Pub Date : 2024-04-26DOI: 10.1142/s0217732324500342
Dinesh Chandra Maurya
We investigate an isotropic and homogeneous flat dark energy model in gravity theory that is linear in non-metricity Q and quadratic in boundary term C as , where is a model parameter. We have solved the field equations in flat Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime geometry and considered a relation in the form of Hubble function in total energy density parameters , , and Hubble constant . We have compared our results with two observational datasets and Pantheon SNe Ia datasets by using MCMC analysis and have obtained the best fit present values of parameters. We have used these best fit values throughout in result analysis and discussion. We have found the equation of state (EoS) parameter as over . We have also investigated the Om diagnostic function and present age of the universe for these two datasets.
{"title":"Modified f(Q,C) gravity dark energy models with observational constraints","authors":"Dinesh Chandra Maurya","doi":"10.1142/s0217732324500342","DOIUrl":"https://doi.org/10.1142/s0217732324500342","url":null,"abstract":"<p>We investigate an isotropic and homogeneous flat dark energy model in <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo>,</mo><mi>C</mi><mo stretchy=\"false\">)</mo></math></span><span></span> gravity theory that is linear in non-metricity <i>Q</i> and quadratic in boundary term <i>C</i> as <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo>,</mo><mi>C</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>Q</mi><mo>+</mo><mi>α</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is a model parameter. We have solved the field equations in flat Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime geometry and considered a relation in the form of Hubble function in total energy density parameters <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Ω</mi></mrow><mrow><mi>m</mi><mn>0</mn></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Ω</mi></mrow><mrow><mn>0</mn><mo stretchy=\"false\">(</mo><mi>Q</mi><mo>,</mo><mi>C</mi><mo stretchy=\"false\">)</mo></mrow></msub></math></span><span></span>, and Hubble constant <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. We have compared our results with two observational datasets <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and Pantheon SNe Ia datasets by using MCMC analysis and have obtained the best fit present values of parameters. We have used these best fit values throughout in result analysis and discussion. We have found the equation of state (EoS) parameter as <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mn>1</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></span><span></span> over <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo>−</mo><mn>1</mn><mo>≤</mo><mi>z</mi><mo>≤</mo><mn>3</mn></math></span><span></span>. We have also investigated the Om diagnostic function and present age of the universe for these two datasets.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"28 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1142/s0217732324500469
Pinki, Pankaj Kumar, C. P. Singh
We study generalized ghost dark energy model in Brans–Dicke theory within the framework of flat Friedmann–Lemaitre–Robertson–Walker Universe. We assume the well-motivated logarithmic form of Brans–Dicke scalar field in terms of the scale factor to find the observational parameters such as equation of state parameter and deceleration parameter q. It is observed that the equation of state parameter crosses the phantom divide line for a suitable range of model parameters. We observe that the deceleration parameter is time-dependent which shows the recent phase transition from decelerated to accelerated expansion of the Universe. Moreover, the model shows that the Universe will go through two future phase transitions, recent accelerated expansion to decelerated expansion and again decelerated expansion to accelerated expansion. We have also plotted the trajectories of the model in the plane for different values of parameters and explored the freezing and thawing regions. Further, we apply the sound squared speed method to check the stability of the model and found that the model is stable for suitable range of parameters.
{"title":"Generalized ghost dark energy model in Brans–Dicke theory with logarithmic scalar field","authors":"Pinki, Pankaj Kumar, C. P. Singh","doi":"10.1142/s0217732324500469","DOIUrl":"https://doi.org/10.1142/s0217732324500469","url":null,"abstract":"<p>We study generalized ghost dark energy model in Brans–Dicke theory within the framework of flat Friedmann–Lemaitre–Robertson–Walker Universe. We assume the well-motivated logarithmic form of Brans–Dicke scalar field in terms of the scale factor to find the observational parameters such as equation of state parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>w</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> and deceleration parameter <i>q</i>. It is observed that the equation of state parameter crosses the phantom divide line <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> for a suitable range of model parameters. We observe that the deceleration parameter is time-dependent which shows the recent phase transition from decelerated to accelerated expansion of the Universe. Moreover, the model shows that the Universe will go through two future phase transitions, recent accelerated expansion to decelerated expansion and again decelerated expansion to accelerated expansion. We have also plotted the trajectories of the model in the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>w</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>w</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math></span><span></span> plane for different values of parameters and explored the freezing and thawing regions. Further, we apply the sound squared speed method to check the stability of the model and found that the model is stable for suitable range of parameters.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"12 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1142/s0217732324300015
Jian Wang
Searches for Lepton Flavor Violation (LFV) stand at the forefront of experimental particle physics research, offering a sensitive probe to many scenarios of physics beyond the Standard Model. The high proton–proton collision energy and luminosity provided by the CERN Large Hadron Collider (LHC) and the excellent CMS detector performance allow for an extensive program of LFV searches. This paper reviews a broad range of LFV searches conducted at the CMS experiment using data collected in LHC Run 2, including decays, Higgs boson decays, and top quark production and decays. In each analysis, the online and offline event selections, signal modeling, background suppression and estimation, and statistical interpretation are elucidated. These searches involve various final state particles in a large transverse momentum range, showcasing the capability of the CMS experiment in exploring fundamental questions in particle physics.
