Samuel Gebremedhn, Ahmed Gad, Ghassan M Ishak, Nico G Menjivar, Melba O Gastal, Jean M Feugang, Radek Prochazka, Dawit Tesfaye, Eduardo L Gastal
Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.
{"title":"Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation.","authors":"Samuel Gebremedhn, Ahmed Gad, Ghassan M Ishak, Nico G Menjivar, Melba O Gastal, Jean M Feugang, Radek Prochazka, Dawit Tesfaye, Eduardo L Gastal","doi":"10.1093/molehr/gaad009","DOIUrl":"https://doi.org/10.1093/molehr/gaad009","url":null,"abstract":"<p><p>Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321592/pdf/gaad009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harriet C Fitzgerald, Andrew M Kelleher, Chaman Ranjit, Danny J Schust, Thomas E Spencer
Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are primarily governed by the steroid hormones estrogen (E2) and progesterone (P4) but can also be influenced by extrinsic factors from the stroma. Using a human endometrial epithelial organoid system, transcriptome and proteome analyses identified distinct responses of the organoids to steroid hormones and prostaglandin E2 (PGE2). Notably, P4 and PGE2 modulated the basolateral secretion of organoid proteins, particularly cystatin C (CST3), serpin family A member 3 (SERPINA3), and stanniocalcin 1 (STC1). CST3, but not SERPINA3 or STC1, attenuated the in vitro stromal decidualization response to steroid hormones and PGE2. These findings provide evidence that uterine gland-derived factors impact stromal cell decidualization, which has implications for pregnancy establishment and fertility in women.
{"title":"Basolateral secretions of human endometrial epithelial organoids impact stromal cell decidualization.","authors":"Harriet C Fitzgerald, Andrew M Kelleher, Chaman Ranjit, Danny J Schust, Thomas E Spencer","doi":"10.1093/molehr/gaad007","DOIUrl":"10.1093/molehr/gaad007","url":null,"abstract":"<p><p>Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are primarily governed by the steroid hormones estrogen (E2) and progesterone (P4) but can also be influenced by extrinsic factors from the stroma. Using a human endometrial epithelial organoid system, transcriptome and proteome analyses identified distinct responses of the organoids to steroid hormones and prostaglandin E2 (PGE2). Notably, P4 and PGE2 modulated the basolateral secretion of organoid proteins, particularly cystatin C (CST3), serpin family A member 3 (SERPINA3), and stanniocalcin 1 (STC1). CST3, but not SERPINA3 or STC1, attenuated the in vitro stromal decidualization response to steroid hormones and PGE2. These findings provide evidence that uterine gland-derived factors impact stromal cell decidualization, which has implications for pregnancy establishment and fertility in women.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 4","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321591/pdf/gaad007.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Germán Gornalusse, Ryan M Spengler, Erin Sandford, Yeseul Kim, Claire Levy, Muneesh Tewari, Florian Hladik, Lucia Vojtech
In addition to their role in protein translation, tRNAs can be cleaved into shorter, biologically active fragments called tRNA fragments (tRFs). Specific tRFs from spermatocytes can propagate metabolic disorders in second generations of mice. Thus, tRFs in germline cells are a mechanism of epigenetic inheritance. It has also been shown that stress and toxins can cause alterations in tRF patterns. We were therefore interested in whether injecting illicit drugs, a major stressor, impacts tRFs in germline cells. We sequenced RNA from spermatocytes and from semen-derived exosomes from people who inject illicit drugs (PWID) and from non-drug using controls, both groups of unknown fertility status. All PWID injected opioids daily, but most also used other illicit drugs. The tRF cleavage products from Gly-GCC tRNA were markedly different between spermatocytes from PWID compared to controls. Over 90% of reads in controls mapped to shorter Gly-GCC tRFs, while in PWID only 45% did. In contrast, only 4.1% of reads in controls mapped to a longer tRFs versus 45.6% in PWID. The long/short tRF ratio was significantly higher in PWID than controls (0.23 versus 0.16, P = 0.0128). We also report differential expression of a group of small nucleolar RNAs (snoRNAs) in semen-derived exosomes, including, among others, ACA14a, U19, and U3-3. Thus, PWID exhibited an altered cleavage pattern of tRNA-Gly-GCC in spermatocytes and an altered cargo of snoRNAs in semen-derived exosomes. Participants were not exclusively using opioids and were not matched with controls in terms of diet, chronic disease, or other stressors, so our finding are not conclusively linked to opioid use. However, all individuals in the PWID group did inject heroin daily. Our study indicates a potential for opioid injection and/or its associated multi-drug use habits and lifestyle changes to influence epigenetic inheritance.
