首页 > 最新文献

Molecular human reproduction最新文献

英文 中文
Meta-analysis examining fetal sex-specific placental DNA methylation intensities and estimated cell composition post IVF. 荟萃分析检查胎儿性别特异性胎盘DNA甲基化强度和体外受精后估计的细胞组成。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf046
Melanie Lemaire, Wei Q Deng, Keaton W Smith, Samantha L Wilson

Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to ART, such as IVF. IVF can introduce both physical and environmental stressors that may alter DNA methylation regulation, an important and dynamic process during early fetal development. This meta-analysis aims to assess the differences in the placental DNA methylome between spontaneous and IVF pregnancies. Potential datasets were identified by searching the NCBI Gene Expression Omnibus (GEO) using keywords related to IVF in human participant studies published before November 2023. In our combined fetal sex population (N = 575) from three eligible GEO datasets, 127 autosomal cytosine guanine dinucleotides (CpGs) were significant (False Discovery Rate (FDR) <0.05) between IVF (n = 96) and spontaneous (n = 479) placentae, with 47 CpGs considered differentially methylated (FDR < 0.05 and |Δβ| > 0.05). Stratification by fetal sex revealed no significant autosomal CpGs in fetal female placentae (N = 281); however, in the fetal male placentae (N = 294), we identified nine autosomal CpGs that reached statistical significance between IVF (n = 56) and spontaneous (n = 238) placentae, with three CpGs considered differentially methylated. Fetal male placentae had lower proportions of trophoblasts (P < 0.0001) and stromal cells (P = 0.007) and higher proportions of syncytiotrophoblasts (P = 0.0001) compared to fetal female placentae, regardless of conception type. IVF placentae had higher proportions of stromal cells (P = 0.01) and lower proportions of syncytiotrophoblasts (P = 0.01) compared to spontaneous placentae, regardless of sex. Controlling for cell-type proportions in linear models reduced test statistic inflation and identified new significant CpGs that may previously have been masked by cell-type heterogeneity. The results of this meta-analysis are critical to further understand the impact of IVF on tissue epigenetics, which may help with understanding the connections between IVF and negative pregnancy outcomes. Additionally, our study suggests that sex-specific differences in placental DNA methylation and cell composition should be considered as factors for future placental DNA methylation analyses.

全世界多达17.5%的育龄夫妇患有不孕症。为了帮助受孕,许多夫妇求助于辅助生殖技术,比如体外受精。体外受精可以引入物理和环境压力因素,可能会改变DNA甲基化调节,这是胎儿早期发育过程中一个重要的动态过程。本荟萃分析旨在评估自然妊娠和体外受精妊娠之间胎盘DNA甲基化组的差异。在2023年11月之前发表的人类参与者研究中,使用与体外受精相关的关键词搜索NCBI基因表达Omnibus (GEO),确定潜在的数据集。在我们三个符合条件的GEO数据集的合并胎儿性别群体(N = 575)中,127个常染色体CpGs显著(错误发现率(FDR)0.05)。胎儿性别分层显示,女性胎儿胎盘(N = 281)中常染色体CpGs不显著,而在男性胎儿胎盘(N = 294)中,我们发现9个常染色体CpGs在体外受精(N = 56)和自然胎盘(N = 238)之间具有统计学意义,其中3个CpGs被认为存在甲基化差异。男性胎盘滋养细胞比例较低(p
{"title":"Meta-analysis examining fetal sex-specific placental DNA methylation intensities and estimated cell composition post IVF.","authors":"Melanie Lemaire, Wei Q Deng, Keaton W Smith, Samantha L Wilson","doi":"10.1093/molehr/gaaf046","DOIUrl":"10.1093/molehr/gaaf046","url":null,"abstract":"<p><p>Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to ART, such as IVF. IVF can introduce both physical and environmental stressors that may alter DNA methylation regulation, an important and dynamic process during early fetal development. This meta-analysis aims to assess the differences in the placental DNA methylome between spontaneous and IVF pregnancies. Potential datasets were identified by searching the NCBI Gene Expression Omnibus (GEO) using keywords related to IVF in human participant studies published before November 2023. In our combined fetal sex population (N = 575) from three eligible GEO datasets, 127 autosomal cytosine guanine dinucleotides (CpGs) were significant (False Discovery Rate (FDR) <0.05) between IVF (n = 96) and spontaneous (n = 479) placentae, with 47 CpGs considered differentially methylated (FDR < 0.05 and |Δβ| > 0.05). Stratification by fetal sex revealed no significant autosomal CpGs in fetal female placentae (N = 281); however, in the fetal male placentae (N = 294), we identified nine autosomal CpGs that reached statistical significance between IVF (n = 56) and spontaneous (n = 238) placentae, with three CpGs considered differentially methylated. Fetal male placentae had lower proportions of trophoblasts (P < 0.0001) and stromal cells (P = 0.007) and higher proportions of syncytiotrophoblasts (P = 0.0001) compared to fetal female placentae, regardless of conception type. IVF placentae had higher proportions of stromal cells (P = 0.01) and lower proportions of syncytiotrophoblasts (P = 0.01) compared to spontaneous placentae, regardless of sex. Controlling for cell-type proportions in linear models reduced test statistic inflation and identified new significant CpGs that may previously have been masked by cell-type heterogeneity. The results of this meta-analysis are critical to further understand the impact of IVF on tissue epigenetics, which may help with understanding the connections between IVF and negative pregnancy outcomes. Additionally, our study suggests that sex-specific differences in placental DNA methylation and cell composition should be considered as factors for future placental DNA methylation analyses.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145030249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S14G-Humanin ameliorates ovarian dysfunction in a cyclophosphamide-induced premature ovarian insufficiency mouse model. 在环磷酰胺诱导的卵巢功能不全小鼠模型中,S14G-Humanin可改善卵巢功能障碍。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf042
Jin Huang, Dandan Zhang, Liping Zou, Haoyuan Liu, Wei Xia, Changhong Zhu, Meng Rao