{"title":"Searching for lepton flavor violation with the CMS experiment","authors":"Jian Wang","doi":"10.1142/s0217732324300015","DOIUrl":"https://doi.org/10.1142/s0217732324300015","url":null,"abstract":"<p>Searches for Lepton Flavor Violation (LFV) stand at the forefront of experimental particle physics research, offering a sensitive probe to many scenarios of physics beyond the Standard Model. The high proton–proton collision energy and luminosity provided by the CERN Large Hadron Collider (LHC) and the excellent CMS detector performance allow for an extensive program of LFV searches. This paper reviews a broad range of LFV searches conducted at the CMS experiment using data collected in LHC Run 2, including <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi><mo>→</mo><mn>3</mn><mi>μ</mi></math></span><span></span> decays, Higgs boson decays, and top quark production and decays. In each analysis, the online and offline event selections, signal modeling, background suppression and estimation, and statistical interpretation are elucidated. These searches involve various final state particles in a large transverse momentum range, showcasing the capability of the CMS experiment in exploring fundamental questions in particle physics.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"18 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1142/s021773232450038x
S. Behera, S. Panda
<p>We look at the mass spectra of the <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mi>ρ</mi></math></span><span></span>, <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><mi>π</mi></math></span><span></span>, and <span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><mi>ω</mi></math></span><span></span> mesons using a relativistic square root potential. Before looking at the mass spectra, we have to figure out the model parameters, which are <span><math altimg="eq-00014.gif" display="inline" overflow="scroll"><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>5</mn></math></span><span></span><span><math altimg="eq-00015.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GeV and <span><math altimg="eq-00016.gif" display="inline" overflow="scroll"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn><mn>8</mn><mn>5</mn></math></span><span></span><span><math altimg="eq-00017.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GeV. The calculated result of <span><math altim
我们使用相对论平方根势来研究 D±、D±∗、Ds±∗、Ds±、B±、B±∗、Bs0∗、Bs0、Bc±∗、Bc±、ρ、π 和 ω 介子的质谱。在研究质量谱之前,我们必须计算出模型参数,即 U0=-1.115GeV 和 a=0.885GeV。计算结果为 D±(1.861GeV)、D±∗(2.010GeV)、Ds±(1.903GeV)、Ds∗±(2.112GeV)、B±(5.264GeV)、B±∗(5.327GeV)、Bs0(5.345GeV)、Bs0∗(5.423GeV)、BC±(5.956GeV)、BC±∗(6.277GeV),这些研究结果与实验观测和相关理论预测都有显著的一致性。在保持模型参数不变的情况下,我们估算了伪高子和矢量介子(特别是 B 介子和 D 介子)的衰变常数、轻子衰变宽度、半轻子衰变宽度和分支分数。B介子和D介子 "的伪谱衰变常数和部分衰变宽度与理论预言、晶格量子色动力学(LQCD)计算和实验数据相当吻合。此外,我们还有效地找到了这些介子的轻子衰变宽度和分支分数,使实验结果和理论预测相吻合。半轻子衰变的计算值分别为:D0→π-e+νe(2.892×10-3)、D+→π0e+νe(3.669×10-3)、D+→ρ0e+νe(1.659×10-3)和D+→η′e+νe(3.17×10-4)、DS+→φe+νe(2.599×10-2)、DS+→ηe+νe(2.303×10-2),观测结果与实验和某些理论模型的接近是显而易见的。
{"title":"Ground state spectra, decay properties of B and D mesons in a relativistic square root potential","authors":"S. Behera, S. Panda","doi":"10.1142/s021773232450038x","DOIUrl":"https://doi.org/10.1142/s021773232450038x","url":null,"abstract":"<p>We look at the mass spectra of the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span>, and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span> mesons using a relativistic square root potential. Before looking at the mass spectra, we have to figure out the model parameters, which are <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn><mn>8</mn><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV. The calculated result of <span><math altim","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"32 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Both statistical and thermodynamic aspects are used to analyze the collapse of N self-gravitating black holes that result in the formation of supermassive black holes. The change in energy and entropy of the system in relation to the masses of the constituent black holes and their numbers are obtained. The transition temperature for the change from the high-temperature interacting gas (or particles) to the low-temperature condensed state of black holes in forming supermassive black hole is determined.
