-Wei Yang, Yu-Yun Huang, Jason Lin, Chia-Wei Tsai

This study identifies a participant attack vulnerability in Li et al.’s SQPC protocol. The participant attack allows a malicious participant, Bob, to obtain the participant Alice’s secret information by intercepting and measuring photons sent to Alice, and later decrypting Alice’s encrypted comparison result. An improved SQPC protocol is proposed to address this problem. The key enhancement is introducing a mutual eavesdropping check requiring the third party and participants to verify they obtain the same photon measurement results. This enables detecting participant attacks like the one identified. The SQPC protocol proposed in this study not only withstands attacks from internal participants but also achieves quantum efficiency almost equivalent to Li et al.’s SQPC protocol. Thus, this study presents a more secure SQPC protocol without compromising quantum efficiency.

本研究发现了 Li 等人的 SQPC 协议中的参与者攻击漏洞。参与方攻击允许恶意参与方鲍勃通过拦截和测量发送给爱丽丝的光子来获取参与方爱丽丝的秘密信息,随后解密爱丽丝的加密比较结果。针对这一问题,我们提出了一种改进的 SQPC 协议。改进的关键在于引入了相互窃听检查,要求第三方和参与者验证他们获得的光子测量结果是否相同。这样就能检测出类似已发现的参与者攻击。本研究提出的 SQPC 协议不仅能抵御来自内部参与者的攻击,还能实现几乎等同于 Li 等人的 SQPC 协议的量子效率。因此,本研究提出了一种更安全的 SQPC 协议,同时不影响量子效率。
{"title":"Efficient and secure semi-quantum private comparison protocol using three-particle GHZ-like states against participant attack","authors":"Chun-Wei Yang, Yu-Yun Huang, Jason Lin, Chia-Wei Tsai","doi":"10.1142/s0217732324500378","DOIUrl":"https://doi.org/10.1142/s0217732324500378","url":null,"abstract":"<p>This study identifies a participant attack vulnerability in Li <i>et al</i>.’s SQPC protocol. The participant attack allows a malicious participant, Bob, to obtain the participant Alice’s secret information by intercepting and measuring photons sent to Alice, and later decrypting Alice’s encrypted comparison result. An improved SQPC protocol is proposed to address this problem. The key enhancement is introducing a mutual eavesdropping check requiring the third party and participants to verify they obtain the same photon measurement results. This enables detecting participant attacks like the one identified. The SQPC protocol proposed in this study not only withstands attacks from internal participants but also achieves quantum efficiency almost equivalent to Li <i>et al</i>.’s SQPC protocol. Thus, this study presents a more secure SQPC protocol without compromising quantum efficiency.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"38 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squeezing effect on D+∕D− with nonzero chemical potential 非零化学势对 D+∕D- 的挤压效应
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-09 DOI: 10.1142/s0217732324500421
Hong-Jie Yin, Jia-Hui Feng, Yong Zhang
<p>The medium mass modification may lead to a squeezing effect. In the baryonic medium, the mass of <i>D</i> meson was expected to reduce and the in-medium masses of <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> may show a splitting effect, and the chemical potential of <i>D</i> meson may be not zero. We study the squeezing effect on the yield ratio <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential. Due to the in-medium mass splitting, the squeezing effect on the momentum distributions of <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> are different. Without the squeezing effect, the yield ratio <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> remains constant as the transverse momentum increases. The yield ratio <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> is affected by the squeezing effect, resulting in a dependence on transverse momentum. An increase in transverse momentum leads to a decrease in the yield ratio, especially when there is a high chemical potential. Additionally, the in-medium mass splitting amplifies this phenomenon. The yield ratio <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential approaches 1 when there is a large average in-medium mass reduction, which becomes more evident at higher transverse momentum. The study of the squeezing effect on the yield ratio <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential may be meaningful for the CBM and PANDA experiments
介质质量的改变可能会导致挤压效应。在重子介质中,D介子的质量预计会减小,D+和D-的介质质量可能会出现分裂效应,D介子的化学势可能不为零。我们研究了非零化学势对 D+∕D-产率的挤压效应。由于中间质量分裂,挤压效应对 D+ 和 D- 的动量分布的影响是不同的。在没有挤压效应的情况下,随着横向动量的增加,屈服比 D+∕D- 保持不变。屈服比 D+∕D- 受到挤压效应的影响,从而与横动量有关。横动量的增加会导致屈服比的降低,尤其是在化学势较高的情况下。此外,中间质量分裂也会放大这一现象。当中间平均质量减少较大时,非零化学势的屈服比 D+∕D- 接近 1,这在横动量较大时更为明显。对化学势为非零的屈服比 D+∕D- 的挤压效应的研究可能对 GSI FAIR 项目的 CBM 和 PANDA 实验很有意义。
{"title":"Squeezing effect on D+∕D− with nonzero chemical potential","authors":"Hong-Jie Yin, Jia-Hui Feng, Yong Zhang","doi":"10.1142/s0217732324500421","DOIUrl":"https://doi.org/10.1142/s0217732324500421","url":null,"abstract":"&lt;p&gt;The medium mass modification may lead to a squeezing effect. In the baryonic medium, the mass of &lt;i&gt;D&lt;/i&gt; meson was expected to reduce and the in-medium masses of &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; may show a splitting effect, and the chemical potential of &lt;i&gt;D&lt;/i&gt; meson may be not zero. We study the squeezing effect on the yield ratio &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; with nonzero chemical potential. Due to the in-medium mass splitting, the squeezing effect on the momentum distributions of &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; are different. Without the squeezing effect, the yield ratio &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; remains constant as the transverse momentum increases. The yield ratio &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is affected by the squeezing effect, resulting in a dependence on transverse momentum. An increase in transverse momentum leads to a decrease in the yield ratio, especially when there is a high chemical potential. Additionally, the in-medium mass splitting amplifies this phenomenon. The yield ratio &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; with nonzero chemical potential approaches 1 when there is a large average in-medium mass reduction, which becomes more evident at higher transverse momentum. The study of the squeezing effect on the yield ratio &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; with nonzero chemical potential may be meaningful for the CBM and PANDA experiments ","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical properties of the 𝒜κ<0 Weyl–Heisenberg algebra coherent states 韦尔-海森堡代数相干态的𝒜κ<0统计特性
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s021773232450024x
M. Alaoui, E. Mouhaoui, B. Maroufi, M. Daoud

