Pub Date : 2024-04-09DOI: 10.1142/s0217732324500378
Chun-Wei Yang, Yu-Yun Huang, Jason Lin, Chia-Wei Tsai
This study identifies a participant attack vulnerability in Li et al.’s SQPC protocol. The participant attack allows a malicious participant, Bob, to obtain the participant Alice’s secret information by intercepting and measuring photons sent to Alice, and later decrypting Alice’s encrypted comparison result. An improved SQPC protocol is proposed to address this problem. The key enhancement is introducing a mutual eavesdropping check requiring the third party and participants to verify they obtain the same photon measurement results. This enables detecting participant attacks like the one identified. The SQPC protocol proposed in this study not only withstands attacks from internal participants but also achieves quantum efficiency almost equivalent to Li et al.’s SQPC protocol. Thus, this study presents a more secure SQPC protocol without compromising quantum efficiency.
本研究发现了 Li 等人的 SQPC 协议中的参与者攻击漏洞。参与方攻击允许恶意参与方鲍勃通过拦截和测量发送给爱丽丝的光子来获取参与方爱丽丝的秘密信息,随后解密爱丽丝的加密比较结果。针对这一问题,我们提出了一种改进的 SQPC 协议。改进的关键在于引入了相互窃听检查,要求第三方和参与者验证他们获得的光子测量结果是否相同。这样就能检测出类似已发现的参与者攻击。本研究提出的 SQPC 协议不仅能抵御来自内部参与者的攻击,还能实现几乎等同于 Li 等人的 SQPC 协议的量子效率。因此,本研究提出了一种更安全的 SQPC 协议,同时不影响量子效率。
{"title":"Efficient and secure semi-quantum private comparison protocol using three-particle GHZ-like states against participant attack","authors":"Chun-Wei Yang, Yu-Yun Huang, Jason Lin, Chia-Wei Tsai","doi":"10.1142/s0217732324500378","DOIUrl":"https://doi.org/10.1142/s0217732324500378","url":null,"abstract":"<p>This study identifies a participant attack vulnerability in Li <i>et al</i>.’s SQPC protocol. The participant attack allows a malicious participant, Bob, to obtain the participant Alice’s secret information by intercepting and measuring photons sent to Alice, and later decrypting Alice’s encrypted comparison result. An improved SQPC protocol is proposed to address this problem. The key enhancement is introducing a mutual eavesdropping check requiring the third party and participants to verify they obtain the same photon measurement results. This enables detecting participant attacks like the one identified. The SQPC protocol proposed in this study not only withstands attacks from internal participants but also achieves quantum efficiency almost equivalent to Li <i>et al</i>.’s SQPC protocol. Thus, this study presents a more secure SQPC protocol without compromising quantum efficiency.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"38 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1142/s0217732324500421
Hong-Jie Yin, Jia-Hui Feng, Yong Zhang
<p>The medium mass modification may lead to a squeezing effect. In the baryonic medium, the mass of <i>D</i> meson was expected to reduce and the in-medium masses of <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> may show a splitting effect, and the chemical potential of <i>D</i> meson may be not zero. We study the squeezing effect on the yield ratio <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential. Due to the in-medium mass splitting, the squeezing effect on the momentum distributions of <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> are different. Without the squeezing effect, the yield ratio <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> remains constant as the transverse momentum increases. The yield ratio <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> is affected by the squeezing effect, resulting in a dependence on transverse momentum. An increase in transverse momentum leads to a decrease in the yield ratio, especially when there is a high chemical potential. Additionally, the in-medium mass splitting amplifies this phenomenon. The yield ratio <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential approaches 1 when there is a large average in-medium mass reduction, which becomes more evident at higher transverse momentum. The study of the squeezing effect on the yield ratio <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy="false">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential may be meaningful for the CBM and PANDA experiments
{"title":"Squeezing effect on D+∕D− with nonzero chemical potential","authors":"Hong-Jie Yin, Jia-Hui Feng, Yong Zhang","doi":"10.1142/s0217732324500421","DOIUrl":"https://doi.org/10.1142/s0217732324500421","url":null,"abstract":"<p>The medium mass modification may lead to a squeezing effect. In the baryonic medium, the mass of <i>D</i> meson was expected to reduce and the in-medium masses of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> may show a splitting effect, and the chemical potential of <i>D</i> meson may be not zero. We study the squeezing effect on the yield ratio <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy=\"false\">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential. Due to the in-medium mass splitting, the squeezing effect on the momentum distributions of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> are different. Without the squeezing effect, the yield ratio <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy=\"false\">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> remains constant as the transverse momentum increases. The yield ratio <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy=\"false\">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> is affected by the squeezing effect, resulting in a dependence on transverse momentum. An increase in transverse momentum leads to a decrease in the yield ratio, especially when there is a high chemical potential. Additionally, the in-medium mass splitting amplifies this phenomenon. The yield ratio <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy=\"false\">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential approaches 1 when there is a large average in-medium mass reduction, which becomes more evident at higher transverse momentum. The study of the squeezing effect on the yield ratio <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo stretchy=\"false\">∕</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span> with nonzero chemical potential may be meaningful for the CBM and PANDA experiments ","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s021773232450024x
M. Alaoui, E. Mouhaoui, B. Maroufi, M. Daoud
In this paper, we study the one-parameter -generalized oscillator algebra (which includes the case of the standard Weyl–Heisenberg algebra). This algebra admits representations of finite-dimensional for negative values of the parameter . We construct the associated Perelomov like coherent states. We discuss their statistical properties. In particular, we derive the expressions of the Mandel parameter and Husimi function and we discuss the squeezing of the coherent states.
