首页 > 最新文献

Modern Physics Letters A最新文献

英文 中文
Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations 耦合变系数四阶非线性薛定谔方程的局部波解
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-05 DOI: 10.1142/s0217732324500317
N. Song, M. M. Guo, R. Liu, W. X. Ma

This study investigates higher-order localized waves for coupled variable-coefficient fourth-order nonlinear Schrödinger equations, which are used to describe the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the seed solutions and Lax pair, the Nth-order localized wave solutions are constructed. The interactions of rogue waves with dark–bright solitons are graphically analyzed via numerical simulation. The results are helpful for studying localized wave phenomena in nonlinear optics.

本研究探讨了耦合变系数四阶非线性薛定谔方程的高阶局域波,该方程用于描述光脉冲在非均质光纤中的同时传播。在种子解和拉克斯对的基础上,构建了 N 次阶局部波解。通过数值模拟,对流氓波与暗-亮孤子的相互作用进行了图解分析。这些结果有助于研究非线性光学中的局域波现象。
{"title":"Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations","authors":"N. Song, M. M. Guo, R. Liu, W. X. Ma","doi":"10.1142/s0217732324500317","DOIUrl":"https://doi.org/10.1142/s0217732324500317","url":null,"abstract":"<p>This study investigates higher-order localized waves for coupled variable-coefficient fourth-order nonlinear Schrödinger equations, which are used to describe the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the seed solutions and Lax pair, the <i>N</i>th-order localized wave solutions are constructed. The interactions of rogue waves with dark–bright solitons are graphically analyzed via numerical simulation. The results are helpful for studying localized wave phenomena in nonlinear optics.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New bound-state solutions and statistical properties of the IMK-GIQYP and IMSK-IQYP models in 3D-NRNCPS symmetries 三维-NRNCPS对称中IMK-GIQYP和IMSK-IQYP模型的新边界解和统计特性
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-05 DOI: 10.1142/s0217732324500299
Abdelmadjid Maireche
<p>Within the framework of three-dimensional non-relativistic noncommutative quantum phase-space (3D-NRNCPS) symmetries, we study the three-dimensional deformed Schrödinger equation (3D-DSE) using the improved modified Kratzer plus generalized inverse quadratic Yukawa potential (IMK-GIQYP) and the improved modified screened Kratzer plus inversely quadratic Yukawa potential (IMSK-IQYP) models. For this consideration, the well-known generalized Bopp’s shifts method and standard perturbation theory are used to solve the DSE in the 3D-NRNCPS regime. For the homogeneous (H<sub>2</sub>, N<sub>2</sub> and I<sub>2</sub>) and heterogeneous (CO, CH and NO) diatomic molecules, the new non-relativistic energy equation and eigenfunction for the IMK-GIQYP and the IMSK-IQYP models in the presence of deformation phase-space are obtained to be sensitive to the atomic quantum numbers (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mi>j</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>s</mi></math></span><span></span> and <i>m</i>), the mixed potential depths (<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span><span></span> and <i>V</i>) and (<span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>,</mo><mi>q</mi></math></span><span></span> and <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>), the screening parameters (<span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>δ</mi></math></span><span></span> and <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mi>φ</mi></math></span><span></span>), and non-commutativity parameters (<span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mi mathvariant="normal">Θ</mi><mo stretchy="false">/</mo><mover accent="true"><mrow><mi mathvariant="normal">Φ</mi></mrow><mo accent="true">¯</mo></mover><mo>,</mo><mi>χ</mi><mo stretchy="false">/</mo><mover accent="true"><mrow><mi>χ</mi></mrow><mo accent="true">¯</mo></mover></math></span><span></span> and <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mi>ζ</mi><mo stretchy="false">/</mo><mover accent="true"><mrow><mi>ζ</mi></mrow><mo accent="true">¯</mo></mover></math></span><span></span>) for the IMK-GIQYP and the IMSK-IQYP, respectively. We investigate the newly obtained bound state eigenvalues of the DSE in 3D-NRNCPS symmetries using the IMK-GIQYP and the IMSK-IQYP, with appropriate adjustments made to the improved modified Kratzer potential, improved modified screened Kratzer potential, improved generalized inverse quadratic Yukawa potential model and improved inversely quadratic Yukawa