Premature ovarian insufficiency (POI) is a major cause of female infertility, for which effective therapies remain limited. S14G-Humanin (HNG), a potent analogue of Humanin, exhibits strong antioxidant and anti-apoptotic properties and has demonstrated cytoprotective effects in various tissues, including the ovary. In this study, a cyclophosphamide (CP)-induced POI mouse model was established to evaluate both the ovarian damage induced by chemotherapy and the protective effects of HNG. HNG administration significantly increased the number of primordial follicles (P = 0.044) and growing follicles (all P > 0.05), as well as corpora lutea (P = 0.09). Moreover, HNG markedly improved oocyte quality (P = 0.009), significantly lowering the proportion of abnormal ovulated oocytes (P = 0.002). Fertility outcomes were also enhanced: CP treatment significantly reduced litter size compared to controls (4.6 ± 1.1 vs 8.0 ± 1.0; P < 0.001), whereas HNG treatment significantly mitigated this reduction (6.2 ± 0.8 vs 4.6 ± 1.1; P = 0.029). Mechanistically, HNG alleviated oxidative stress and apoptosis in ovarian tissues (all P < 0.05), reduced ROS levels (P = 0.034), and restored mitochondrial membrane potential (P = 0.004) in a human granulosa cell line. Furthermore, HNG significantly upregulated PGC-1α expression and enhanced AMPK phosphorylation in both in vivo and in vitro models (both P < 0.05). Collectively, these findings demonstrate that HNG confers significant protection against chemotherapy-induced ovarian damage and highlight its potential as a novel therapeutic agent for chemotherapy-induced ovarian damage.

卵巢功能不全(POI)是女性不孕症的主要原因,有效的治疗方法仍然有限。S14G-Humanin (HNG)是Humanin的一种强效类似物,具有很强的抗氧化和抗凋亡特性,并在包括卵巢在内的多种组织中显示出细胞保护作用。本研究建立环磷酰胺诱导POI (CP-POI)小鼠模型,评价化疗对卵巢的损伤及HNG的保护作用。HNG显著增加了原始卵泡(P = 0.044)、生长卵泡(P = 0.05)和黄体(P = 0.09)的数量。HNG显著改善卵母细胞质量(P = 0.009),显著降低异常排卵卵母细胞比例(P = 0.002)。生育结果也得到改善:与对照组相比,CP处理显著减少产仔数(4.6±1.1比8.0±1.0);P
{"title":"S14G-Humanin ameliorates ovarian dysfunction in a cyclophosphamide-induced premature ovarian insufficiency mouse model.","authors":"Jin Huang, Dandan Zhang, Liping Zou, Haoyuan Liu, Wei Xia, Changhong Zhu, Meng Rao","doi":"10.1093/molehr/gaaf042","DOIUrl":"10.1093/molehr/gaaf042","url":null,"abstract":"<p><p>Premature ovarian insufficiency (POI) is a major cause of female infertility, for which effective therapies remain limited. S14G-Humanin (HNG), a potent analogue of Humanin, exhibits strong antioxidant and anti-apoptotic properties and has demonstrated cytoprotective effects in various tissues, including the ovary. In this study, a cyclophosphamide (CP)-induced POI mouse model was established to evaluate both the ovarian damage induced by chemotherapy and the protective effects of HNG. HNG administration significantly increased the number of primordial follicles (P = 0.044) and growing follicles (all P > 0.05), as well as corpora lutea (P = 0.09). Moreover, HNG markedly improved oocyte quality (P = 0.009), significantly lowering the proportion of abnormal ovulated oocytes (P = 0.002). Fertility outcomes were also enhanced: CP treatment significantly reduced litter size compared to controls (4.6 ± 1.1 vs 8.0 ± 1.0; P < 0.001), whereas HNG treatment significantly mitigated this reduction (6.2 ± 0.8 vs 4.6 ± 1.1; P = 0.029). Mechanistically, HNG alleviated oxidative stress and apoptosis in ovarian tissues (all P < 0.05), reduced ROS levels (P = 0.034), and restored mitochondrial membrane potential (P = 0.004) in a human granulosa cell line. Furthermore, HNG significantly upregulated PGC-1α expression and enhanced AMPK phosphorylation in both in vivo and in vitro models (both P < 0.05). Collectively, these findings demonstrate that HNG confers significant protection against chemotherapy-induced ovarian damage and highlight its potential as a novel therapeutic agent for chemotherapy-induced ovarian damage.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144855754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discordant effects of maternal age on the human MII oocyte transcriptome. 母亲年龄对人类MII卵母细胞转录组的不一致影响。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf038
Xiaorui Zhang, Jiao Yang, Wenting Yang, Nan Cui, Tingting Duan, Shan Li, Jing Cao, Stephen J Bush, Guoqing Tong

While advanced maternal age is associated with significant changes in oocyte gene expression, these are not global changes but limited to a fraction of the transcriptome. However, there is little consensus on the specific genes affected, and on the transcriptomic signatures of age-related declines in oocyte quality. To characterize the effects of age on the human MII oocyte transcriptome, here we take a two-part approach. We first generated single-oocyte Smart-seq2 datasets from 10 younger (21-29 years) and 10 older (37-43 years) donors, identifying genes differentially expressed between the two groups, then cross-referenced our results with those of 12 studies (9 human, 3 mouse) performing equivalent analyses using a variety of single-cell transcriptomic or microarray platforms. Technical differences notwithstanding, we found considerable discordance between the datasets, suggesting that age-related signatures of differential gene expression are not easily reproducible. Independent corroboration of age-associated changes in expression was limited to few genes, with the vast majority only supported by one of the 13 datasets, including our own. Nevertheless, we identified 40 genes whose expression significantly altered with age in multiple studies, highlighting common processes underlying ageing, including dysregulated proteostasis. As human Smart-seq2 oocyte libraries are challenging to procure and rare in public archives, we next implemented a meta-analytic method for their re-use, combining our 20 oocytes with 130 pre-existing libraries sourced from 12 different studies and representing a continuous age range of 18-43 years. We identified 25 genes whose expression level significantly correlated with age and corroborated 14 of these genes with RT-PCR, including the proteasomal subunits PSMA1 and PSMA2, both of which were downregulated in older oocytes. Overall, our findings are consistent with both pronounced inter-oocyte heterogeneity in transcription and with oocyte ageing being a multifactorial process to which bona fide transcriptomic changes may only play a restricted role, while proteomic changes play more pronounced roles.