{"title":"Statistical properties of the 𝒜κ<0 Weyl–Heisenberg algebra coherent states","authors":"M. Alaoui, E. Mouhaoui, B. Maroufi, M. Daoud","doi":"10.1142/s021773232450024x","DOIUrl":"https://doi.org/10.1142/s021773232450024x","url":null,"abstract":"<p>In this paper, we study the one-parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span>-generalized oscillator algebra <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒜</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> (which includes the case of the standard Weyl–Heisenberg algebra). This algebra admits representations of finite-dimensional for negative values of the parameter <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span>. We construct the associated Perelomov like coherent states. We discuss their statistical properties. In particular, we derive the expressions of the Mandel parameter and Husimi function and we discuss the squeezing of the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒜</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> coherent states.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"75 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500202
H. S. Mani, N. Ramadas, V. V. Sreedhar
Recent advances in applying thermodynamic ideas to quantum systems have raised the novel prospect of using non-thermal, non-classical sources of energy, of purely quantum origin, like quantum statistics, to extract mechanical work in macroscopic quantum systems like Bose–Einstein condensates. On the other hand, thermodynamic ideas have also been applied to small systems like single molecules and quantum dots. In this paper, we study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons. Formulae are derived for the efficiency of the Otto engine as a function of the statistics parameter.
{"title":"Quantum thermodynamics of small systems: The anyonic otto engine","authors":"H. S. Mani, N. Ramadas, V. V. Sreedhar","doi":"10.1142/s0217732324500202","DOIUrl":"https://doi.org/10.1142/s0217732324500202","url":null,"abstract":"<p>Recent advances in applying thermodynamic ideas to quantum systems have raised the novel prospect of using non-thermal, non-classical sources of energy, of purely quantum origin, like quantum statistics, to extract mechanical work in macroscopic quantum systems like Bose–Einstein condensates. On the other hand, thermodynamic ideas have also been applied to small systems like single molecules and quantum dots. In this paper, we study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons. Formulae are derived for the efficiency of the Otto engine as a function of the statistics parameter.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"46 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324750026
Guangpu Lou, Jianwei Dong
In this paper, we study the 2D Euler equations for Chaplygin gas, which is a model for dark energy of the universe in some of cosmology theories. By using an ansatz developed by Yuen, we present some rotational and self-similar analytical solutions. We obtain the global existence of the constructed solutions and investigate the qualitative properties of the gas density according to various parameters.