In this paper, we study the one-parameter κ-generalized oscillator algebra 𝒜κ (which includes the case of the standard Weyl–Heisenberg algebra). This algebra admits representations of finite-dimensional for negative values of the parameter κ. We construct the associated Perelomov like coherent states. We discuss their statistical properties. In particular, we derive the expressions of the Mandel parameter and Husimi function and we discuss the squeezing of the 𝒜κ coherent states.

本文研究单参数κ广义振荡器代数𝒜κ(包括标准韦尔-海森堡代数的情况)。对于参数κ的负值,该代数允许有限维的表示。我们构建了相关的佩雷洛莫夫相干态。我们讨论了它们的统计特性。特别是,我们推导了曼德尔参数和胡西米函数的表达式,并讨论了𝒜κ相干态的挤压问题。
{"title":"Statistical properties of the 𝒜κ<0 Weyl–Heisenberg algebra coherent states","authors":"M. Alaoui, E. Mouhaoui, B. Maroufi, M. Daoud","doi":"10.1142/s021773232450024x","DOIUrl":"https://doi.org/10.1142/s021773232450024x","url":null,"abstract":"<p>In this paper, we study the one-parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span>-generalized oscillator algebra <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒜</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> (which includes the case of the standard Weyl–Heisenberg algebra). This algebra admits representations of finite-dimensional for negative values of the parameter <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span>. We construct the associated Perelomov like coherent states. We discuss their statistical properties. In particular, we derive the expressions of the Mandel parameter and Husimi function and we discuss the squeezing of the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒜</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> coherent states.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"75 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum thermodynamics of small systems: The anyonic otto engine 小型系统的量子热力学奥托引擎
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500202
H. S. Mani, N. Ramadas, V. V. Sreedhar

Recent advances in applying thermodynamic ideas to quantum systems have raised the novel prospect of using non-thermal, non-classical sources of energy, of purely quantum origin, like quantum statistics, to extract mechanical work in macroscopic quantum systems like Bose–Einstein condensates. On the other hand, thermodynamic ideas have also been applied to small systems like single molecules and quantum dots. In this paper, we study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons. Formulae are derived for the efficiency of the Otto engine as a function of the statistics parameter.