从统计和热力学两方面分析了 N 个自引力黑洞坍缩形成超大质量黑洞的过程。得出了系统能量和熵的变化与组成黑洞的质量及其数量的关系。确定了形成超大质量黑洞时黑洞从高温相互作用气体(或粒子)向低温凝聚态变化的过渡温度。
{"title":"Formation of supermassive black holes from N self-gravitating small black holes: A thermodynamic study","authors":"Baljeet Kaur Lotte, Prasanta Kumar Mahapatra, Subodha Mishra","doi":"10.1142/s0217732324500512","DOIUrl":"https://doi.org/10.1142/s0217732324500512","url":null,"abstract":"<p>Both statistical and thermodynamic aspects are used to analyze the collapse of <i>N</i> self-gravitating black holes that result in the formation of supermassive black holes. The change in energy and entropy of the system in relation to the masses of the constituent black holes and their numbers are obtained. The transition temperature for the change from the high-temperature interacting gas (or particles) to the low-temperature condensed state of black holes in forming supermassive black hole is determined.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"14 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1142/s0217732324500287
Paul H. Frampton, Claudio Corianò, Pietro Santorelli
The binary tetrahedral group () has provided the most successful flavor symmetry in understanding simultaneously the three mixing angles both for quarks in the CKM matrix and for neutrinos in the PMNS matrix. One prediction, invariant under leptonic CP violation, relates the atmospheric and reactor neutrino mixings and , respectively. We study sedulously this relation using the latest neutrino data. It is natural to focus on the frustrating experimental octant ambiguity of . We conclude that the flavor symmetry requires that is in the second octant , not in the first one , and eagerly await experimental confirmation of this prediction.
{"title":"Atmospheric Neutrino octant from flavor symmetry","authors":"Paul H. Frampton, Claudio Corianò, Pietro Santorelli","doi":"10.1142/s0217732324500287","DOIUrl":"https://doi.org/10.1142/s0217732324500287","url":null,"abstract":"<p>The binary tetrahedral group (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>T</mi></mrow><mrow><mi>′</mi></mrow></msup></math></span><span></span>) has provided the most successful flavor symmetry in understanding simultaneously the three mixing angles both for quarks in the CKM matrix and for neutrinos in the PMNS matrix. One prediction, invariant under leptonic CP violation, relates the atmospheric and reactor neutrino mixings <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mn>2</mn></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msub></math></span><span></span>, respectively. We study sedulously this relation using the latest neutrino data. It is natural to focus on the frustrating experimental octant ambiguity of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mn>2</mn></mrow></msub></math></span><span></span>. We conclude that the flavor symmetry requires that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mn>2</mn></mrow></msub></math></span><span></span> is in the second octant <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mn>2</mn></mrow></msub><mo>></mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>, not in the first one <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mn>2</mn></mrow></msub><mo><</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span><span></span>, and eagerly await experimental confirmation of this prediction.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"31 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1142/s0217732324750014
S. M. Troshin, N. E. Tyurin
The observed absence of the small-t oscillations in differential cross-section of the elastic scattering is considered as a consequence of the reflective scattering mode appearance at the highest energy of the LHC TeV.
{"title":"Comments on oscillations in elastic scattering of hadrons","authors":"S. M. Troshin, N. E. Tyurin","doi":"10.1142/s0217732324750014","DOIUrl":"https://doi.org/10.1142/s0217732324750014","url":null,"abstract":"<p>The observed absence of the small-<i>t</i> oscillations in differential cross-section of the elastic scattering is considered as a consequence of the reflective scattering mode appearance at the highest energy of the LHC <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>1</mn><mn>3</mn></math></span><span></span><span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>TeV.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"21 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1142/s0217732324500305
Zhi-Jie Liu, Jie Zhou, Hui-Xian Meng, Xing-Yan Fan, Mi Xie, Fu-Lin Zhang, Jing-Ling Chen
Einstein–Podolsky–Rosen (EPR) paradox highlights the absence of a local realistic explanation for quantum mechanics, and shows the incompatibility of the local-hidden-state models with quantum theory. For N-qubit states, or more importantly, the N-qubit mixed states, we present the EPR steering paradox in the form of the contradictory equality “”. We show that the contradiction holds for any N-qubit state as long as both “the pure state requirement” and “the measurement requirement” are satisfied. This also indicates that the EPR steering paradox exists in more general cases. Finally, we give specific examples to demonstrate and analyze our arguments.