{"title":"Rotational and self-similar solutions to the 2D Euler equations for Chaplygin gas","authors":"Guangpu Lou, Jianwei Dong","doi":"10.1142/s0217732324750026","DOIUrl":"https://doi.org/10.1142/s0217732324750026","url":null,"abstract":"<p>In this paper, we study the 2D Euler equations for Chaplygin gas, which is a model for dark energy of the universe in some of cosmology theories. By using an ansatz developed by Yuen, we present some rotational and self-similar analytical solutions. We obtain the global existence of the constructed solutions and investigate the qualitative properties of the gas density according to various parameters.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"28 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500214
M. Ghapanvari, N. Amiri, M. A. Jafarizadeh, M. Seidi
<p>The Algebraic Cluster Model (ACM) is an interacting boson model that gives the relative motion of the cluster configurations in which all vibrational and rotational degrees of freedom are present from the outset. We schemed a solvable extended transitional Hamiltonian based on affine <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">SU</mtext></mstyle><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></math></span><span></span> Lie algebra within the framework for two-, three- and four-body algebraic cluster models that explains both regions <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>4</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>7</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>6</mn><mo stretchy="false">)</mo></math></span><span></span> and <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mi>O</mi><mo stretchy="false">(</mo><mn>1</mn><mn>0</mn><mo stretchy="false">)</mo><mo>↔</mo><mi>U</mi><mo stretchy="false">(</mo><mn>9</mn><mo stretchy="false">)</mo></math></span><span></span>, respectively. We offer that this method can be used to study <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>k</mi><mi>α</mi><mo>+</mo><mi>x</mi></math></span><span></span> nucleon structures with <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span><span></span> and <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo></math></span><span></span> in specific <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><span></span> such as structures <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant="normal">Be</mtext></mstyle></math></span><span></span>, <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant="normal">B</mtext></mstyle></math></span><span></span>, <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mstyle><mtext mathvariant="normal">B</mtext></mstyle></math></span><span></span>; <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msup><mrow></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msup><mstyle><mtext mathvariant="normal">C</mtext></mstyle></math></span><span></span>, <span>
{"title":"Algebraic cluster model calculations for shape phase transitions of boson-fermion systems","authors":"M. Ghapanvari, N. Amiri, M. A. Jafarizadeh, M. Seidi","doi":"10.1142/s0217732324500214","DOIUrl":"https://doi.org/10.1142/s0217732324500214","url":null,"abstract":"<p>The Algebraic Cluster Model (ACM) is an interacting boson model that gives the relative motion of the cluster configurations in which all vibrational and rotational degrees of freedom are present from the outset. We schemed a solvable extended transitional Hamiltonian based on affine <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SU</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> Lie algebra within the framework for two-, three- and four-body algebraic cluster models that explains both regions <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>4</mn><mo stretchy=\"false\">)</mo><mo>↔</mo><mi>U</mi><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>7</mn><mo stretchy=\"false\">)</mo><mo>↔</mo><mi>U</mi><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mn>0</mn><mo stretchy=\"false\">)</mo><mo>↔</mo><mi>U</mi><mo stretchy=\"false\">(</mo><mn>9</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, respectively. We offer that this method can be used to study <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mi>α</mi><mo>+</mo><mi>x</mi></math></span><span></span> nucleon structures with <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo></math></span><span></span> in specific <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><span></span> such as structures <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">Be</mtext></mstyle></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>9</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span>; <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">C</mtext></mstyle></math></span><span></span>, <span>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"20 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500366
Walaa I. Eshraim
A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.
{"title":"Quantization of non-Abelian Yang-Mills theories","authors":"Walaa I. Eshraim","doi":"10.1142/s0217732324500366","DOIUrl":"https://doi.org/10.1142/s0217732324500366","url":null,"abstract":"<p>A non-Abelian theory of fermions interacting with gauge bosons, the constrained system, is studied. The equations of motion for a singular system are obtained as total differential equations in many variables. The integrability conditions are investigated, and the set of equations of motion is integrable. The Senjanovic and the canonical methods are used to quantize the system, and the integration is taken over the canonical phase space coordinates.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500263
Zhe Feng
In the framework of gravity theory, the slow-roll approximation of the cosmic inflation is investigated, where T is the trace of the energy–momentum tensor , R and are the Ricci scalar and tensor, respectively. After obtaining the equations of motion of the gravitational field from the action principle in the spatially flat FLRW metric, the fundamental equations of this theory are received by introducing the inflation scalar field as the matter and taking into account only the minimum curvature-inflation coupling term. Remarkably, after taking the slow-roll approximation, the identical equations as in gravity with a mixing term are derived. We study several potentials of interest in different domains. We perform analytical analyzes under various approximate conditions, and present numerical results and their comparison with existing observational data at the same time. In the appendix, we analyze the behavior of the inflation scalar field under perturbation while ignoring the effect of metric perturbations. This research complements the slow-roll inflation in the modified theory of gravity.