在三维非相对论性非交换量子相空间(3D-NRNCPS)对称性框架内,我们利用改进的改良克拉策加广义反二次尤卡娃势(IMK-GIQYP)和改进的改良屏蔽克拉策加反二次尤卡娃势(IMSK-IQYP)模型,研究了三维变形薛定谔方程(3D-DSE)。为此,我们采用了著名的广义波普位移法和标准扰动理论来求解三维-NRNCPS 体系中的 DSE。对于同质(H2、N2 和 I2)和异质(CO、CH 和 NO)二原子分子,得到了 IMK-GIQYP 和 IMSK-IQYP 模型在存在形变相空间时的新的非相对论能量方程和特征函数,它们对原子量子数(j、l,s和m)、混合势深(De,re和V)和(De,re,q和V1)、屏蔽参数(δ和φ)以及IMK-GIQYP和IMSK-IQYP的非交换性参数(Θ/Φ¯,χ/χ¯和ζ/ζ¯)敏感。我们利用 IMK-GIQYP 和 IMSK-IQYP,并对改进的修正克拉策势、改进的修正筛选克拉策势、改进的广义反二次汤川势模型和改进的反二次汤川势模型进行适当调整,研究了在三维-NRNCPS 对称中新得到的 DSE 边界态特征值。此外,在三维-NRNCPS 对称性中,深入研究了 IMK-GIQYP 和 IMSK-IQYP 的热特性,包括它们的分配函数、平均能、自由能、比热和熵。包括原子和分子物理学在内的重要领域都发现了这项研究的许多用途。
{"title":"New bound-state solutions and statistical properties of the IMK-GIQYP and IMSK-IQYP models in 3D-NRNCPS symmetries","authors":"Abdelmadjid Maireche","doi":"10.1142/s0217732324500299","DOIUrl":"https://doi.org/10.1142/s0217732324500299","url":null,"abstract":"&lt;p&gt;Within the framework of three-dimensional non-relativistic noncommutative quantum phase-space (3D-NRNCPS) symmetries, we study the three-dimensional deformed Schrödinger equation (3D-DSE) using the improved modified Kratzer plus generalized inverse quadratic Yukawa potential (IMK-GIQYP) and the improved modified screened Kratzer plus inversely quadratic Yukawa potential (IMSK-IQYP) models. For this consideration, the well-known generalized Bopp’s shifts method and standard perturbation theory are used to solve the DSE in the 3D-NRNCPS regime. For the homogeneous (H&lt;sub&gt;2&lt;/sub&gt;, N&lt;sub&gt;2&lt;/sub&gt; and I&lt;sub&gt;2&lt;/sub&gt;) and heterogeneous (CO, CH and NO) diatomic molecules, the new non-relativistic energy equation and eigenfunction for the IMK-GIQYP and the IMSK-IQYP models in the presence of deformation phase-space are obtained to be sensitive to the atomic quantum numbers (&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;i&gt;m&lt;/i&gt;), the mixed potential depths (&lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;i&gt;V&lt;/i&gt;) and (&lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;), the screening parameters (&lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;φ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;), and non-commutativity parameters (&lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi mathvariant=\"normal\"&gt;Θ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;/&lt;/mo&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;mo accent=\"true\"&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;/&lt;/mo&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;/mrow&gt;&lt;mo accent=\"true\"&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;ζ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;/&lt;/mo&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;ζ&lt;/mi&gt;&lt;/mrow&gt;&lt;mo accent=\"true\"&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) for the IMK-GIQYP and the IMSK-IQYP, respectively. We investigate the newly obtained bound state eigenvalues of the DSE in 3D-NRNCPS symmetries using the IMK-GIQYP and the IMSK-IQYP, with appropriate adjustments made to the improved modified Kratzer potential, improved modified screened Kratzer potential, improved generalized inverse quadratic Yukawa potential model and improved inversely quadratic Yukawa ","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"102 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of trends of neutron skin thickness and proton radii of mirror nuclei within the framework of covariant density functional theory 在协变密度泛函理论框架内研究镜像核的中子皮厚和质子半径的变化趋势
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732324500226
Pankaj Kumar, Sarabjeet Kaur, Virender Thakur, Raj Kumar, Shashi K. Dhiman