爱因斯坦-波多尔斯基-罗森(EPR)悖论凸显了量子力学缺乏局部现实的解释,并表明局部隐态模型与量子理论不相容。对于 N 量子位态,或更重要的 N 量子位混合态,我们以矛盾相等 "2=1 "的形式提出了 EPR 转向悖论。我们证明,只要同时满足 "纯态要求 "和 "测量要求",这个矛盾对于任何 N 量子比特态都成立。这也表明,EPR转向悖论存在于更普遍的情况中。最后,我们给出了具体的例子来证明和分析我们的论点。
{"title":"Einstein–Podolsky–Rosen steering paradox “2=1” for N qubits","authors":"Zhi-Jie Liu, Jie Zhou, Hui-Xian Meng, Xing-Yan Fan, Mi Xie, Fu-Lin Zhang, Jing-Ling Chen","doi":"10.1142/s0217732324500305","DOIUrl":"https://doi.org/10.1142/s0217732324500305","url":null,"abstract":"<p>Einstein–Podolsky–Rosen (EPR) paradox highlights the absence of a local realistic explanation for quantum mechanics, and shows the incompatibility of the local-hidden-state models with quantum theory. For <i>N</i>-qubit states, or more importantly, the <i>N</i>-qubit mixed states, we present the EPR steering paradox in the form of the contradictory equality “<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mo>=</mo><mn>1</mn></math></span><span></span>”. We show that the contradiction holds for any <i>N</i>-qubit state as long as both “the pure state requirement” and “the measurement requirement” are satisfied. This also indicates that the EPR steering paradox exists in more general cases. Finally, we give specific examples to demonstrate and analyze our arguments.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"50 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1142/s0217732324500330
Zhiming Huang, Xiangfu Zou, Haozhen Situ, Zhimin He, Lianghui Zhao, Yiyong Ye, Zhenbang Rong
In this paper, a tripartite quantum teleportation scheme in de Sitter vacuum is constructed. Then we investigate the influence of vacuum fluctuation, temperature and two-atom distance on performance of the tripartite quantum teleportation. It is found that fidelity drops fast with temperature and evolution time increasing. While temperature is low relatively, the influence of two-atom distance cannot be negligible, the change of fidelity is different with two-atom separation and time varying. The results may be helpful for dealing with quantum information tasks in curve spacetime and exploring the properties of curve spacetime through quantum information means.
{"title":"Tripartite quantum teleportation in de Sitter spacetime","authors":"Zhiming Huang, Xiangfu Zou, Haozhen Situ, Zhimin He, Lianghui Zhao, Yiyong Ye, Zhenbang Rong","doi":"10.1142/s0217732324500330","DOIUrl":"https://doi.org/10.1142/s0217732324500330","url":null,"abstract":"<p>In this paper, a tripartite quantum teleportation scheme in de Sitter vacuum is constructed. Then we investigate the influence of vacuum fluctuation, temperature and two-atom distance on performance of the tripartite quantum teleportation. It is found that fidelity drops fast with temperature and evolution time increasing. While temperature is low relatively, the influence of two-atom distance cannot be negligible, the change of fidelity is different with two-atom separation and time varying. The results may be helpful for dealing with quantum information tasks in curve spacetime and exploring the properties of curve spacetime through quantum information means.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"2013 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we study the Van der Waals black holes (the case ) in the anti-de Sitter space under the effect of the linear extended uncertainty principle (EUP). The analysis was undertaken using deep learning by employing physics-informed neural networks in addition to the semi-classical approach, we have calculated the thermal quantities, including mass, volume, temperature, entropy, and Gibbs free energy. Additionally, we visually depict the effects of the EUP-term on the thermodynamic properties of the studied black holes.
{"title":"Effects of the new type of extended uncertainty principle on Van der Waals black hole thermodynamics: A theoretical and deep learning approach","authors":"Abdelhakim Benkrane, Djamel Eddine Zenkhri, Abderrahmane Benhadjira","doi":"10.1142/s021773232450041x","DOIUrl":"https://doi.org/10.1142/s021773232450041x","url":null,"abstract":"<p>In this paper, we study the Van der Waals black holes (the case <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><mn>0</mn></math></span><span></span>) in the anti-de Sitter space under the effect of the linear extended uncertainty principle (EUP). The analysis was undertaken using deep learning by employing physics-informed neural networks in addition to the semi-classical approach, we have calculated the thermal quantities, including mass, volume, temperature, entropy, and Gibbs free energy. Additionally, we visually depict the effects of the EUP-term on the thermodynamic properties of the studied black holes.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}