{"title":"Men who inject opioids exhibit altered tRNA-Gly-GCC isoforms in semen.","authors":"Germán Gornalusse, Ryan M Spengler, Erin Sandford, Yeseul Kim, Claire Levy, Muneesh Tewari, Florian Hladik, Lucia Vojtech","doi":"10.1093/molehr/gaad003","DOIUrl":"10.1093/molehr/gaad003","url":null,"abstract":"<p><p>In addition to their role in protein translation, tRNAs can be cleaved into shorter, biologically active fragments called tRNA fragments (tRFs). Specific tRFs from spermatocytes can propagate metabolic disorders in second generations of mice. Thus, tRFs in germline cells are a mechanism of epigenetic inheritance. It has also been shown that stress and toxins can cause alterations in tRF patterns. We were therefore interested in whether injecting illicit drugs, a major stressor, impacts tRFs in germline cells. We sequenced RNA from spermatocytes and from semen-derived exosomes from people who inject illicit drugs (PWID) and from non-drug using controls, both groups of unknown fertility status. All PWID injected opioids daily, but most also used other illicit drugs. The tRF cleavage products from Gly-GCC tRNA were markedly different between spermatocytes from PWID compared to controls. Over 90% of reads in controls mapped to shorter Gly-GCC tRFs, while in PWID only 45% did. In contrast, only 4.1% of reads in controls mapped to a longer tRFs versus 45.6% in PWID. The long/short tRF ratio was significantly higher in PWID than controls (0.23 versus 0.16, P = 0.0128). We also report differential expression of a group of small nucleolar RNAs (snoRNAs) in semen-derived exosomes, including, among others, ACA14a, U19, and U3-3. Thus, PWID exhibited an altered cleavage pattern of tRNA-Gly-GCC in spermatocytes and an altered cargo of snoRNAs in semen-derived exosomes. Participants were not exclusively using opioids and were not matched with controls in terms of diet, chronic disease, or other stressors, so our finding are not conclusively linked to opioid use. However, all individuals in the PWID group did inject heroin daily. Our study indicates a potential for opioid injection and/or its associated multi-drug use habits and lifestyle changes to influence epigenetic inheritance.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 3","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/4f/gaad003.PMC9976897.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9137073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editor's note on 'Various protein kinases regulate human sperm acrosome reaction and the associated phosphorylation of Tyr residues and of the Thr-Glu-Tyr motif'.","authors":"","doi":"10.1093/molehr/gaad008","DOIUrl":"https://doi.org/10.1093/molehr/gaad008","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9139189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A L Voigt, R Dardari, N L M Lara, T He, H Steele, A Dufour, K E Orwig, I Dobrinski
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, a complex process supported by a specialized microenvironment, called the SSC niche. Postnatal development of SSCs is characterized by distinct metabolic transitions from prepubertal to adult stages. An understanding of the niche factors that regulate these maturational events is critical for the clinical application of SSCs in fertility preservation. To investigate the niche maturation events that take place during SSC maturation, we combined different '-omics' technologies. Serial single cell RNA sequencing analysis revealed changes in the transcriptomes indicative of niche maturation that was initiated at 11 years of age in humans and at 8 weeks of age in pigs, as evident by Monocle analysis of Sertoli cells and peritubular myoid cell (PMC) development in humans and Sertoli cell analysis in pigs. Morphological niche maturation was associated with lipid droplet accumulation, a characteristic that was conserved between species. Lipidomic profiling revealed an increase in triglycerides and a decrease in sphingolipids with Sertoli cell maturation in the pig model. Quantitative (phospho-) proteomics analysis detected the activation of distinct pathways with porcine Sertoli cell maturation. We show here that the main aspects of niche maturation coincide with the morphological maturation of SSCs, which is followed by their metabolic maturation. The main aspects are also conserved between the species and can be predicted by changes in the niche lipidome. Overall, this knowledge is pivotal to establishing cell/tissue-based biomarkers that could gauge stem cell maturation to facilitate laboratory techniques that allow for SSC transplantation for restoration of fertility.