虽然高龄产妇与卵母细胞基因表达的显著变化有关,但这些变化不是全球性的,而是局限于转录组的一小部分。然而,对于受影响的特定基因,以及与年龄相关的卵母细胞质量下降的转录组特征,几乎没有共识。为了描述年龄对人类MII卵母细胞转录组的影响,我们采取了两部分的方法。我们首先生成了来自10名年轻(21-29岁)和10名年长(37-43岁)捐献者的单卵母细胞Smart-seq2数据集,确定了两组之间基因表达的差异,然后将我们的结果与使用各种单细胞转录组学或微阵列平台进行等效分析的12项研究(9项人类研究,3项小鼠研究)交叉引用。尽管存在技术差异,但我们发现数据集之间存在相当大的不一致,这表明与年龄相关的差异基因表达特征不易重现。年龄相关的表达变化的独立证实仅限于少数基因,绝大多数仅由13个数据集中的一个支持,包括我们自己的数据集。然而,我们在多个研究中发现了40个基因的表达随着年龄的增长而显著改变,强调了衰老的共同过程,包括蛋白质平衡失调。由于人类Smart-seq2卵母细胞文库很难获得,而且在公共档案中很少见,我们接下来实施了一种荟萃分析方法,将我们的20个卵母细胞与来自12项不同研究的130个已有卵母细胞文库结合起来,这些卵母细胞来自18-43岁的连续年龄范围。我们发现了25个表达水平与年龄显著相关的基因,并通过RT-PCR证实了其中14个基因的表达,包括蛋白酶体亚基PSMA1和PSMA2,这两个基因在老年卵母细胞中均下调。总的来说,我们的发现与卵母细胞间转录的明显异质性以及卵母细胞衰老是一个多因素过程相一致,其中真正的转录组变化可能只发挥有限的作用,而蛋白质组变化则发挥更明显的作用。
{"title":"Discordant effects of maternal age on the human MII oocyte transcriptome.","authors":"Xiaorui Zhang, Jiao Yang, Wenting Yang, Nan Cui, Tingting Duan, Shan Li, Jing Cao, Stephen J Bush, Guoqing Tong","doi":"10.1093/molehr/gaaf038","DOIUrl":"10.1093/molehr/gaaf038","url":null,"abstract":"<p><p>While advanced maternal age is associated with significant changes in oocyte gene expression, these are not global changes but limited to a fraction of the transcriptome. However, there is little consensus on the specific genes affected, and on the transcriptomic signatures of age-related declines in oocyte quality. To characterize the effects of age on the human MII oocyte transcriptome, here we take a two-part approach. We first generated single-oocyte Smart-seq2 datasets from 10 younger (21-29 years) and 10 older (37-43 years) donors, identifying genes differentially expressed between the two groups, then cross-referenced our results with those of 12 studies (9 human, 3 mouse) performing equivalent analyses using a variety of single-cell transcriptomic or microarray platforms. Technical differences notwithstanding, we found considerable discordance between the datasets, suggesting that age-related signatures of differential gene expression are not easily reproducible. Independent corroboration of age-associated changes in expression was limited to few genes, with the vast majority only supported by one of the 13 datasets, including our own. Nevertheless, we identified 40 genes whose expression significantly altered with age in multiple studies, highlighting common processes underlying ageing, including dysregulated proteostasis. As human Smart-seq2 oocyte libraries are challenging to procure and rare in public archives, we next implemented a meta-analytic method for their re-use, combining our 20 oocytes with 130 pre-existing libraries sourced from 12 different studies and representing a continuous age range of 18-43 years. We identified 25 genes whose expression level significantly correlated with age and corroborated 14 of these genes with RT-PCR, including the proteasomal subunits PSMA1 and PSMA2, both of which were downregulated in older oocytes. Overall, our findings are consistent with both pronounced inter-oocyte heterogeneity in transcription and with oocyte ageing being a multifactorial process to which bona fide transcriptomic changes may only play a restricted role, while proteomic changes play more pronounced roles.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144743149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A matrix-free 3D in vitro follicle culture system in mice exhibits enhanced oocyte meiotic and developmental competence compared to hydrogel encapsulation. 与水凝胶包封相比,无基质的小鼠体外3D卵泡培养系统显示出更强的卵母细胞减数分裂和发育能力。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf029
Aimilia Zisiadi, Katy Billooye, Ellen Anckaert

In vitro follicle culture (IFC) is an emerging fertility preservation alternative for women and children with cancer. Because two-dimensional (2D) IFC results in oocytes of suboptimal quality in mice and cannot support follicle growth in humans, the search for an optimal three-dimensional (3D) method that preserves the follicular structure is ongoing, and both matrix-free and hydrogel encapsulation systems are being explored. Our aim was to compare several 3D mouse IFC systems, including matrix-free and hydrogel encapsulation approaches. Secondary follicles were cultured for 12 days in a matrix-free non-attachment (NA) system, a Poly-Ethylene-Glycol (PEG) hydrogel, an extracellular-matrix-derived soft hydrogel (ES), and a 2D attachment (AT) control. We assessed follicle growth, survival, hormone secretion, theca cell localization, oocyte meiotic competence and diameter, gene expression in oocytes and cumulus cells, as well as oocyte fertilization potential. Metaphase II oocyte rates were significantly higher in the NA (75 ± 12.4%, n = 79) and AT systems (77 ± 12.6%, n = 109) compared to the ES (33.4 ± 9.5%, n = 40, P < 0.01), while low antral follicle rates from the PEG system led to its exclusion from the comparison. Similarly, following IVF, 2-cell rates were significantly higher in the NA (47.7 ± 17.6%, n = 147, P < 0.01) and AT (40.2 ± 9.7%, n = 132, P < 0.05) systems compared to the ES (23.5 ± 9.3%, n = 63). Furthermore, cumulus cells from the NA condition displayed a more in vivo-like gene expression profile than other conditions. No differences were detected in follicle survival, oocyte diameter, blastocyst rate, or quality between conditions. Lastly, we observed major differences in theca cell localization and hormone secretion levels that require further investigation. Our findings demonstrate the efficiency of the NA system over complex encapsulation methodologies, as it enhanced oocyte meiotic and developmental competence compared to the ES. However, as the study is limited by the lack of human data and the use of Fetal Bovine Serum (FBS) in the culture medium, further research is required to translate our findings to humans.