The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, but its accurate measurement is quite challenging. We present predictions for neutron skins and proton radii for light to medium mass nuclei by employing Covariant Density Functional Theory (CDFT) based on density-dependent meson-exchange interaction. Using our microscopic predictions, we find a linear correlation between the neutron skin and the isospin asymmetry. The calculations are also extended to find a linear relationship between proton and neutron radii of mirror nuclei. Using the charge symmetry property of nuclear forces, a correlation between the neutron skin of neutron-rich nuclei and difference between the proton radii of the corresponding mirror pair has also been investigated. The inclusion of ISB term is found to affect the mirror difference charge radii of 48Ca-48Ni mirror pair.

原子核的中子外皮会影响富中子原子核的结构,但其精确测量却相当具有挑战性。我们采用基于密度依赖介子交换相互作用的共变密度函数理论(CDFT),对轻到中等质量原子核的中子表面和质子半径进行了预测。利用我们的微观预测,我们发现中子皮层和等时空不对称之间存在线性相关。计算还扩展到发现镜像核的质子和中子半径之间的线性关系。利用核力的电荷对称性,还研究了富中子核的中子表面与相应镜像核对的质子半径之差之间的相关性。研究发现,加入 ISB 项会影响 48Ca-48Ni 镜像核对的镜像差电荷半径。
{"title":"A study of trends of neutron skin thickness and proton radii of mirror nuclei within the framework of covariant density functional theory","authors":"Pankaj Kumar, Sarabjeet Kaur, Virender Thakur, Raj Kumar, Shashi K. Dhiman","doi":"10.1142/s0217732324500226","DOIUrl":"https://doi.org/10.1142/s0217732324500226","url":null,"abstract":"<p>The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, but its accurate measurement is quite challenging. We present predictions for neutron skins and proton radii for light to medium mass nuclei by employing Covariant Density Functional Theory (CDFT) based on density-dependent meson-exchange interaction. Using our microscopic predictions, we find a linear correlation between the neutron skin and the isospin asymmetry. The calculations are also extended to find a linear relationship between proton and neutron radii of mirror nuclei. Using the charge symmetry property of nuclear forces, a correlation between the neutron skin of neutron-rich nuclei and difference between the proton radii of the corresponding mirror pair has also been investigated. The inclusion of ISB term is found to affect the mirror difference charge radii of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mn>8</mn></mrow></msup></math></span><span></span>Ca-<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>4</mn><mn>8</mn></mrow></msup></math></span><span></span>Ni mirror pair.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"70 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrino mixing phenomenology: A4 discrete flavor symmetry with type-I seesaw mechanism 中微子混合现象学:A4离散味道对称与I型跷跷板机制
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732323502000
Animesh Barman, Ng. K. Francis, Hrishi Bora

We study a neutrino mass model with A4 discrete flavor symmetry using a type-I seesaw mechanism. The inclusion of extra flavons in our model leads to deviations from the exact tribimaximal mixing pattern resulting in a nonzero θ13 consistent with the recent experimental results and a sum rule for light neutrino masses is also obtained. In this framework, a connection is established among the neutrino mixing angles-reactor mixing angle (θ13), solar mixing angle (θ12), and atmospheric mixing angle (θ23). This model also allows us a prediction of Dirac CP-phase and Jarlskog parameter (J). The octant of the atmospheric mixing angle θ23 occupies the lower octant. Our model prefers Normal Hierarchy (NH) than Inverted Hierarchy (IH). We use the parameter space of our model of neutrino masses to study the neutrinoless double beta decay parameter mββ.