{"title":"Multiomics approach to profiling Sertoli cell maturation during development of the spermatogonial stem cell niche.","authors":"A L Voigt, R Dardari, N L M Lara, T He, H Steele, A Dufour, K E Orwig, I Dobrinski","doi":"10.1093/molehr/gaad004","DOIUrl":"10.1093/molehr/gaad004","url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, a complex process supported by a specialized microenvironment, called the SSC niche. Postnatal development of SSCs is characterized by distinct metabolic transitions from prepubertal to adult stages. An understanding of the niche factors that regulate these maturational events is critical for the clinical application of SSCs in fertility preservation. To investigate the niche maturation events that take place during SSC maturation, we combined different '-omics' technologies. Serial single cell RNA sequencing analysis revealed changes in the transcriptomes indicative of niche maturation that was initiated at 11 years of age in humans and at 8 weeks of age in pigs, as evident by Monocle analysis of Sertoli cells and peritubular myoid cell (PMC) development in humans and Sertoli cell analysis in pigs. Morphological niche maturation was associated with lipid droplet accumulation, a characteristic that was conserved between species. Lipidomic profiling revealed an increase in triglycerides and a decrease in sphingolipids with Sertoli cell maturation in the pig model. Quantitative (phospho-) proteomics analysis detected the activation of distinct pathways with porcine Sertoli cell maturation. We show here that the main aspects of niche maturation coincide with the morphological maturation of SSCs, which is followed by their metabolic maturation. The main aspects are also conserved between the species and can be predicted by changes in the niche lipidome. Overall, this knowledge is pivotal to establishing cell/tissue-based biomarkers that could gauge stem cell maturation to facilitate laboratory techniques that allow for SSC transplantation for restoration of fertility.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9138186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Formation of the acrosome during spermiogenesis is an essential process for creating fertilization-competent sperm. Of the numerous aspects required for acrosome biogenesis, adherence of the acrosomal outer membrane to the nuclear surface is mediated by the subacrosomal perinuclear theca. However, the cellular dynamics and congruent functions pertaining to these acrosomal anchoring factors are not well understood despite many of them being implicated as potential causes for human male infertility. Actin-like 7A (ACTL7A) is one such factor for which deleterious polymorphisms have recently been shown to cause human male infertility. It is thought that acrosomal attachment is coordinated by cytoskeletal associations between the acrosome and nucleus via the acroplaxome. To further illuminate the mechanistic underpinnings of ACTL7A for essential acrosome associations, in this study, we investigated its dynamic localization in the developing germline, molecular associations with other cytoskeletal components, and the cellular consequences of ablation. Our intracellular localization data show ACTL7A to be dynamically present within the nucleus and subacrosomal space and later associated with postacrosomal regions of developing spermatids. Through the generation of an Actl7a knock-out mouse model, we consistently observed disruption of acrosomal biogenesis with abnormal migration of the acrosomal granule and peeling acrosomes during spermatid elongation. Significantly, we found a complete loss of subacrosomal filamentous actin (F-actin) structures in knock-out spermatids suggesting a regulatory role for subacrosomal F-actin. Considering our reported data together with existing literature, we propose a mechanistic model explaining the essential role of ACTL7A for acroplaxome-associated F-actin, acrosomal attachment integrity, and male fertility.
{"title":"Testis-specific actin-like 7A (ACTL7A) is an indispensable protein for subacrosomal-associated F-actin formation, acrosomal anchoring, and male fertility.","authors":"P Ferrer, S Upadhyay, M Ikawa, T M Clement","doi":"10.1093/molehr/gaad005","DOIUrl":"https://doi.org/10.1093/molehr/gaad005","url":null,"abstract":"<p><p>Formation of the acrosome during spermiogenesis is an essential process for creating fertilization-competent sperm. Of the numerous aspects required for acrosome biogenesis, adherence of the acrosomal outer membrane to the nuclear surface is mediated by the subacrosomal perinuclear theca. However, the cellular dynamics and congruent functions pertaining to these acrosomal anchoring factors are not well understood despite many of them being implicated as potential causes for human male infertility. Actin-like 7A (ACTL7A) is one such factor for which deleterious polymorphisms have recently been shown to cause human male infertility. It is thought that acrosomal attachment is coordinated by cytoskeletal associations between the acrosome and nucleus via the acroplaxome. To further illuminate the mechanistic underpinnings of ACTL7A for essential acrosome associations, in this study, we investigated its dynamic localization in the developing germline, molecular associations with other cytoskeletal components, and the cellular consequences of ablation. Our intracellular localization data show ACTL7A to be dynamically present within the nucleus and subacrosomal space and later associated with postacrosomal regions of developing spermatids. Through the generation of an Actl7a knock-out mouse model, we consistently observed disruption of acrosomal biogenesis with abnormal migration of the acrosomal granule and peeling acrosomes during spermatid elongation. Significantly, we found a complete loss of subacrosomal filamentous actin (F-actin) structures in knock-out spermatids suggesting a regulatory role for subacrosomal F-actin. Considering our reported data together with existing literature, we propose a mechanistic model explaining the essential role of ACTL7A for acroplaxome-associated F-actin, acrosomal attachment integrity, and male fertility.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10229531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis N Roach, Katherine N Zimmel, Kara N Thomas, Alison Basel, Sanat S Bhadsavle, Michael C Golding