体外卵泡培养(IFC)是一种新兴的生育能力保存替代妇女和儿童癌症。由于二维(2D) IFC导致小鼠的卵母细胞质量不理想,并且不能支持人类的卵泡生长,因此正在寻找保留卵泡结构的最佳三维(3D)方法,并且正在探索无基质和水凝胶封装系统。我们的目的是比较几种3D小鼠IFC系统,包括无基质和水凝胶封装方法。在无基质非附着体(NA)、聚乙二醇(PEG)水凝胶、细胞外基质衍生的软水凝胶(ES)和2D附着体(AT)对照中培养继发卵泡12天。我们评估了卵泡的生长、存活、激素分泌、卵膜细胞定位、卵母细胞减数分裂能力和直径、卵母细胞和卵丘细胞的基因表达以及卵母细胞受精潜力。中期II期卵母细胞率NA组(75±12.4%,n = 79)和AT组(77±12.6%,n = 109)显著高于ES组(33.4±9.5%,n = 40, p
{"title":"A matrix-free 3D in vitro follicle culture system in mice exhibits enhanced oocyte meiotic and developmental competence compared to hydrogel encapsulation.","authors":"Aimilia Zisiadi, Katy Billooye, Ellen Anckaert","doi":"10.1093/molehr/gaaf029","DOIUrl":"10.1093/molehr/gaaf029","url":null,"abstract":"<p><p>In vitro follicle culture (IFC) is an emerging fertility preservation alternative for women and children with cancer. Because two-dimensional (2D) IFC results in oocytes of suboptimal quality in mice and cannot support follicle growth in humans, the search for an optimal three-dimensional (3D) method that preserves the follicular structure is ongoing, and both matrix-free and hydrogel encapsulation systems are being explored. Our aim was to compare several 3D mouse IFC systems, including matrix-free and hydrogel encapsulation approaches. Secondary follicles were cultured for 12 days in a matrix-free non-attachment (NA) system, a Poly-Ethylene-Glycol (PEG) hydrogel, an extracellular-matrix-derived soft hydrogel (ES), and a 2D attachment (AT) control. We assessed follicle growth, survival, hormone secretion, theca cell localization, oocyte meiotic competence and diameter, gene expression in oocytes and cumulus cells, as well as oocyte fertilization potential. Metaphase II oocyte rates were significantly higher in the NA (75 ± 12.4%, n = 79) and AT systems (77 ± 12.6%, n = 109) compared to the ES (33.4 ± 9.5%, n = 40, P < 0.01), while low antral follicle rates from the PEG system led to its exclusion from the comparison. Similarly, following IVF, 2-cell rates were significantly higher in the NA (47.7 ± 17.6%, n = 147, P < 0.01) and AT (40.2 ± 9.7%, n = 132, P < 0.05) systems compared to the ES (23.5 ± 9.3%, n = 63). Furthermore, cumulus cells from the NA condition displayed a more in vivo-like gene expression profile than other conditions. No differences were detected in follicle survival, oocyte diameter, blastocyst rate, or quality between conditions. Lastly, we observed major differences in theca cell localization and hormone secretion levels that require further investigation. Our findings demonstrate the efficiency of the NA system over complex encapsulation methodologies, as it enhanced oocyte meiotic and developmental competence compared to the ES. However, as the study is limited by the lack of human data and the use of Fetal Bovine Serum (FBS) in the culture medium, further research is required to translate our findings to humans.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibroblast growth factor signaling and spermatogonial stem cell self-renewal. 成纤维细胞生长因子信号传导与精原干细胞自我更新。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf039
Ming Yang, Eoin C Whelan, Youyue Zeng, Xinyi Wei, Le Shi, Fan Yang

Spermatogonial stem cells (SSCs) serve as the foundational units for all adult male germ cells, playing a critical role in male fertility. These cells are characterized by their unique ability to balance self-renewal and differentiation, ensuring the maintenance of tissue homeostasis while simultaneously producing mature spermatozoa. Recent studies have highlighted the pivotal role of fibroblast growth factor (FGF) signaling in regulating SSC self-renewal, with various FGFs and their corresponding FGF receptors (FGFRs) being implicated in the intricate processes governing SSC homeostasis. This review aims to provide a comprehensive overview of the characteristic expression patterns of FGFs and FGFRs within germ cells and their surrounding somatic cells. In addition, we will conduct in-depth research on the multifaceted functions and regulatory mechanisms of FGF signaling in SSCs and elucidate its potential clinical significance. Understanding these mechanisms not only enhances our knowledge of male reproductive biology but also opens avenues for innovative clinical applications aimed at safeguarding fertility in vulnerable populations.

精原干细胞(SSCs)是所有成年男性生殖细胞的基础单位,在男性生育中起着至关重要的作用。这些细胞具有独特的自我更新和分化平衡能力,确保组织稳态的维持,同时产生成熟的精子。最近的研究强调了成纤维细胞生长因子(FGF)信号在调节SSC自我更新中的关键作用,各种FGF及其相应的FGF受体(fgfr)参与了控制SSC稳态的复杂过程。本文旨在全面综述生殖细胞及其周围体细胞中FGFs和fgfr的特征表达模式。此外,我们将深入研究FGF信号在SSCs中的多方面功能和调控机制,阐明其潜在的临床意义。了解这些机制不仅提高了我们对男性生殖生物学的认识,而且为旨在保护弱势群体生育能力的创新临床应用开辟了道路。
{"title":"Fibroblast growth factor signaling and spermatogonial stem cell self-renewal.","authors":"Ming Yang, Eoin C Whelan, Youyue Zeng, Xinyi Wei, Le Shi, Fan Yang","doi":"10.1093/molehr/gaaf039","DOIUrl":"10.1093/molehr/gaaf039","url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) serve as the foundational units for all adult male germ cells, playing a critical role in male fertility. These cells are characterized by their unique ability to balance self-renewal and differentiation, ensuring the maintenance of tissue homeostasis while simultaneously producing mature spermatozoa. Recent studies have highlighted the pivotal role of fibroblast growth factor (FGF) signaling in regulating SSC self-renewal, with various FGFs and their corresponding FGF receptors (FGFRs) being implicated in the intricate processes governing SSC homeostasis. This review aims to provide a comprehensive overview of the characteristic expression patterns of FGFs and FGFRs within germ cells and their surrounding somatic cells. In addition, we will conduct in-depth research on the multifaceted functions and regulatory mechanisms of FGF signaling in SSCs and elucidate its potential clinical significance. Understanding these mechanisms not only enhances our knowledge of male reproductive biology but also opens avenues for innovative clinical applications aimed at safeguarding fertility in vulnerable populations.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144835769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Organoids): endometrial organoids as an emerging technology for endometriosis research. 子宫内膜异位症研究实验模型的WERF表型和生物银行协调项目(EPHect-EM-Organoids):子宫内膜类器官作为子宫内膜异位症研究的新兴技术。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf024
Elizabeth E Marr, Juan S Gnecco, Stacey A Missmer, Shannon M Hawkins, Kevin G Osteen, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran

The aetiology of endometriosis remains poorly understood. In vitro model systems provide the opportunity to identify the mechanisms driving disease pathogenesis using human cells. Three-dimensional models, particularly organoid systems, have revolutionized how we study epithelial biology and are powerful tools for modelling endometriosis. As an emerging model system, it is important to define protocols and identify the remaining challenges surrounding endometrial organoid culture to increase reproducibility and scientific rigour in endometriosis research. The World Endometriosis Research Foundation (WERF) established an international working group comprised of experts using in vitro approaches for the study of endometriosis. This working group harmonized protocols and documentation of existing and emerging organoid systems to maximize comparison and replication across the field and guide specific research hypotheses testing. This evaluation of organoid protocols, limitations, challenges, and alternative approaches assessed both published and grey literature papers across several disciplines pertinent to endometriosis research. Recommendations for protocol and documentation harmonization are presented, and we created the first-ever decision tree diagram to guide and facilitate the selection of existing models best suited for specific areas of endometriosis research. Rigorous and systematic assessment of emerging organoid systems, recognizing the inferential strengths and limitations of these approaches, is vital for endometriosis research. This comprehensive review of the benefits, limitations, and utilization of organoid models, as well as the consequent integration of protocols and documentation, will contribute to the scientific knowledge base by maximizing the reproducibility, comparability, and interpretation of research studies in endometriosis. Additionally, these newly developed protocols and documentation should serve as a resource for, and facilitate collaboration between, endometriosis investigators using organoids in their research methods.

子宫内膜异位症的病因仍然知之甚少。体外模型系统提供了利用人类细胞识别驱动疾病发病机制的机会。三维模型,特别是类器官系统,已经彻底改变了我们研究上皮生物学的方式,并且是模拟子宫内膜异位症的有力工具。作为一种新兴的模型系统,确定方案和确定围绕子宫内膜类器官培养的剩余挑战对于提高子宫内膜异位症研究的可重复性和科学严谨性至关重要。世界子宫内膜异位症研究基金会(WERF)成立了一个由使用体外方法研究子宫内膜异位症的专家组成的国际工作组。该工作组协调了现有和新兴类器官系统的协议和文件,以最大限度地在整个领域进行比较和复制,并指导具体的研究假设测试。本文对类器官方案、局限性、挑战和替代方法进行了评估,评估了与子宫内膜异位症研究相关的几个学科的已发表文献和灰色文献。提出了方案和文件协调的建议,并创建了有史以来第一个决策树图,以指导和促进最适合子宫内膜异位症研究特定领域的现有模型的选择。对新兴类器官系统进行严格和系统的评估,认识到这些方法的推断优势和局限性,对子宫内膜异位症的研究至关重要。本文对类器官模型的优点、局限性和应用进行了全面的综述,并对相关方案和文献进行了整合,通过最大限度地提高子宫内膜异位症研究的可重复性、可比性和解释,将有助于建立科学知识库。此外,这些新制定的协议和文件应该作为资源,并促进子宫内膜异位症研究者在他们的研究方法中使用类器官之间的合作。
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Organoids): endometrial organoids as an emerging technology for endometriosis research.","authors":"Elizabeth E Marr, Juan S Gnecco, Stacey A Missmer, Shannon M Hawkins, Kevin G Osteen, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran","doi":"10.1093/molehr/gaaf024","DOIUrl":"10.1093/molehr/gaaf024","url":null,"abstract":"<p><p>The aetiology of endometriosis remains poorly understood. In vitro model systems provide the opportunity to identify the mechanisms driving disease pathogenesis using human cells. Three-dimensional models, particularly organoid systems, have revolutionized how we study epithelial biology and are powerful tools for modelling endometriosis. As an emerging model system, it is important to define protocols and identify the remaining challenges surrounding endometrial organoid culture to increase reproducibility and scientific rigour in endometriosis research. The World Endometriosis Research Foundation (WERF) established an international working group comprised of experts using in vitro approaches for the study of endometriosis. This working group harmonized protocols and documentation of existing and emerging organoid systems to maximize comparison and replication across the field and guide specific research hypotheses testing. This evaluation of organoid protocols, limitations, challenges, and alternative approaches assessed both published and grey literature papers across several disciplines pertinent to endometriosis research. Recommendations for protocol and documentation harmonization are presented, and we created the first-ever decision tree diagram to guide and facilitate the selection of existing models best suited for specific areas of endometriosis research. Rigorous and systematic assessment of emerging organoid systems, recognizing the inferential strengths and limitations of these approaches, is vital for endometriosis research. This comprehensive review of the benefits, limitations, and utilization of organoid models, as well as the consequent integration of protocols and documentation, will contribute to the scientific knowledge base by maximizing the reproducibility, comparability, and interpretation of research studies in endometriosis. Additionally, these newly developed protocols and documentation should serve as a resource for, and facilitate collaboration between, endometriosis investigators using organoids in their research methods.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of maternal diet-induced obesity on offspring primordial oocyte mitochondria at birth and at weaning. 母亲饮食诱导的肥胖对出生和断奶时子代原始卵母细胞线粒体的影响。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf044
Waleed F A Marei, Inne Xhonneux, Axelle Buydens, Isabel Pintelon, Ben Meulders, Silke Andries, Jo L M R Leroy