{"title":"Slow-roll inflation in f(R,T,RabTab) gravity","authors":"Zhe Feng","doi":"10.1142/s0217732324500263","DOIUrl":"https://doi.org/10.1142/s0217732324500263","url":null,"abstract":"<p>In the framework of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> gravity theory, the slow-roll approximation of the cosmic inflation is investigated, where <i>T</i> is the trace of the energy–momentum tensor <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup></math></span><span></span>, <i>R</i> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span><span></span> are the Ricci scalar and tensor, respectively. After obtaining the equations of motion of the gravitational field from the action principle in the spatially flat FLRW metric, the fundamental equations of this theory are received by introducing the inflation scalar field as the matter and taking into account only the minimum curvature-inflation coupling term. Remarkably, after taking the slow-roll approximation, the identical equations as in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> gravity with a <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mi>T</mi></math></span><span></span> mixing term are derived. We study several potentials of interest in different domains. We perform analytical analyzes under various approximate conditions, and present numerical results and their comparison with existing observational data at the same time. In the appendix, we analyze the behavior of the inflation scalar field under perturbation while ignoring the effect of metric perturbations. This research complements the slow-roll inflation in the modified theory of gravity.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"39 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500408
Boyuan Xu, Donghe Pei
We give a method for constructing generalized null Cartan helices, which may have singularities, by using regular space-like plane curves and smooth functions in Minkowski 3-space. We also study the principle normal worldsheet, which is deeply related to generalized null Cartan helices from the viewpoint of singularity theory.
{"title":"Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space","authors":"Boyuan Xu, Donghe Pei","doi":"10.1142/s0217732324500408","DOIUrl":"https://doi.org/10.1142/s0217732324500408","url":null,"abstract":"<p>We give a method for constructing generalized null Cartan helices, which may have singularities, by using regular space-like plane curves and smooth functions in Minkowski 3-space. We also study the principle normal worldsheet, which is deeply related to generalized null Cartan helices from the viewpoint of singularity theory.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"259 S2 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1142/s0217732324500238
M. Koussour, S. H. Shekh, M. Bennai, N. Myrzakulov
This study investigates the dynamics of a spatially homogeneous and anisotropic LRS Bianchi type-I Universe with viscous fluid in the framework of symmetric teleparallel gravity. We assume a linear form for and introduce hypotheses regarding the relationship between the expansion and shear scalars, as well as the Hubble parameter and bulk viscous coefficient. The model is constrained using three observational datasets: the Hubble dataset (31 data points), the Pantheon SN dataset (1048 data points), and the BAO dataset (6 data points). The calculated cosmological parameters indicate expected behavior for matter-energy density and bulk viscous pressure, supporting the universe’s accelerating expansion. Diagnostic tests suggest that the model aligns with a CDM model in the far future and resides in the quintessence region. These findings are consistent with recent observational data and contribute to our understanding of cosmic evolution within the context of modified gravity and bulk viscosity.
本研究在f(Q)对称远平行引力的框架内研究了空间均质和各向异性的LRS比安奇I型宇宙与粘性流体的动力学。我们假定 f(Q) 为线性形式,并引入了有关膨胀和剪切标量以及哈勃参数和体积粘性系数之间关系的假设。该模型使用三个观测数据集进行约束:哈勃数据集(31 个数据点)、Pantheon SN 数据集(1048 个数据点)和 BAO 数据集(6 个数据点)。计算得出的宇宙学参数显示了物质能量密度和体积粘性压力的预期行为,支持了宇宙的加速膨胀。诊断测试表明,该模型与遥远未来的ΛCDM 模型相一致,并位于五子星区域。这些发现与最近的观测数据一致,有助于我们在修正引力和体积粘性的背景下理解宇宙演化。
{"title":"Anisotropic f(Q) gravity model with bulk viscosity","authors":"M. Koussour, S. H. Shekh, M. Bennai, N. Myrzakulov","doi":"10.1142/s0217732324500238","DOIUrl":"https://doi.org/10.1142/s0217732324500238","url":null,"abstract":"<p>This study investigates the dynamics of a spatially homogeneous and anisotropic LRS Bianchi type-I Universe with viscous fluid in the framework of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> symmetric teleparallel gravity. We assume a linear form for <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and introduce hypotheses regarding the relationship between the expansion and shear scalars, as well as the Hubble parameter and bulk viscous coefficient. The model is constrained using three observational datasets: the Hubble dataset (31 data points), the Pantheon SN dataset (1048 data points), and the BAO dataset (6 data points). The calculated cosmological parameters indicate expected behavior for matter-energy density and bulk viscous pressure, supporting the universe’s accelerating expansion. Diagnostic tests suggest that the model aligns with a <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Λ</mi></math></span><span></span>CDM model in the far future and resides in the quintessence region. These findings are consistent with recent observational data and contribute to our understanding of cosmic evolution within the context of modified gravity and bulk viscosity.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"145 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}