我们利用I型跷跷板机制研究了一个具有A4离散味道对称性的中微子质量模型。在我们的模型中加入额外的味道子会导致偏离精确的tribimaximal混合模式,从而产生与最近的实验结果一致的非零θ13,并且还得到了轻中微子质量的总和规则。在这个框架中,中微子混合角--反应堆混合角(θ13)、太阳混合角(θ12)和大气混合角(θ23)之间建立了联系。这个模型还可以预测狄拉克 CP 相和雅尔斯科格参数(J)。大气混合角θ23 的倍频占据下倍频。与倒置层次结构(IH)相比,我们的模型更倾向于正常层次结构(NH)。我们利用中微子质量模型的参数空间来研究无中微子双贝塔衰变参数 mββ。
{"title":"Neutrino mixing phenomenology: A4 discrete flavor symmetry with type-I seesaw mechanism","authors":"Animesh Barman, Ng. K. Francis, Hrishi Bora","doi":"10.1142/s0217732323502000","DOIUrl":"https://doi.org/10.1142/s0217732323502000","url":null,"abstract":"<p>We study a neutrino mass model with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><span></span> discrete flavor symmetry using a type-I seesaw mechanism. The inclusion of extra flavons in our model leads to deviations from the exact tribimaximal mixing pattern resulting in a nonzero <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msub></math></span><span></span> consistent with the recent experimental results and a sum rule for light neutrino masses is also obtained. In this framework, a connection is established among the neutrino mixing angles-reactor mixing angle (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>3</mn></mrow></msub></math></span><span></span>), solar mixing angle (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mn>2</mn></mrow></msub></math></span><span></span>), and atmospheric mixing angle (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn><mn>3</mn></mrow></msub></math></span><span></span>). This model also allows us a prediction of Dirac CP-phase and Jarlskog parameter <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>J</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The octant of the atmospheric mixing angle <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn><mn>3</mn></mrow></msub></math></span><span></span> occupies the lower octant. Our model prefers Normal Hierarchy (NH) than Inverted Hierarchy (IH). We use the parameter space of our model of neutrino masses to study the neutrinoless double beta decay parameter <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>m</mi></mrow><mrow><mi>β</mi><mi>β</mi></mrow></msub></math></span><span></span>.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"48 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Majorana transformation of the Thomas–Fermi equation demystified 托马斯-费米方程的马约拉纳变换解密
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732324500160
Abdaljalel Alizzi, Zurab K. Silagadze

The Majorana transformation makes it possible to reduce the Thomas–Fermi equation to a first-order differential equation. This reduction is possible due to the special scaling property of the Thomas–Fermi equation under homology transformations. Such reductions are well known in the context of stellar astrophysics, where the use of homology-invariant variables has long proved useful. We use homology-invariant variables in the context of the Thomas–Fermi equation to demystify the origin of the otherwise mysterious Majorana transformation.

