首页 > 最新文献

Molecular human reproduction最新文献

英文 中文
Differential role of bovine serum albumin and HCO3- in the regulation of GSK3 alpha during mouse sperm capacitation. 牛血清白蛋白和 HCO3- 在小鼠精子获能过程中对 GSK3 alpha 的调节作用存在差异。
IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/molehr/gaae007
Gayatri Mohanty, Claudia Sanchez-Cardenas, Bidur Paudel, Darya A Tourzani, Ana M Salicioni, Celia M Santi, María G Gervasi, J Richard Pilsner, Alberto Darszon, Pablo E Visconti

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3β). GSK3α and GSK3β are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3β) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.

哺乳动物的精子需要在雌性生殖道内或体外在含有离子(如 HCO3-、Ca2+、Na+ 和 Cl-)、能量源(如葡萄糖、丙酮酸)和血清白蛋白(如牛血清白蛋白 (BSA))的特定介质中进行获能,才能具有生育能力。这些不同的分子会启动相继和同时出现的信号通路,从而导致获能。在生理学上,获能诱导精子运动模式的改变(如过度活化),并使精子为顶体反应(AR)做好准备,这是受精所需的两个过程。分子上,HCO3- 可激活非典型腺苷酸环化酶 Adcy10(又名 sAC),增加 cAMP 和 cAMP 依赖性下游通路。另一方面,BSA 会诱导精子释放胆固醇以及其他信号通路。这些信号事件发生在精子的不同区室,其动力学过程也不同,它们之间如何相互协调尚未得到很好的证实。关于 AR,最近的研究提出了糖原合成酶激酶(GSK3 α 和 GSK3 β)的作用。GSK3 α和GSK3 β分别通过其N端结构域中的Ser21和Ser9残基磷酸化而失活。在此,我们提出证据证明 GSK3 α(而非 GSK3 β)存在于前头部,并在获能过程中受到调控。有趣的是,BSA 和 HCO3- 对 GSK3 α 的调节方向相反。BSA 能快速诱导 GSK3 α Ser21 磷酸化,而 HCO3- 和 cAMP 依赖性途径则能使该残基去磷酸化。我们还发现,HCO3 诱导的 Ser21 去磷酸化是由精子质膜电位(Em)超极化和细胞内 pH 碱化介导的。以前的报告表明,GSK3 激酶介导了黄体酮诱导的 AR。在这里,我们发现抑制 GSK3 也能阻断 Ca2+ 离子肽诱导的 AR,这表明 GSK3 激酶在这一外泌事件所需的细胞内 Ca2+ 增加的下游发挥作用。总之,我们的数据表明,在 BSA 和 HCO3- 的作用下,GSK3 α 的调节具有时间性和双相性。
{"title":"Differential role of bovine serum albumin and HCO3- in the regulation of GSK3 alpha during mouse sperm capacitation.","authors":"Gayatri Mohanty, Claudia Sanchez-Cardenas, Bidur Paudel, Darya A Tourzani, Ana M Salicioni, Celia M Santi, María G Gervasi, J Richard Pilsner, Alberto Darszon, Pablo E Visconti","doi":"10.1093/molehr/gaae007","DOIUrl":"10.1093/molehr/gaae007","url":null,"abstract":"<p><p>To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3β). GSK3α and GSK3β are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3β) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of ovarian granulosa cell proteomics and phosphoproteomics in PCOS patients without insulin resistance. 对无胰岛素抵抗的多囊卵巢综合征患者卵巢颗粒细胞蛋白质组学和磷酸化蛋白质组学的综合分析。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/molehr/gaae005
Xiao Yang, Peng Liu, Hongcheng He, Dan Qi, Lei Yan