将热力学思想应用于量子系统的最新进展,为利用非热、非经典、纯量子源能量(如量子统计量)在玻色-爱因斯坦凝聚物等宏观量子系统中提取机械功带来了新的前景。另一方面,热力学思想也被应用于单个分子和量子点等小系统。在本文中,我们研究了由任子组成的小系统的量子热力学,并特别强调了量子奥托引擎,该引擎仅使用一个或两个任子作为工作介质。我们推导出了奥托引擎效率与统计参数函数的关系式。
{"title":"Quantum thermodynamics of small systems: The anyonic otto engine","authors":"H. S. Mani, N. Ramadas, V. V. Sreedhar","doi":"10.1142/s0217732324500202","DOIUrl":"https://doi.org/10.1142/s0217732324500202","url":null,"abstract":"<p>Recent advances in applying thermodynamic ideas to quantum systems have raised the novel prospect of using non-thermal, non-classical sources of energy, of purely quantum origin, like quantum statistics, to extract mechanical work in macroscopic quantum systems like Bose–Einstein condensates. On the other hand, thermodynamic ideas have also been applied to small systems like single molecules and quantum dots. In this paper, we study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons. Formulae are derived for the efficiency of the Otto engine as a function of the statistics parameter.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"46 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotational and self-similar solutions to the 2D Euler equations for Chaplygin gas 查普利金气体二维欧拉方程的旋转解和自相似解
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324750026
Guangpu Lou, Jianwei Dong

In this paper, we study the 2D Euler equations for Chaplygin gas, which is a model for dark energy of the universe in some of cosmology theories. By using an ansatz developed by Yuen, we present some rotational and self-similar analytical solutions. We obtain the global existence of the constructed solutions and investigate the qualitative properties of the gas density according to various parameters.

本文研究了查普利金气体的二维欧拉方程,查普利金气体是一些宇宙学理论中的宇宙暗能量模型。通过使用袁隆平提出的一个等式,我们给出了一些旋转和自相似的解析解。我们得到了所建解的全局存在性,并研究了气体密度随不同参数的定性性质。
{"title":"Rotational and self-similar solutions to the 2D Euler equations for Chaplygin gas","authors":"Guangpu Lou, Jianwei Dong","doi":"10.1142/s0217732324750026","DOIUrl":"https://doi.org/10.1142/s0217732324750026","url":null,"abstract":"<p>In this paper, we study the 2D Euler equations for Chaplygin gas, which is a model for dark energy of the universe in some of cosmology theories. By using an ansatz developed by Yuen, we present some rotational and self-similar analytical solutions. We obtain the global existence of the constructed solutions and investigate the qualitative properties of the gas density according to various parameters.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"28 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic cluster model calculations for shape phase transitions of boson-fermion systems 玻色子-费米子系统形状相变的代数簇模型计算
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500214
M. Ghapanvari, N. Amiri, M. A. Jafarizadeh, M. Seidi
<p>The Algebraic Cluster Model (ACM) is an interacting boson model that gives the relative motion of the cluster configurations in which all vibrational and rotational degrees of freedom are present from the outset. We schemed a solvable extended transitional Hamiltonian based on affine <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">SU</mtext></mstyle><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></math></span><span></span> Lie algebra within the framework for two-, three- and four-body algebraic cluster models that explains both regions <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>7</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>6</mn><mo stretchy="false">)</mo></math></span><span></span> and <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>1</mn><mn>0</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>9</mn><mo stretchy="false">)</mo></math></span><span></span>, respectively. We offer that this method can be used to study <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>k</mi><mi>α</mi><mo>+</mo><mi>x</mi></math></span><span></span> nucleon structures with <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span><span></span> and <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo></math></span><span></span> in specific <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><span></span> such as structures <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant="normal">Be</mtext></mstyle></math></span><span></span>, <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant="normal">B</mtext></mstyle></math></span><span></span>, <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mstyle><mtext mathvariant="normal">B</mtext></mstyle></math></span><span></span>; <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msup><mstyle><mtext mathvariant="normal">C</mtext></mstyle></math></span><span></span>, <span>
代数簇模型(ACM)是一种相互作用玻色子模型,它给出了簇构型的相对运动,其中所有振动和旋转自由度从一开始就存在。我们在二体、三体和四体代数簇模型的框架内,基于仿射苏(1,1)李代数设计了一个可解的扩展过渡哈密顿,分别解释了O(4)↔U(3)、O(7)↔U(6)和O(10)↔U(9)区域。我们提出,这种方法可以用来研究 kα+x 核子结构,k=2,3,4 和 x=1,2,......,特别是 x=1,2,如 9Be、9B、10B;13C、13N、14N;17O、17F 结构。报告介绍了能级的数值提取、玻色子数算子的期望值以及在此评估哈密顿控制参数范围内基态波函数的重叠行为。讨论了奇数粒子与偶偶数玻色子核的耦合在形状转变过程中的影响,特别是在临界点上的影响。
{"title":"Algebraic cluster model calculations for shape phase transitions of boson-fermion systems","authors":"M. Ghapanvari, N. Amiri, M. A. Jafarizadeh, M. Seidi","doi":"10.1142/s0217732324500214","DOIUrl":"https://doi.org/10.1142/s0217732324500214","url":null,"abstract":"&lt;p&gt;The Algebraic Cluster Model (ACM) is an interacting boson model that gives the relative motion of the cluster configurations in which all vibrational and rotational degrees of freedom are present from the outset. We schemed a solvable extended transitional Hamiltonian based on affine &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;SU&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; Lie algebra within the framework for two-, three- and four-body algebraic cluster models that explains both regions &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;↔&lt;/mo&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;↔&lt;/mo&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;↔&lt;/mo&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, respectively. We offer that this method can be used to study &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; nucleon structures with &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; in specific &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; such as structures &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Be&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;B&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;B&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;; &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;C&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"20 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantization of non-Abelian Yang-Mills theories 非阿贝尔杨-米尔斯理论的量子化
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500366
Walaa I. Eshraim