马约拉纳变换使托马斯-费米方程简化为一阶微分方程成为可能。托马斯-费米方程在同调变换下的特殊缩放特性使这种还原成为可能。这种还原在恒星天体物理学中是众所周知的,在恒星天体物理学中,使用同构不变变量早已被证明是有用的。我们在托马斯-费米方程中使用同构不变变量来揭示神秘的马约拉纳变换的起源。
{"title":"Majorana transformation of the Thomas–Fermi equation demystified","authors":"Abdaljalel Alizzi, Zurab K. Silagadze","doi":"10.1142/s0217732324500160","DOIUrl":"https://doi.org/10.1142/s0217732324500160","url":null,"abstract":"<p>The Majorana transformation makes it possible to reduce the Thomas–Fermi equation to a first-order differential equation. This reduction is possible due to the special scaling property of the Thomas–Fermi equation under homology transformations. Such reductions are well known in the context of stellar astrophysics, where the use of homology-invariant variables has long proved useful. We use homology-invariant variables in the context of the Thomas–Fermi equation to demystify the origin of the otherwise mysterious Majorana transformation.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"300 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining the influence of hadronic interactions on the directed flow of identified particles in RHIC Beam Energy Scan energies using UrQMD model 利用 UrQMD 模型研究强子相互作用对 RHIC 光束能量扫描能量中已识别粒子定向流动的影响
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732324500159
Aswini Kumar Sahoo, Prabhupada Dixit, Md Nasim, Subhash Singha
<p>The directed flow of identified particles can serve as a sensitive tool for investigating the interactions during initial and final states in heavy ion collisions. This study examines the rapidity distribution (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mi>d</mi><mi>N</mi><mo stretchy="false">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span>), rapidity-odd directed flow (<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>) and its slope (<span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy="false">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span>) for <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>K</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, p, and <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><mstyle><mtext mathvariant="normal">p</mtext></mstyle></mrow><mo>̄</mo></mover></math></span><span></span> in Au+Au collisions at different collision centralities and beam energies (<span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mstyle><mtext mathvariant="normal">NN</mtext></mstyle></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, and 39<span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GeV) using the UrQMD model. We investigate the impact of late-stage hadronic interactions on charge-dependent <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></math></span><span></span> and its slope by modifying the duration of the hadronic cascade lifetime (<span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mi>τ</mi></math></span><span></span>). The energy dependence of <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy="false">∕</mo><mi>d</mi><mi>y</mi></math></span><span></span> for p (<span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><mstyle><mtext mathvariant="normal">p</mtext></mstyle></mrow><mo>̄</mo></mover></math></span><span></span>) exhibits distinct pattern compared to <span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span> and <span><math altimg
已识别粒子的定向流可以作为研究重离子碰撞初始状态和最终状态期间相互作用的灵敏工具。本研究利用 UrQMD 模型研究了不同碰撞中心度和束流能量(sNN=7.7、11.5、14.5、19.6、27 和 39GeV)下 Au+Au 对撞中 π±、K±、p 和 p̄ 的快速性分布(dN∕dy)、快速性-非定向流(v1)及其斜率(dv1∕dy)。我们通过修改强子级联寿命(τ)的持续时间,研究了后期强子相互作用对电荷依赖性 v1(y) 及其斜率的影响。与π±和K±相比,p(p̄)的dv1∕dy的能量依赖性表现出不同的模式。值得注意的是,我们观察到质子 dv1∕dy的符号反转位置在不同束流能量下的变化。此外,带正电荷和带负电荷的强子之间的 dv1∕dy 差异(Δdv1∕dy)显示了不同粒子种类对中心性的明显依赖。与 p 和 n 相比,氘核的 dv1∕dy 随着 τ 的增大而显著增加。这项研究强调了在较低 RHIC 能量下解释符号反转、v1 的电荷分裂和轻核形成时考虑强子阶段的时间演变和持续时间的重要性。
{"title":"Examining the influence of hadronic interactions on the directed flow of identified particles in RHIC Beam Energy Scan energies using UrQMD model","authors":"Aswini Kumar Sahoo, Prabhupada Dixit, Md Nasim, Subhash Singha","doi":"10.1142/s0217732324500159","DOIUrl":"https://doi.org/10.1142/s0217732324500159","url":null,"abstract":"&lt;p&gt;The directed flow of identified particles can serve as a sensitive tool for investigating the interactions during initial and final states in heavy ion collisions. This study examines the rapidity distribution (&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;), rapidity-odd directed flow (&lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) and its slope (&lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) for &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, p, and &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;p&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; in Au+Au collisions at different collision centralities and beam energies (&lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;NN&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, 11.5, 14.5, 19.6, 27, and 39&lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;GeV) using the UrQMD model. We investigate the impact of late-stage hadronic interactions on charge-dependent &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and its slope by modifying the duration of the hadronic cascade lifetime (&lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;). The energy dependence of &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; for p (&lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;p&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) exhibits distinct pattern compared to &lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"94 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved empirical formula for spontaneous fission half-lives 改进的自发裂变半衰期经验公式
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732324500184
A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya, A. M. Nagaraja

The spontaneous fission (SF) half-lives of all 96 experimentally accessible SF emitters were examined. The SF emitters are classified as even Z-even A, odd Z-even A, odd Z-odd A and even Z-odd A. A plot of logT12+kδm versus Z2A demonstrates a straight line, where k is variable. The logT12 values produced in this study are compared to all other semi-empirical relations such as Ren et al., [Nucl. Phys. A 759, 64 (2005)], Xu et al., [Phys. Rev. C 78, 044329 (2008)], Santhosh et al., [Nucl. Phys. A 832, 220 (2010)] and Karpov et al., [Int. J. Mod. Phys. E 21, 1250013 (2012)] available in the literature. When compared to earlier semi-empirical equations accessible in the literature, the new formula shows reduced uncertainty in standard deviation in the case of Odd Z-even A and even Z-Odd A nuclei. When compared to other sets of combinations (even Z-even A, and odd Z-odd A nuclei), this study more accurately reproduces the experimental SF half-lives for even Z-odd A and odd Z-even A nuclei with smaller σ in the atomic number range 90Z112 and mass number range 232A284.