PCOS is a complex and heterogeneous metabolic disorder that affects 6-20% of women of reproductive age. However, research on phosphorylation modification proteomics in PCOS remains lacking. PCOS can be divided into two groups based on the presence or absence of insulin resistance: PCOS with insulin resistance (PCOS-IR) and PCOS non-insulin resistant (PCOS-NIR). This study focused on the group without insulin resistance. Twenty-one PCOS-NIR and 39 control-NIR (Ctrl-NIR) patients were included in this study. All participants underwent ICSI or IVF-embryo transfer (IVF-ET) treatment in a reproductive center from July 2020 to November 2020. During oocyte retrieval, fresh follicular fluid was aspirated, collected, and sent to the laboratory for analysis of the granulosa cells. A 4D-label-free proteome quantification method was performed in this study; this was used to analyze protein enzymatic peptide fragments by liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis was performed on differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). A total of 713 DEPs were identified between the two groups, including 293 upregulated and 420 downregulated DEPs in the PCOS-NIR group. There were 522 and 159 proteins with increased and decreased phosphorylation, respectively, in the PCOS-NIR group. After analyzing the different phosphorylation modification sites, 933 sites with upregulated and 211 sites with downregulated phosphorylation were found in the PCOS-NIR group. In this study, we describe the quantitative protein expression profiles and phosphorylation-modified protein expression profiles of ovarian granulosa cells from patients with PCOS-NIR, providing a new research perspective for these patients. Further studies are required to elucidate the role of protein phosphorylation in PCOS.

多囊卵巢综合征是一种复杂的异质性代谢紊乱,影响着 6%-20% 的育龄妇女。然而,有关多囊卵巢综合症磷酸化修饰蛋白质组学的研究仍然缺乏。多囊卵巢综合征可根据是否存在胰岛素抵抗分为两类:有胰岛素抵抗的多囊卵巢综合症(PCOS-IR)和无胰岛素抵抗的多囊卵巢综合症(PCOS-NIR)。本研究的重点是无胰岛素抵抗组。21 名 PCOS-NIR 患者和 39 名对照组 NIR(Ctrl-NIR)患者参与了这项研究。所有参与者均于 2020 年 7 月至 2020 年 11 月期间在一家生殖中心接受了卵胞浆内单精子显微注射(ICSI)或体外受精-胚胎移植(IVF-ET)治疗。在卵母细胞提取过程中,抽取、收集新鲜卵泡液并送往实验室分析颗粒细胞。本研究采用了一种无4D标记的蛋白质组定量方法,通过液相色谱-质谱(LC-MS)分析蛋白质酶肽片段。对差异表达蛋白(DEPs)和差异磷酸化蛋白(DPPs)进行了生物信息学分析。两组共鉴定出 713 个差异表达蛋白,其中 PCOS-NIR 组有 293 个上调的差异表达蛋白,420 个下调的差异表达蛋白。在 PCOS-NIR 组中,分别有 522 个和 159 个蛋白质的磷酸化增加和减少。对不同的磷酸化修饰位点进行分析后发现,PCOS-NIR 组中磷酸化上调的位点有 933 个,磷酸化下调的位点有 211 个。本研究描述了 PCOS-NIR 患者卵巢颗粒细胞的定量蛋白质表达谱和磷酸化修饰蛋白质表达谱,为这些患者提供了一个新的研究视角。要阐明蛋白质磷酸化在多囊卵巢综合症中的作用,还需要进一步的研究。
{"title":"Comprehensive analysis of ovarian granulosa cell proteomics and phosphoproteomics in PCOS patients without insulin resistance.","authors":"Xiao Yang, Peng Liu, Hongcheng He, Dan Qi, Lei Yan","doi":"10.1093/molehr/gaae005","DOIUrl":"10.1093/molehr/gaae005","url":null,"abstract":"<p><p>PCOS is a complex and heterogeneous metabolic disorder that affects 6-20% of women of reproductive age. However, research on phosphorylation modification proteomics in PCOS remains lacking. PCOS can be divided into two groups based on the presence or absence of insulin resistance: PCOS with insulin resistance (PCOS-IR) and PCOS non-insulin resistant (PCOS-NIR). This study focused on the group without insulin resistance. Twenty-one PCOS-NIR and 39 control-NIR (Ctrl-NIR) patients were included in this study. All participants underwent ICSI or IVF-embryo transfer (IVF-ET) treatment in a reproductive center from July 2020 to November 2020. During oocyte retrieval, fresh follicular fluid was aspirated, collected, and sent to the laboratory for analysis of the granulosa cells. A 4D-label-free proteome quantification method was performed in this study; this was used to analyze protein enzymatic peptide fragments by liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis was performed on differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). A total of 713 DEPs were identified between the two groups, including 293 upregulated and 420 downregulated DEPs in the PCOS-NIR group. There were 522 and 159 proteins with increased and decreased phosphorylation, respectively, in the PCOS-NIR group. After analyzing the different phosphorylation modification sites, 933 sites with upregulated and 211 sites with downregulated phosphorylation were found in the PCOS-NIR group. In this study, we describe the quantitative protein expression profiles and phosphorylation-modified protein expression profiles of ovarian granulosa cells from patients with PCOS-NIR, providing a new research perspective for these patients. Further studies are required to elucidate the role of protein phosphorylation in PCOS.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Racial disparity in uterine leiomyoma: new insights of genetic and environmental burden in myometrial cells. 子宫肌瘤的种族差异:子宫肌瘤细胞遗传和环境负担的新见解。
IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/molehr/gaae004
Nazeer H Khan, Ross McNally, J Julie Kim, Jian-Jun Wei

Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.

子宫良性肌瘤(LM)又称子宫肌瘤,是一种常见的妇科肿瘤,50 岁妇女的患病率可达 70%。值得注意的是,与白人妇女相比,黑人妇女的子宫肌瘤发病率更高,肿瘤的数量、大小和严重程度也更大。已公布的知识表明,遗传、环境和生活方式等风险因素与 LM 的种族差异有关。在黑人和白人妇女的基因组、表观基因组和转录组数据水平上取得了重大进展,以阐明 LM 发病的种族差异的病理分子原因。然而,LM 的种族差异仍然是妇科研究的一个主要关注领域。这篇综述强调了 LM 的风险因素及其在不同种族中的作用。此外,我们还讨论了 LM 发生过程中的遗传学和子宫肌层微环境。比较研究结果表明,该疾病的主要种族差异与子宫肌层氧化负担和 ROS 途径的改变有关,这与基因组 DNA 中的氧化鸟嘌呤和 MED12 基因突变有关,而 MED12 基因突变是 LM 发生的驱动力。考虑到 LM 的负担和发病率,我们希望这篇关于遗传风险和子宫肌层微环境的综述能加强人们对 LM 负担的种族差异的理解,并推动相关研究的发展。
{"title":"Racial disparity in uterine leiomyoma: new insights of genetic and environmental burden in myometrial cells.","authors":"Nazeer H Khan, Ross McNally, J Julie Kim, Jian-Jun Wei","doi":"10.1093/molehr/gaae004","DOIUrl":"10.1093/molehr/gaae004","url":null,"abstract":"<p><p>Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction. 更正为氧气浓度降低会调节体外人类颗粒细胞的表型和功能,并导致细胞产生类固醇的能力减弱,但炎症反应增强。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/molehr/gaae011
{"title":"Correction to: Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction.","authors":"","doi":"10.1093/molehr/gaae011","DOIUrl":"https://doi.org/10.1093/molehr/gaae011","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"30 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influx of innovation: promoting the scientific advances of early career investigators in Molecular Human Reproduction. 创新的流入:促进分子人类生殖领域早期职业研究人员的科学进步。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/molehr/gaad050
Francesca E Duncan, Michele Boiani
{"title":"Influx of innovation: promoting the scientific advances of early career investigators in Molecular Human Reproduction.","authors":"Francesca E Duncan, Michele Boiani","doi":"10.1093/molehr/gaad050","DOIUrl":"10.1093/molehr/gaad050","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"30 3","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-GlcNAcylation orchestrates porcine oocyte maturation through maintaining mitochondrial dynamics and function. O-GlcNAcylation 通过维持线粒体的动态和功能协调猪卵母细胞的成熟。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/molehr/gaae003
Wen-Jie Xiong, Xin-Le Lai, Jie Lu, Li-Shu Li, Jin-Xin Zhang, Xing Duan

O-linked β-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.