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
{"title":"Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model.","authors":"Alexis N Roach, Katherine N Zimmel, Kara N Thomas, Alison Basel, Sanat S Bhadsavle, Michael C Golding","doi":"10.1093/molehr/gaad002","DOIUrl":"10.1093/molehr/gaad002","url":null,"abstract":"<p><p>Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10802173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pre-implantation embryo movement is crucial to pregnancy success, but the role of ovarian hormones in modulating embryo movement is not understood. We ascertain the effects of altered hormonal environment on embryo location using two delayed implantation mouse models: natural lactational diapause (ND); and artificially induced diapause (AD), a laboratory version of ND generated by ovary removal and provision of supplemental progesterone (P4). Previously, we showed that embryos in a natural pregnancy (NP) first display unidirectional clustered movement, followed by bidirectional scattering and spacing movement. In the ND model, we discovered that embryos are present as clusters near the oviductal-uterine junction for ∼24 h longer than NP, followed by locations consistent with a unidirectional scattering and spacing movement. Intriguingly, the AD model resembles embryo location in NP and not ND. When measuring serum hormone levels, unlike the popular paradigm of reduced estrogen (E2) levels in diapause, we observed that E2 levels are comparable across NP, ND and AD. P4 levels are reduced in ND and highly increased in AD when compared to NP. Further, exogenous administration of E2 or P4 modifies embryo location during the unidirectional phase, while E2 treatment also affects embryo location in the bidirectional phase. Taken together, our data suggest that embryo movement can be modulated by both P4 and E2. Understanding natural hormonal adaptation in diapause provides an opportunity to determine key players that regulate embryo location, thus impacting implantation success. This knowledge can be leveraged to understand pregnancy survival and implantation success in hormonally altered conditions in the clinic.
{"title":"Pre-implantation mouse embryo movement under hormonally altered conditions.","authors":"Hannah Lufkin, Diana Flores, Zachary Raider, Manoj Madhavan, Madeline Dawson, Anna Coronel, Dhruv Sharma, Ripla Arora","doi":"10.1093/molehr/gaac043","DOIUrl":"https://doi.org/10.1093/molehr/gaac043","url":null,"abstract":"<p><p>Pre-implantation embryo movement is crucial to pregnancy success, but the role of ovarian hormones in modulating embryo movement is not understood. We ascertain the effects of altered hormonal environment on embryo location using two delayed implantation mouse models: natural lactational diapause (ND); and artificially induced diapause (AD), a laboratory version of ND generated by ovary removal and provision of supplemental progesterone (P4). Previously, we showed that embryos in a natural pregnancy (NP) first display unidirectional clustered movement, followed by bidirectional scattering and spacing movement. In the ND model, we discovered that embryos are present as clusters near the oviductal-uterine junction for ∼24 h longer than NP, followed by locations consistent with a unidirectional scattering and spacing movement. Intriguingly, the AD model resembles embryo location in NP and not ND. When measuring serum hormone levels, unlike the popular paradigm of reduced estrogen (E2) levels in diapause, we observed that E2 levels are comparable across NP, ND and AD. P4 levels are reduced in ND and highly increased in AD when compared to NP. Further, exogenous administration of E2 or P4 modifies embryo location during the unidirectional phase, while E2 treatment also affects embryo location in the bidirectional phase. Taken together, our data suggest that embryo movement can be modulated by both P4 and E2. Understanding natural hormonal adaptation in diapause provides an opportunity to determine key players that regulate embryo location, thus impacting implantation success. This knowledge can be leveraged to understand pregnancy survival and implantation success in hormonally altered conditions in the clinic.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167929/pdf/gaac043.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9634912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.
{"title":"Comprehensive molecular analysis identifies eight novel variants in XY females with disorders of sex development.","authors":"Vinayak Kulkarni, Selvaa Kumar Chellasamy, Somprakash Dhangar, Jagdeeshwar Ghatanatti, Babu Rao Vundinti","doi":"10.1093/molehr/gaad001","DOIUrl":"https://doi.org/10.1093/molehr/gaad001","url":null,"abstract":"<p><p>Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167928/pdf/gaad001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9495063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.
{"title":"In vivo promotion of primordial follicle activation by stem cell factor treatment in mice with premature ovarian insufficiency and advanced age.","authors":"Yibo Wang, Jiawei Zhang, Jing Liang, Longzhong Jia, Shudong Niu, Kaixin Cheng, Chen Yang, Zining Lu, Lu Mu, Xuebing Yang, Yan Zhang, Hua Zhang","doi":"10.1093/molehr/gaac041","DOIUrl":"https://doi.org/10.1093/molehr/gaac041","url":null,"abstract":"<p><p>Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10672826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}