A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.

研究了费米子与规玻色子相互作用的非阿贝尔理论--约束系统。奇异系统的运动方程以多变量全微分方程的形式得到。研究了可积分性条件,发现运动方程组是可积分的。利用森扬诺维奇和卡农方法对系统进行量化,并在卡农相空间坐标上进行积分。
{"title":"Quantization of non-Abelian Yang-Mills theories","authors":"Walaa I. Eshraim","doi":"10.1142/s0217732324500366","DOIUrl":"https://doi.org/10.1142/s0217732324500366","url":null,"abstract":"<p>A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slow-roll inflation in f(R,T,RabTab) gravity f(R,T,RabTab)引力下的慢速滚动膨胀
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500263
Zhe Feng

In the framework of f(R,T,RabTab) gravity theory, the slow-roll approximation of the cosmic inflation is investigated, where T is the trace of the energy–momentum tensor Tab, R and Rab are the Ricci scalar and tensor, respectively. After obtaining the equations of motion of the gravitational field from the action principle in the spatially flat FLRW metric, the fundamental equations of this theory are received by introducing the inflation scalar field as the matter and taking into account only the minimum curvature-inflation coupling term. Remarkably, after taking the slow-roll approximation, the identical equations as in f(R,T) gravity with a RT mixing term are derived. We study several potentials of interest in different domains. We perform analytical analyzes under various approximate conditions, and present numerical results and their comparison with existing observational data at the same time. In the appendix, we analyze the behavior of the inflation scalar field under perturbation while ignoring the effect of metric perturbations. This research complements the slow-roll inflation in the modified theory of gravity.

在f(R,T,RabTab)引力理论框架下,研究了宇宙膨胀的慢滚近似,其中T为能动张量Tab的迹,R和Rab分别为利玛窦标量和张量。在空间平坦的 FLRW 度量中从作用原理得到引力场的运动方程后,通过引入膨胀标量场作为物质并只考虑最小曲率-膨胀耦合项,得到了该理论的基本方程。值得注意的是,在采用慢速滚动近似之后,我们得到了与带有 RT 混合项的 f(R,T) 引力相同的方程。我们研究了不同领域中的几个相关势。我们在各种近似条件下进行了分析,同时给出了数值结果及其与现有观测数据的比较。在附录中,我们分析了膨胀标量场在扰动下的行为,同时忽略了度量扰动的影响。这项研究是对修正引力理论中慢滚膨胀的补充。
{"title":"Slow-roll inflation in f(R,T,RabTab) gravity","authors":"Zhe Feng","doi":"10.1142/s0217732324500263","DOIUrl":"https://doi.org/10.1142/s0217732324500263","url":null,"abstract":"<p>In the framework of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> gravity theory, the slow-roll approximation of the cosmic inflation is investigated, where <i>T</i> is the trace of the energy–momentum tensor <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup></math></span><span></span>, <i>R</i> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span><span></span> are the Ricci scalar and tensor, respectively. After obtaining the equations of motion of the gravitational field from the action principle in the spatially flat FLRW metric, the fundamental equations of this theory are received by introducing the inflation scalar field as the matter and taking into account only the minimum curvature-inflation coupling term. Remarkably, after taking the slow-roll approximation, the identical equations as in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> gravity with a <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mi>T</mi></math></span><span></span> mixing term are derived. We study several potentials of interest in different domains. We perform analytical analyzes under various approximate conditions, and present numerical results and their comparison with existing observational data at the same time. In the appendix, we analyze the behavior of the inflation scalar field under perturbation while ignoring the effect of metric perturbations. This research complements the slow-roll inflation in the modified theory of gravity.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"39 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space 闵科夫斯基三维空间中的广义空卡坦螺旋和主法线世界曲面
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500408
Boyuan Xu, Donghe Pei

We give a method for constructing generalized null Cartan helices, which may have singularities, by using regular space-like plane curves and smooth functions in Minkowski 3-space. We also study the principle normal worldsheet, which is deeply related to generalized null Cartan helices from the viewpoint of singularity theory.