O-GlcNAc 修饰广泛存在于细胞中,其信号通路参与转录、翻译、新陈代谢和细胞周期等重要生物过程的调控。O-GlcNAc 修饰是一种可诱导的可逆动态蛋白质翻译后修饰,通过瞬时糖基化和脱糖基化调控复杂的细胞活动。O-GlcNAc糖基化受O-GlcNAc糖基转移酶(O-GlcNAc transferase,OGT)和O-GlcNAc糖苷水解酶(O-GlcNAcase,OGA)的特异性调控。然而,O-GlcNAc修饰对女性生殖系统,尤其是卵母细胞质量的影响机制仍不清楚。在这里,我们发现抑制 OGT 后,猪卵母细胞无法挤出第一极体,并表现出肌动蛋白和微管组装异常。同时,OGT 功能被抑制后,线粒体的动力学和功能也受到破坏,导致氧化应激和自噬的发生。总之,这些结果使我们了解了糖基化过程对卵母细胞成熟的重要性,尤其是对猪卵母细胞成熟质量的影响,卵母细胞中O-GlcNAc的改变对细胞事件的调控作用值得进一步研究。
{"title":"O-GlcNAcylation orchestrates porcine oocyte maturation through maintaining mitochondrial dynamics and function.","authors":"Wen-Jie Xiong, Xin-Le Lai, Jie Lu, Li-Shu Li, Jin-Xin Zhang, Xing Duan","doi":"10.1093/molehr/gaae003","DOIUrl":"10.1093/molehr/gaae003","url":null,"abstract":"<p><p>O-linked β-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The future of embryoids from a reproductive science perspective. 从生殖科学的角度看胚胎的未来。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/molehr/gaae009
Michele Boiani
{"title":"The future of embryoids from a reproductive science perspective.","authors":"Michele Boiani","doi":"10.1093/molehr/gaae009","DOIUrl":"10.1093/molehr/gaae009","url":null,"abstract":"","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"30 2","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women. 添加雷帕霉素或与较年轻育龄妇女的积层细胞进行联合培养,并不能改善较年长育龄妇女的体外卵母细胞成熟或非整倍体率。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/molehr/gaad048
Marga Esbert, Xin Tao, Agustín Ballesteros, Raziye Melike Yildirim, Richard T Scott, Emre Seli

Both spontaneously conceived pregnancies and those achieved using assisted reproduction decline with advancing maternal age. In this study, we tested if rapamycin and/or cumulus cells (CCs) from young donors could improve oocyte maturation and euploidy rates of germinal vesicle (GV) stage oocytes obtained from older women of reproductive age. A total of 498 GVs from 201 women >38 years (40.6 ± 1.8, mean ± SD) were included. GVs were randomly assigned into five groups for rescue IVM: control (with no CCs and no rapamycin); with autologous CCs; with autologous CCs and rapamycin; with CCs from young women (<35 years); and with CCs from young women and rapamycin. After 24 h of culture, the first polar body (PB) was biopsied in metaphase II oocytes, and the cytogenetic constitution was assessed using next-generation sequencing for both oocytes and PBs. Comparable maturation rates were found (56.2%, 60.0%, 46.5%, 51.7%, and 48.5% for groups 1-5, respectively; P = 0.30). Similarly, comparable euploidy rates were observed in the five groups (41.5%, 37.8%, 47.2%, 43.6%, and 47.8% for Groups 1-5, respectively; P = 0.87). Our findings indicate that rescue IVM is effective for obtaining mature euploid oocytes in older women of reproductive age, and that incubation with rapamycin or CCs obtained from young donors does not improve the maturation or euploidy rate.