Maternal diet-induced obesity (DIO) may affect adult offspring oocyte quality due to mitochondrial dysfunction. Here, we investigated whether offspring of DIO mothers exhibit mitochondrial abnormalities in their primordial follicle oocytes (PFOs) already at birth and if (further) alterations can be detected at weaning. Female Swiss mice were fed a control or obesogenic diet for 7 weeks before mating and throughout pregnancy and lactation. Offspring ovaries were collected at birth and at weaning. Offspring PFOs were examined by transmission electron microscopy of ovarian sections. Key markers of cell stress (HSP70), mitochondrial biogenesis (PGC-1α), mtDNA replication (TFAM), fusion (MFN2, OPA1), and fission (DRP1) were examined using immunofluorescence and confocal microscopy. Maternal DIO did not alter HSP70 or PGC-1α expression in the PFOs at birth, suggesting that cellular homeostasis and mitochondrial biogenesis were unaffected. TFAM expression was reduced at both time points. DRP1 and cytoplasmic OPA1 expression were reduced at birth, but without ultrastructural changes in mitochondrial shape and density, suggesting that these alterations are regulatory. No inborn mitochondrial structural abnormalities could be detected. In contrast, at weaning, offspring born to and nursed by DIO mothers exhibited a high number of lipid droplets (LDs) in their ovaries, some of which were detectable in the PFOs, while no LDs were detected in the PFOs of the controls. Maternal DIO increased PGC-1α expression, suggesting postnatal effects on PFO mitochondrial biogenesis. MFN2 and OPA1 expression also increased, together with increased mitochondrial elongation and a reduced mitochondrial density. Mitochondrial abnormalities, such as vacuolation, loose inner membranes, the number of detected autophagosomes, and signs of lipophagy, were also significantly increased by maternal DIO at weaning. In conclusion, the oocyte mitochondrial structural abnormalities previously reported in adult offspring from DIO mothers were not detected in the PFOs at birth. Significant changes in primordial follicles linked to maternal DIO were detected only at weaning.

母亲饮食性肥胖(DIO)可能由于线粒体功能障碍而影响成年后代卵母细胞质量。在这里,我们研究了DIO母亲的后代在出生时是否已经在其原始卵泡卵母细胞(PFOs)中表现出线粒体异常,以及在断奶时是否可以检测到(进一步)改变。雌性瑞士小鼠在交配前7周以及整个妊娠和哺乳期饲喂对照或致肥性饮食。在出生和断奶时收集子代卵巢,通过卵巢切片透射电镜检查子代全氟辛烷磺酸。利用免疫荧光和共聚焦显微镜检测细胞应激(HSP70)、线粒体生物发生(PGC-1α)、mtDNA复制(TFAM)、融合(MFN2、OPA1)和裂变(DRP1)的关键标志物。母体DIO未改变出生时PFOs中HSP70或PGC-1α的表达,表明细胞稳态和线粒体生物发生未受影响。两个时间点的TFAM表达均降低。DRP1和细胞质OPA1的表达在出生时降低,但线粒体形状和密度没有超微结构改变,表明这些改变是调节的。未发现先天性线粒体结构异常。相比之下,在断奶时,DIO母亲所生和喂养的后代卵巢中显示出大量的脂滴(ld),其中一些在PFOs中可以检测到,而对照组的PFOs中没有检测到ld。母体DIO增加PGC-1α表达,提示出生后对PFO线粒体生物发生有影响。MFN2和OPA1表达增加,线粒体伸长增加,线粒体密度降低。线粒体异常,如空泡形成、内膜疏松,以及检测到的自噬体数量和脂质吞噬迹象均明显增加。综上所述,先前报道的DIO母亲成年后代的卵母细胞线粒体结构异常在出生时的PFOs中未被检测到。与母体DIO相关的原始卵泡的显著变化仅在断奶时被检测到。
{"title":"The impact of maternal diet-induced obesity on offspring primordial oocyte mitochondria at birth and at weaning.","authors":"Waleed F A Marei, Inne Xhonneux, Axelle Buydens, Isabel Pintelon, Ben Meulders, Silke Andries, Jo L M R Leroy","doi":"10.1093/molehr/gaaf044","DOIUrl":"10.1093/molehr/gaaf044","url":null,"abstract":"<p><p>Maternal diet-induced obesity (DIO) may affect adult offspring oocyte quality due to mitochondrial dysfunction. Here, we investigated whether offspring of DIO mothers exhibit mitochondrial abnormalities in their primordial follicle oocytes (PFOs) already at birth and if (further) alterations can be detected at weaning. Female Swiss mice were fed a control or obesogenic diet for 7 weeks before mating and throughout pregnancy and lactation. Offspring ovaries were collected at birth and at weaning. Offspring PFOs were examined by transmission electron microscopy of ovarian sections. Key markers of cell stress (HSP70), mitochondrial biogenesis (PGC-1α), mtDNA replication (TFAM), fusion (MFN2, OPA1), and fission (DRP1) were examined using immunofluorescence and confocal microscopy. Maternal DIO did not alter HSP70 or PGC-1α expression in the PFOs at birth, suggesting that cellular homeostasis and mitochondrial biogenesis were unaffected. TFAM expression was reduced at both time points. DRP1 and cytoplasmic OPA1 expression were reduced at birth, but without ultrastructural changes in mitochondrial shape and density, suggesting that these alterations are regulatory. No inborn mitochondrial structural abnormalities could be detected. In contrast, at weaning, offspring born to and nursed by DIO mothers exhibited a high number of lipid droplets (LDs) in their ovaries, some of which were detectable in the PFOs, while no LDs were detected in the PFOs of the controls. Maternal DIO increased PGC-1α expression, suggesting postnatal effects on PFO mitochondrial biogenesis. MFN2 and OPA1 expression also increased, together with increased mitochondrial elongation and a reduced mitochondrial density. Mitochondrial abnormalities, such as vacuolation, loose inner membranes, the number of detected autophagosomes, and signs of lipophagy, were also significantly increased by maternal DIO at weaning. In conclusion, the oocyte mitochondrial structural abnormalities previously reported in adult offspring from DIO mothers were not detected in the PFOs at birth. Significant changes in primordial follicles linked to maternal DIO were detected only at weaning.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Heterologous): heterologous rodent models. 子宫内膜异位症研究实验模型的WERF表型和生物银行协调项目(EPHect-EM-Heterologous):异种啮齿动物模型。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf022
M Louise Hull, Raul Gomez, Warren B Nothnick, Ruth Gruemmer, Katherine A Burns, Mohammed Zahied Johan, Isabella R Land, Stacey A Missmer, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran

Endometriosis, defined as the growth of endometrial-like tissues outside the uterus, is a common disease among women. Numerous in vivo rodent models of endometriosis have been developed to explore multiple aspects of this poorly understood disease. Heterologous models utilize human endometrial tissues engrafted into immunocompromized mice, while homologous models engraft rodent endometrium into immunocompetent mice or rats. Heterologous models of endometriosis more closely replicate the human disease; however, the murine humoral immune response must be suppressed to prevent rejection of the xenograft tissue. Although the innate immune system remains intact, suppression of the humoral response leads to a markedly different local and systemic immune environments compared to humans. Despite this limitation, experiments using heterologous models have contributed significantly to our understanding of endometriosis establishment and progression, the pre-clinical effectiveness of various therapeutic strategies, and genetically modifiable host factors that contribute to disease. Unfortunately, a lack of harmonization of the models used by different laboratories has impeded the reproducibility and comparability of results between groups. Therefore, the World Endometriosis Research Foundation (WERF) formed an international working group of experts in heterologous models of endometriosis to develop guidelines and protocols that could contribute to unifying experimental approaches across laboratories. Nine critical variables were identified: (i) mouse strain; (ii) human tissue type; (iii) hormonal status of the human tissue donor; (iv) human tissue preparation; (v) method and location of tissue placement; (vi) hormonal status of the recipient animal; (vii) whether or not mice were engrafted with human immune cells; (viii) endpoint assessments; and (ix) number and type of replicates. Herein, we outline important considerations for each major variable and make recommendations for unification of approaches. Widespread adoption of harmonized protocols and implementation of standardized documentation and reporting should further improve the reproducibility and translation of experimental findings both within and between laboratories.

子宫内膜异位症,定义为子宫外生长的子宫内膜样组织,是一种常见的女性疾病。已经开发了许多子宫内膜异位症的啮齿动物体内模型,以探索这种知之甚少的疾病的多个方面。异体模型将人子宫内膜组织移植到免疫功能低下的小鼠体内,而同源模型将啮齿动物子宫内膜移植到免疫功能正常的小鼠或大鼠体内。异体子宫内膜异位症模型更接近于复制人类疾病;然而,必须抑制小鼠体液免疫反应以防止异种移植物组织的排斥反应。尽管先天免疫系统保持完整,但与人类相比,体液反应的抑制导致了明显不同的局部和全身免疫环境。尽管存在这种局限性,但使用异源模型的实验对我们了解子宫内膜异位症的建立和进展、各种治疗策略的临床前有效性以及导致疾病的遗传修饰宿主因素做出了重大贡献。不幸的是,不同实验室使用的模型缺乏统一,妨碍了组间结果的可重复性和可比性。因此,世界子宫内膜异位症研究基金会(WERF)成立了一个由异源子宫内膜异位症模型专家组成的国际工作组,以制定有助于统一各实验室实验方法的指南和方案。确定了9个关键变量:(i)小鼠品系;(ii)人体组织类型;(iii)人体组织供体的激素状况;(iv)人体组织制备;(v)组织放置的方法和位置;(vi)受体动物的激素状况;(vii)小鼠是否植入人免疫细胞;(viii)终点评估;(ix)复制的数量和类型。在这里,我们概述了每个主要变量的重要考虑因素,并提出了统一方法的建议。广泛采用统一的协议和执行标准化的文件和报告,应进一步改善实验室内部和实验室之间实验结果的可重复性和转译性。
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Heterologous): heterologous rodent models.","authors":"M Louise Hull, Raul Gomez, Warren B Nothnick, Ruth Gruemmer, Katherine A Burns, Mohammed Zahied Johan, Isabella R Land, Stacey A Missmer, Lone Hummelshoj, Erin Greaves, Kaylon L Bruner-Tran","doi":"10.1093/molehr/gaaf022","DOIUrl":"10.1093/molehr/gaaf022","url":null,"abstract":"<p><p>Endometriosis, defined as the growth of endometrial-like tissues outside the uterus, is a common disease among women. Numerous in vivo rodent models of endometriosis have been developed to explore multiple aspects of this poorly understood disease. Heterologous models utilize human endometrial tissues engrafted into immunocompromized mice, while homologous models engraft rodent endometrium into immunocompetent mice or rats. Heterologous models of endometriosis more closely replicate the human disease; however, the murine humoral immune response must be suppressed to prevent rejection of the xenograft tissue. Although the innate immune system remains intact, suppression of the humoral response leads to a markedly different local and systemic immune environments compared to humans. Despite this limitation, experiments using heterologous models have contributed significantly to our understanding of endometriosis establishment and progression, the pre-clinical effectiveness of various therapeutic strategies, and genetically modifiable host factors that contribute to disease. Unfortunately, a lack of harmonization of the models used by different laboratories has impeded the reproducibility and comparability of results between groups. Therefore, the World Endometriosis Research Foundation (WERF) formed an international working group of experts in heterologous models of endometriosis to develop guidelines and protocols that could contribute to unifying experimental approaches across laboratories. Nine critical variables were identified: (i) mouse strain; (ii) human tissue type; (iii) hormonal status of the human tissue donor; (iv) human tissue preparation; (v) method and location of tissue placement; (vi) hormonal status of the recipient animal; (vii) whether or not mice were engrafted with human immune cells; (viii) endpoint assessments; and (ix) number and type of replicates. Herein, we outline important considerations for each major variable and make recommendations for unification of approaches. Widespread adoption of harmonized protocols and implementation of standardized documentation and reporting should further improve the reproducibility and translation of experimental findings both within and between laboratories.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144732280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
'Small but mighty': the Concise Communication comes to MHR. “小而有力”:MHR的简洁沟通。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf049
Michele Boiani, Francesca E Duncan
{"title":"'Small but mighty': the Concise Communication comes to MHR.","authors":"Michele Boiani, Francesca E Duncan","doi":"10.1093/molehr/gaaf049","DOIUrl":"https://doi.org/10.1093/molehr/gaaf049","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145200259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Homologous): homologous rodent models. 子宫内膜异位症研究实验模型的WERF表型和生物银行协调项目(EPHect-EM-Homologous):同源啮齿动物模型。
IF 3.5 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-07-03 DOI: 10.1093/molehr/gaaf021
Katherine A Burns, Daniëlle Peterse, Caroline B Appleyard, Ronald Chandler, Sun-Wei Guo, Amelia Pearson, Eleonora Persoons, Michael S Anglesio, Michael S Rogers, Kathy L Sharpe-Timms, Joris Vriens, Stacey L McAllister, Kelsi N Dodds, Fiona L Cousins, Lone Hummelshoj, Stacey A Missmer, Kaylon L Bruner-Tran, Erin Greaves