研究了所有 96 个可通过实验获得的 SF 发射器的自发裂变(SF)半衰期。logT1∕2+kδm 与 Z2∕A 的关系图显示出一条直线,其中 k 是可变的。本研究得出的 logT1∕2 值与所有其他半经验关系进行了比较,如 Ren 等人,[Nucl. Phys. A 759, 64 (2005)],Xu 等人,[Phys. Rev. C 78, 044329 (2008)],Santhosh 等人,[Nucl. Phys. A 832, 220 (2010)]和 Karpov 等人,[Int. J. Mod. Phys. E 21, 1250013 (2012)]。与文献中早期的半经验公式相比,新公式显示奇数 Z 偶数 A 核和偶数 Z 奇数 A 核的标准偏差的不确定性有所降低。与其他组合(偶Z-偶A核和奇Z-奇A核)相比,这项研究更准确地再现了原子序数范围90≤Z≤112和质量数范围232≤A≤284、σ较小的偶Z-奇A核和奇Z-偶A核的实验SF半衰期。
{"title":"Improved empirical formula for spontaneous fission half-lives","authors":"A. V. Mahesh Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya, A. M. Nagaraja","doi":"10.1142/s0217732324500184","DOIUrl":"https://doi.org/10.1142/s0217732324500184","url":null,"abstract":"<p>The spontaneous fission (SF) half-lives of all 96 experimentally accessible SF emitters were examined. The SF emitters are classified as even <i>Z</i>-even <i>A</i>, odd <i>Z</i>-even <i>A</i>, odd <i>Z</i>-odd <i>A</i> and even <i>Z</i>-odd <i>A</i>. A plot of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>log</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mi>δ</mi><mi>m</mi></math></span><span></span> versus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">∕</mo><mi>A</mi></math></span><span></span> demonstrates a straight line, where <i>k</i> is variable. The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo>log</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msub></math></span><span></span> values produced in this study are compared to all other semi-empirical relations such as Ren <i>et al.</i>, [<i>Nucl. Phys. A</i> <b>759</b>, 64 (2005)], Xu <i>et al.</i>, [<i>Phys. Rev. C</i> <b>78</b>, 044329 (2008)], Santhosh <i>et al.</i>, [<i>Nucl. Phys. A</i> <b>832</b>, 220 (2010)] and Karpov <i>et al.</i>, [<i>Int. J. Mod. Phys. E</i> <b>21</b>, 1250013 (2012)] available in the literature. When compared to earlier semi-empirical equations accessible in the literature, the new formula shows reduced uncertainty in standard deviation in the case of Odd <i>Z</i>-even <i>A</i> and even <i>Z</i>-Odd <i>A</i> nuclei. When compared to other sets of combinations (even <i>Z</i>-even <i>A</i>, and odd <i>Z</i>-odd <i>A</i> nuclei), this study more accurately reproduces the experimental SF half-lives for even <i>Z</i>-odd <i>A</i> and odd <i>Z</i>-even <i>A</i> nuclei with smaller <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span> in the atomic number range 9<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>1</mn></math></span><span></span>12 and mass number range 23<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>2</mn></math></span><span></span>84.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"14 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum hash function based on continuous quantum walks 基于连续量子漫步的量子散列函数
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732323501894
Wei-Min Shi, Pan Tian, Shou Wang, Yu-Guang Yang, Yi-Hua Zhou

A method of constructing a quantum hash function (QHF) based on continuous-time quantum walk is proposed, in which the time of quantum walk is controlled by the binary string message, namely, a binary string message as the input of the constructed QHF and the probability value of finally walking to the nodes on the cycle is used as the output of the QHF. Numerical simulation and performance analysis show that our QHF has obvious advantages in the efficiency of the QHF compared with the existing QHF based on the discrete-time quantum walk, that is, the efficiency of our scheme is nearly 4 times faster in computing the hash value of the same size file compared with the most efficient scheme. Besides, the QHF has also better collision resistance compared with the existing QHF based on the discrete-time quantum walk.