随着母体年龄的增长,自然受孕和辅助生殖的妊娠率都会下降。在这项研究中,我们测试了雷帕霉素和/或来自年轻供体的积层细胞(CCs)是否能改善育龄期高龄妇女的卵母细胞成熟度和生殖囊(GV)期卵母细胞的非整倍体率。该研究共纳入了来自 201 名年龄大于 38 岁的女性(40.6 ± 1.8,平均 ± SD)的 498 个生殖小泡。GV被随机分为五组进行IVM复苏:对照组(无CCs和雷帕霉素);使用自体CCs;使用自体CCs和雷帕霉素;使用来自年轻女性的CCs (
{"title":"Addition of rapamycin or co-culture with cumulus cells from younger reproductive age women does not improve rescue in vitro oocyte maturation or euploidy rates in older reproductive age women.","authors":"Marga Esbert, Xin Tao, Agustín Ballesteros, Raziye Melike Yildirim, Richard T Scott, Emre Seli","doi":"10.1093/molehr/gaad048","DOIUrl":"10.1093/molehr/gaad048","url":null,"abstract":"<p><p>Both spontaneously conceived pregnancies and those achieved using assisted reproduction decline with advancing maternal age. In this study, we tested if rapamycin and/or cumulus cells (CCs) from young donors could improve oocyte maturation and euploidy rates of germinal vesicle (GV) stage oocytes obtained from older women of reproductive age. A total of 498 GVs from 201 women >38 years (40.6 ± 1.8, mean ± SD) were included. GVs were randomly assigned into five groups for rescue IVM: control (with no CCs and no rapamycin); with autologous CCs; with autologous CCs and rapamycin; with CCs from young women (<35 years); and with CCs from young women and rapamycin. After 24 h of culture, the first polar body (PB) was biopsied in metaphase II oocytes, and the cytogenetic constitution was assessed using next-generation sequencing for both oocytes and PBs. Comparable maturation rates were found (56.2%, 60.0%, 46.5%, 51.7%, and 48.5% for groups 1-5, respectively; P = 0.30). Similarly, comparable euploidy rates were observed in the five groups (41.5%, 37.8%, 47.2%, 43.6%, and 47.8% for Groups 1-5, respectively; P = 0.87). Our findings indicate that rescue IVM is effective for obtaining mature euploid oocytes in older women of reproductive age, and that incubation with rapamycin or CCs obtained from young donors does not improve the maturation or euploidy rate.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deleterious variants in X-linked RHOXF1 cause male infertility with oligo- and azoospermia. X 连锁 RHOXF1 的致畸变体会导致男性不育,并伴有少精症和无精症。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/molehr/gaae002
Sibing Yi, Weili Wang, Lilan Su, Lanlan Meng, Yong Li, Chen Tan, Qiang Liu, Huan Zhang, Liqing Fan, Guangxiu Lu, Liang Hu, Juan Du, Ge Lin, Yue-Qiu Tan, Chaofeng Tu, Qianjun Zhang

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.

少精症和无精症是男性不育症的两种常见表现型,其特点是精子发生失败导致大量精子缺陷。候选变异对男性不育的有害影响有待探讨。在我们的研究中,我们发现了三个半杂合错义变异(c.388G>A:p. V130M、c.272C>T:p. A91V 和 c.467C>T:p. A156V)和一个半杂合无义变异(c.478 C>T:p. R130M)。RHOXF1)的一个半杂合无义变异(c.478 C>T:p. R160X)和一个半杂合有义变异(c.478 C>T:p. R160X)。在一名患者(c.388G>A:p. V130M)的睾丸活检中,RHOXF1缺失,其组织学分析表明该患者的表型为仅有Sertoli细胞综合征。体外实验表明,RHOXF1 突变会显著降低 HEK293T 细胞中 RHOXF1 蛋白的含量。具体来说,RHOXF1的p. V130M、p. A156V和p. R160X突变体也会导致RHOXF1在细胞质颗粒中的积累增加。荧光素酶测定显示,p. V130M 和 p. R160X 突变体可能会通过扰乱双倍体和 mab-3 相关转录因子 1(DMRT1)启动子活性的调节来破坏下游精子发生。此外,在RHOXF1突变导致少精症的情况下,ICSI治疗可能是有益的。总之,我们的研究结果共同确定了突变的RHOXF1是人类少精症和无精症的致病X连锁基因。
{"title":"Deleterious variants in X-linked RHOXF1 cause male infertility with oligo- and azoospermia.","authors":"Sibing Yi, Weili Wang, Lilan Su, Lanlan Meng, Yong Li, Chen Tan, Qiang Liu, Huan Zhang, Liqing Fan, Guangxiu Lu, Liang Hu, Juan Du, Ge Lin, Yue-Qiu Tan, Chaofeng Tu, Qianjun Zhang","doi":"10.1093/molehr/gaae002","DOIUrl":"10.1093/molehr/gaae002","url":null,"abstract":"<p><p>Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant sericin averts the disruption of oocyte-follicular cell communication triggered by oxidative stress. 抗氧化剂丝胶可避免氧化应激引发的卵母细胞-卵泡细胞通讯中断。
IF 4 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/molehr/gaae001
Hafiza Khatun, Ken-Ichi Yamanaka, Satoshi Sugimura