我们给出了一种方法,利用规则的类空间平面曲线和闵科夫斯基 3 空间中的平滑函数来构造可能具有奇异性的广义空卡坦螺旋。我们还从奇异性理论的角度研究了与广义空卡坦螺旋有密切联系的原理法世界片。
{"title":"Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space","authors":"Boyuan Xu, Donghe Pei","doi":"10.1142/s0217732324500408","DOIUrl":"https://doi.org/10.1142/s0217732324500408","url":null,"abstract":"<p>We give a method for constructing generalized null Cartan helices, which may have singularities, by using regular space-like plane curves and smooth functions in Minkowski 3-space. We also study the principle normal worldsheet, which is deeply related to generalized null Cartan helices from the viewpoint of singularity theory.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"259 S2 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic f(Q) gravity model with bulk viscosity 具有体积粘度的各向异性 f(Q) 重力模型
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-08 DOI: 10.1142/s0217732324500238
M. Koussour, S. H. Shekh, M. Bennai, N. Myrzakulov

This study investigates the dynamics of a spatially homogeneous and anisotropic LRS Bianchi type-I Universe with viscous fluid in the framework of f(Q) symmetric teleparallel gravity. We assume a linear form for f(Q) and introduce hypotheses regarding the relationship between the expansion and shear scalars, as well as the Hubble parameter and bulk viscous coefficient. The model is constrained using three observational datasets: the Hubble dataset (31 data points), the Pantheon SN dataset (1048 data points), and the BAO dataset (6 data points). The calculated cosmological parameters indicate expected behavior for matter-energy density and bulk viscous pressure, supporting the universe’s accelerating expansion. Diagnostic tests suggest that the model aligns with a ΛCDM model in the far future and resides in the quintessence region. These findings are consistent with recent observational data and contribute to our understanding of cosmic evolution within the context of modified gravity and bulk viscosity.

本研究在f(Q)对称远平行引力的框架内研究了空间均质和各向异性的LRS比安奇I型宇宙与粘性流体的动力学。我们假定 f(Q) 为线性形式,并引入了有关膨胀和剪切标量以及哈勃参数和体积粘性系数之间关系的假设。该模型使用三个观测数据集进行约束:哈勃数据集(31 个数据点)、Pantheon SN 数据集(1048 个数据点)和 BAO 数据集(6 个数据点)。计算得出的宇宙学参数显示了物质能量密度和体积粘性压力的预期行为,支持了宇宙的加速膨胀。诊断测试表明,该模型与遥远未来的ΛCDM 模型相一致,并位于五子星区域。这些发现与最近的观测数据一致,有助于我们在修正引力和体积粘性的背景下理解宇宙演化。
{"title":"Anisotropic f(Q) gravity model with bulk viscosity","authors":"M. Koussour, S. H. Shekh, M. Bennai, N. Myrzakulov","doi":"10.1142/s0217732324500238","DOIUrl":"https://doi.org/10.1142/s0217732324500238","url":null,"abstract":"<p>This study investigates the dynamics of a spatially homogeneous and anisotropic LRS Bianchi type-I Universe with viscous fluid in the framework of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> symmetric teleparallel gravity. We assume a linear form for <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and introduce hypotheses regarding the relationship between the expansion and shear scalars, as well as the Hubble parameter and bulk viscous coefficient. The model is constrained using three observational datasets: the Hubble dataset (31 data points), the Pantheon SN dataset (1048 data points), and the BAO dataset (6 data points). The calculated cosmological parameters indicate expected behavior for matter-energy density and bulk viscous pressure, supporting the universe’s accelerating expansion. Diagnostic tests suggest that the model aligns with a <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Λ</mi></math></span><span></span>CDM model in the far future and resides in the quintessence region. These findings are consistent with recent observational data and contribute to our understanding of cosmic evolution within the context of modified gravity and bulk viscosity.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"145 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Modern Physics Letters A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1