In vivo models of endometriosis enable the discovery and preclinical testing of new therapies. Several rodent models of endometriosis exist, but a lack of harmonization impedes reproducibility and comparability of results among investigators. Homologous models are advantageous as they allow the contribution of the immune system/inflammation to be studied. We reviewed published homologous rodent models of endometriosis to develop standard operating procedures ('EPHect-EM-Homologous-SOPs') to guide and facilitate the choice and implementation of these models and harmonize documentation to enhance interpretation and comparability of results. The World Endometriosis Research Foundation (WERF) established an international working group of experts in models of endometriosis and formed a working sub-group to discuss homologous rodent models of endometriosis. A systematic literature review and detailed analysis of protocols was performed. The identified models have advantages and limitations regarding physiological relevance and utility. To harmonize key variables for endometriosis rodent models, the working group focused on species and animal strains, placement of ectopic tissue, uterine tissue volume, method of induction, hormonal status, and uterine tissue 'type'. A decision tree and recommendations on model use were developed for mice and rats to serve as guides for the use of harmonized EPHect-EM-Homologous-SOPs, experimental design, reporting standards, and research of question-dependent key variables. No 'ideal' homologous model of endometriosis was identified. The choice of model for specific research should be guided according to a best-fit strategy. Harmonization of SOPs, documentation, and reporting standards will improve replicability and translational applicability of studies and better highlight where de novo model creation is needed.

子宫内膜异位症的体内模型使新疗法的发现和临床前测试成为可能。存在几种啮齿类动物子宫内膜异位症模型,但缺乏一致性阻碍了研究人员结果的可重复性和可比性。同源模型是有利的,因为它们允许免疫系统/炎症的贡献进行研究。我们回顾了已发表的子宫内膜异位症同源啮齿动物模型,以制定标准操作程序(“ephect - em - homologous - sop”),以指导和促进这些模型的选择和实施,并协调文件,以增强结果的解释和可比性。世界子宫内膜异位症研究基金会(World Endometriosis Research Foundation, WERF)成立了一个国际子宫内膜异位症模型专家工作组,并成立了一个工作小组,讨论同种啮齿类动物子宫内膜异位症模型。我们进行了系统的文献综述和详细的方案分析。所确定的模型在生理相关性和实用性方面具有优势和局限性。为了协调子宫内膜异位症啮齿动物模型的关键变量,工作组将重点放在物种和动物品系、异位组织的放置、子宫组织体积、诱导方法、激素状态和子宫组织“类型”上。建立了小鼠和大鼠模型使用决策树和建议,为统一的ephect - em -同源- sop的使用、实验设计、报告标准和问题相关关键变量的研究提供指导。未发现“理想”的子宫内膜异位症同源模型。具体研究模型的选择应根据最佳匹配策略进行指导。标准操作程序、文件和报告标准的统一将提高研究的可复制性和转化适用性,并更好地突出需要重新创建模型的地方。
{"title":"WERF Endometriosis Phenome and Biobanking Harmonisation Project for Experimental Models in Endometriosis Research (EPHect-EM-Homologous): homologous rodent models.","authors":"Katherine A Burns, Daniëlle Peterse, Caroline B Appleyard, Ronald Chandler, Sun-Wei Guo, Amelia Pearson, Eleonora Persoons, Michael S Anglesio, Michael S Rogers, Kathy L Sharpe-Timms, Joris Vriens, Stacey L McAllister, Kelsi N Dodds, Fiona L Cousins, Lone Hummelshoj, Stacey A Missmer, Kaylon L Bruner-Tran, Erin Greaves","doi":"10.1093/molehr/gaaf021","DOIUrl":"10.1093/molehr/gaaf021","url":null,"abstract":"<p><p>In vivo models of endometriosis enable the discovery and preclinical testing of new therapies. Several rodent models of endometriosis exist, but a lack of harmonization impedes reproducibility and comparability of results among investigators. Homologous models are advantageous as they allow the contribution of the immune system/inflammation to be studied. We reviewed published homologous rodent models of endometriosis to develop standard operating procedures ('EPHect-EM-Homologous-SOPs') to guide and facilitate the choice and implementation of these models and harmonize documentation to enhance interpretation and comparability of results. The World Endometriosis Research Foundation (WERF) established an international working group of experts in models of endometriosis and formed a working sub-group to discuss homologous rodent models of endometriosis. A systematic literature review and detailed analysis of protocols was performed. The identified models have advantages and limitations regarding physiological relevance and utility. To harmonize key variables for endometriosis rodent models, the working group focused on species and animal strains, placement of ectopic tissue, uterine tissue volume, method of induction, hormonal status, and uterine tissue 'type'. A decision tree and recommendations on model use were developed for mice and rats to serve as guides for the use of harmonized EPHect-EM-Homologous-SOPs, experimental design, reporting standards, and research of question-dependent key variables. No 'ideal' homologous model of endometriosis was identified. The choice of model for specific research should be guided according to a best-fit strategy. Harmonization of SOPs, documentation, and reporting standards will improve replicability and translational applicability of studies and better highlight where de novo model creation is needed.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"31 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular human reproduction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1