Antioxidants are free radical scavengers that increase oocyte quality and improve female fertility by suppressing oxidative stress. However, the related mechanisms remain unclear. The present study was designed to examine whether a reduction of oxidative stress from using the antioxidant sericin led to expanded cumulus cell (CC)-oocyte communication and oocyte developmental acquisition in a bovine model. We found that cumulus-oocyte complexes (COCs) matured in the presence of sericin showed a significantly increased oocyte meiotic maturation rate (P < 0.01) and accelerated subsequent blastocyst formation, as more blastocysts were found at the hatched stage (P < 0.05) compared to that in the control group. In contrast to the control group, sericin suppressed H2O2 levels in COCs, resulting in a markedly enhanced CC-oocyte gap junction communication index and number of transzonal projections, which were preserved until 18 h of oocyte maturation. These findings indicate that sericin reduces disruption of oocyte-follicular cell communication induced by oxidative stress. Sericin consistently increased intra-oocyte glutathione (GSH) levels and reduced oocyte H2O2 levels (P < 0.05), both of which were ablated when GSH synthesis was inhibited by buthionine sulfoximide (an inhibitor of GSH synthesis). Furthermore, the inhibition of GSH synthesis counteracted the positive effects of sericin on subsequent embryo developmental competence (P < 0.01). Intra-oocyte GSH levels were positively associated with blastocyst development and quality. These outcomes demonstrate new perspectives for the improvement of oocyte quality in assisted reproductive technology and may contribute to developing treatment strategies for infertility and cancer.

抗氧化剂是一种自由基清除剂,可通过抑制氧化应激提高卵母细胞质量并改善女性生育能力。然而,相关机制仍不清楚。本研究旨在探讨在牛模型中,使用抗氧化剂丝胶是否能减少氧化应激,从而扩大精原细胞(CC)与卵母细胞的交流并获得卵母细胞的发育。我们发现,在丝胶存在下成熟的积层细胞-卵母细胞复合体(COCs)的卵母细胞减数分裂成熟率显著提高(P<0.05)。
{"title":"Antioxidant sericin averts the disruption of oocyte-follicular cell communication triggered by oxidative stress.","authors":"Hafiza Khatun, Ken-Ichi Yamanaka, Satoshi Sugimura","doi":"10.1093/molehr/gaae001","DOIUrl":"10.1093/molehr/gaae001","url":null,"abstract":"<p><p>Antioxidants are free radical scavengers that increase oocyte quality and improve female fertility by suppressing oxidative stress. However, the related mechanisms remain unclear. The present study was designed to examine whether a reduction of oxidative stress from using the antioxidant sericin led to expanded cumulus cell (CC)-oocyte communication and oocyte developmental acquisition in a bovine model. We found that cumulus-oocyte complexes (COCs) matured in the presence of sericin showed a significantly increased oocyte meiotic maturation rate (P < 0.01) and accelerated subsequent blastocyst formation, as more blastocysts were found at the hatched stage (P < 0.05) compared to that in the control group. In contrast to the control group, sericin suppressed H2O2 levels in COCs, resulting in a markedly enhanced CC-oocyte gap junction communication index and number of transzonal projections, which were preserved until 18 h of oocyte maturation. These findings indicate that sericin reduces disruption of oocyte-follicular cell communication induced by oxidative stress. Sericin consistently increased intra-oocyte glutathione (GSH) levels and reduced oocyte H2O2 levels (P < 0.05), both of which were ablated when GSH synthesis was inhibited by buthionine sulfoximide (an inhibitor of GSH synthesis). Furthermore, the inhibition of GSH synthesis counteracted the positive effects of sericin on subsequent embryo developmental competence (P < 0.01). Intra-oocyte GSH levels were positively associated with blastocyst development and quality. These outcomes demonstrate new perspectives for the improvement of oocyte quality in assisted reproductive technology and may contribute to developing treatment strategies for infertility and cancer.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular human reproduction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1