提出了一种基于连续时间量子行走的量子哈希函数(QHF)的构建方法,其中量子行走的时间由二进制字符串信息控制,即以二进制字符串信息作为构建的QHF的输入,以最终行走到周期上节点的概率值作为QHF的输出。数值模拟和性能分析表明,与现有的基于离散时间量子行走的 QHF 相比,我们的 QHF 在效率上具有明显的优势,即与效率最高的方案相比,我们的方案在计算相同大小文件的哈希值时效率提高了近 4 倍。此外,与现有的基于离散时间量子漫步的 QHF 相比,QHF 还具有更好的抗碰撞性。
{"title":"Quantum hash function based on continuous quantum walks","authors":"Wei-Min Shi, Pan Tian, Shou Wang, Yu-Guang Yang, Yi-Hua Zhou","doi":"10.1142/s0217732323501894","DOIUrl":"https://doi.org/10.1142/s0217732323501894","url":null,"abstract":"<p>A method of constructing a quantum hash function (QHF) based on continuous-time quantum walk is proposed, in which the time of quantum walk is controlled by the binary string message, namely, a binary string message as the input of the constructed QHF and the probability value of finally walking to the nodes on the cycle is used as the output of the QHF. Numerical simulation and performance analysis show that our QHF has obvious advantages in the efficiency of the QHF compared with the existing QHF based on the discrete-time quantum walk, that is, the efficiency of our scheme is nearly 4 times faster in computing the hash value of the same size file compared with the most efficient scheme. Besides, the QHF has also better collision resistance compared with the existing QHF based on the discrete-time quantum walk.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"52 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the speed of gravitational waves beyond general relativity from CMB observations 从 CMB 观测探究广义相对论之外的引力波速度
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-01 DOI: 10.1142/s0217732324500196
Jun Li, Guang-Hai Guo, Yongcan Zu

In modified gravity theories, gravitational waves can propagate differently from general relativity and their propagating speed can be either constant or acquire a time dependence. We consider the constant models first and update the constraints on cosmological parameters from the combinations of Planck18+BK18 datasets. In this case, excluding superluminal propagation, we obtain the lower limit on the speed cg>0.22 at 95% C.L. A non-trivial propagating speed impacts the amplitude of tensor spectrum by adding a factor cgnt1, where nt is the tensor tilt. We find that the value of cg has positive correlation with the tensor-to-scalar ratio and anti-correlation with the factor cgnt1. Then we explore a time-dependent speed which contains the resonance of the stochastic gravitational wave background. If the speed of gravitational waves oscillates at primordial era, resonance continuously enhances stochastic gravitational wave background which produces observable effects on tensor power spectra. We derive the constraints on the amplitude of oscillatory speed and tensor parameters from the combinations of Planck18+BK18 datasets. The numerical results show that the speed resonance of the stochastic gravitational wave background is sensitive to CMB observations.

在修正引力理论中,引力波的传播方式与广义相对论不同,其传播速度可以是恒定的,也可以是随时间变化的。我们首先考虑恒定模型,并根据普朗克18+BK18数据集的组合更新对宇宙学参数的约束。在这种情况下,如果不考虑超光速传播,我们就可以在 95% C.L. 时得到速度下限 cg>0.22。非微小的传播速度会通过增加一个系数 cgnt-1 来影响张量谱的振幅,其中 nt 是张量倾斜度。我们发现 cg 值与张量-标量比呈正相关,而与系数 cgnt-1 呈反相关。然后,我们探索了一种随时间变化的速度,它包含了随机引力波背景的共振。如果引力波的速度在原始时代发生振荡,那么共振会不断增强随机引力波背景,从而对张量功率谱产生可观测的影响。我们从普朗克18+BK18数据集的组合中推导出了对振荡速度振幅和张量参数的约束。数值结果表明,随机引力波背景的速度共振对 CMB 观测很敏感。
{"title":"Probing the speed of gravitational waves beyond general relativity from CMB observations","authors":"Jun Li, Guang-Hai Guo, Yongcan Zu","doi":"10.1142/s0217732324500196","DOIUrl":"https://doi.org/10.1142/s0217732324500196","url":null,"abstract":"<p>In modified gravity theories, gravitational waves can propagate differently from general relativity and their propagating speed can be either constant or acquire a time dependence. We consider the constant models first and update the constraints on cosmological parameters from the combinations of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Planck</mtext></mstyle><mn>1</mn><mn>8</mn><mo>+</mo><mstyle><mtext mathvariant=\"normal\">BK</mtext></mstyle><mn>1</mn><mn>8</mn></math></span><span></span> datasets. In this case, excluding superluminal propagation, we obtain the lower limit on the speed <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>.</mo><mn>2</mn><mn>2</mn></math></span><span></span> at 95% C.L. A non-trivial propagating speed impacts the amplitude of tensor spectrum by adding a factor <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msubsup></math></span><span></span>, where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> is the tensor tilt. We find that the value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> has positive correlation with the tensor-to-scalar ratio and anti-correlation with the factor <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>c</mi></mrow><mrow><mi>g</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msubsup></math></span><span></span>. Then we explore a time-dependent speed which contains the resonance of the stochastic gravitational wave background. If the speed of gravitational waves oscillates at primordial era, resonance continuously enhances stochastic gravitational wave background which produces observable effects on tensor power spectra. We derive the constraints on the amplitude of oscillatory speed and tensor parameters from the combinations of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Planck18</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">BK18</mtext></mstyle></math></span><span></span> datasets. The numerical results show that the speed resonance of the stochastic gravitational wave background is sensitive to CMB observations.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The accelerated expansion in F(G,TμνTμν) gravity F(G,TμνTμν) 引力的加速膨胀
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-03-27 DOI: 10.1142/s0217732324500275
Mihai Marciu, Dana Maria Ioan

In this paper, the basic Einstein–Hilbert cosmological model is extended by adding a new functional F(G,TμνTμν) in the fundamental action, encoding specific geometrical effects due to a nontrivial coupling with the Gauss–Bonnet invariant (G), and the energy–momentum squared term (TμνTμν). After obtaining the corresponding gravitational field equations for the specific decomposition where F(G,TμνTμν)=f(G)+g(TμνTμν), we have explored the physical features of the cosmological model by considering the linear stability theory, an important analytical tool in the cosmological theory which can reveal the dynamical characteristics of the phase space. The analytical exploration of the corresponding phase space structure revealed that the present model can represent a viable dark energy model, with various stationary points where the effective equation of state corresponds to a de-Sitter epoch, possible explaining the early and late time acceleration of the Universe.

本文通过在基本作用中添加一个新函数 F(G,TμνTμν),对基本爱因斯坦-希尔伯特宇宙学模型进行了扩展,该函数编码了由于与高斯-波涅特不变量(G)的非微观耦合以及能量-动量平方项(TμνTμν)而产生的特定几何效应。在得到 F(G,TμνTμν)=f(G)+g(TμνTμν)的具体分解的相应引力场方程之后,我们通过考虑线性稳定理论来探索宇宙学模型的物理特征。线性稳定理论是宇宙学理论中的一个重要分析工具,它可以揭示相空间的动力学特征。通过对相应相空间结构的分析探索,我们发现本模型可以代表一个可行的暗能量模型,其有效状态方程对应于一个去西特纪元,有可能解释宇宙早期和晚期的时间加速。
{"title":"The accelerated expansion in F(G,TμνTμν) gravity","authors":"Mihai Marciu, Dana Maria Ioan","doi":"10.1142/s0217732324500275","DOIUrl":"https://doi.org/10.1142/s0217732324500275","url":null,"abstract":"<p>In this paper, the basic Einstein–Hilbert cosmological model is extended by adding a new functional <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> in the fundamental action, encoding specific geometrical effects due to a nontrivial coupling with the Gauss–Bonnet invariant (<i>G</i>), and the energy–momentum squared term (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup></math></span><span></span>). After obtaining the corresponding gravitational field equations for the specific decomposition where <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo><mo>=</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>g</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, we have explored the physical features of the cosmological model by considering the linear stability theory, an important analytical tool in the cosmological theory which can reveal the dynamical characteristics of the phase space. The analytical exploration of the corresponding phase space structure revealed that the present model can represent a viable dark energy model, with various stationary points where the effective equation of state corresponds to a de-Sitter epoch, possible explaining the early and late time acceleration of the Universe.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"33 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Modern Physics Letters A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1