首页 > 最新文献

Multimedia Tools and Applications最新文献

英文 中文
Parkinson's disease diagnosis by voice data using particle swarm optimization-extreme learning machine approach 利用粒子群优化-极端学习机方法通过语音数据诊断帕金森病
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20108-y
Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Raad Z. Homod, Fahad Taha AL-Dhief, Mohammed Hasan Mutar

Various speech processing approaches (e.g., acoustic feature extraction techniques) and Machine Learning (ML) algorithms have been applied to diagnosing Parkinson's disease (PD). However, the majority of these researches have used conventional techniques which obtain a low accuracy rate in diagnosing PD and still need further improvement. Particle Swarm Optimization-Extreme Learning Machine (PSO-ELM), one of the most recent and effective ML techniques, could be considered an accurate strategy in the classification process but has not been applied to solve the problem of PD diagnosis. Thus, in order to enhance the precision of the PD diagnosing, this study employs the PSO-ELM classifier and examines how well it performs on seven feature extraction techniques (basic features, WT (Wavelet Transform), MFCC (Mel Frequency Cepstral Coefficients), bandwidth + formant, intensity parameters, TQWT (Tunable Q-factor Wavelet Transform), and vocal fold features). The PSO-ELM approach has the capability to a) prevents overfitting, b) solve the binary and multi class classification issues, and c) perform like a kernel-based support vector machine with a structure of neural network. Therefore, if the combination of PSO-ELM classifier and appropriate feature extraction technique can improve learning performance, this combination can produce an effective method for identifying PD. In this study, the PD's voice samples have been taken from the Parkinson’s Disease Classification Benchmark Dataset. To discover a useful feature extraction technique to couple with the PSO-ELM classifier, we applied PSO-ELM to each extracted feature with the utilisation of unbalanced and balanced dataset. According to the experimental results, the MFCC features assist the PSO-ELM classifier to attaining its greatest accuracy, up to 97.35% using unbalanced dataset and 100.00% using balanced dataset. This shows that combining PSO-ELM with MFCC can improve learning performance, ultimately creating an effective method for identifying PD.

各种语音处理方法(如声学特征提取技术)和机器学习(ML)算法已被应用于帕金森病(PD)的诊断。然而,这些研究大多采用传统技术,诊断帕金森病的准确率较低,仍需进一步改进。粒子群优化-极限学习机(PSO-ELM)是最新、最有效的多语言学习技术之一,可被视为分类过程中的一种精确策略,但尚未被应用于解决帕金森病诊断问题。因此,为了提高 PD 诊断的精确度,本研究采用了 PSO-ELM 分类器,并考察了它在七种特征提取技术(基本特征、WT(小波变换)、MFCC(梅尔频率倒频谱系数)、带宽 + 共振声、强度参数、TQWT(可调谐 Q 因子小波变换)和声带褶皱特征)上的表现。PSO-ELM 方法具有以下能力:a) 防止过拟合;b) 解决二元分类和多类分类问题;c) 像具有神经网络结构的基于核的支持向量机一样运行。因此,如果 PSO-ELM 分类器与适当的特征提取技术相结合能提高学习性能,那么这种组合就能产生一种识别 PD 的有效方法。本研究中的帕金森病语音样本来自帕金森病分类基准数据集。为了找到与 PSO-ELM 分类器相匹配的有用特征提取技术,我们利用非平衡和平衡数据集对每个提取的特征应用了 PSO-ELM。实验结果显示,MFCC 特征帮助 PSO-ELM 分类器获得了最高的准确率,使用非平衡数据集时高达 97.35%,使用平衡数据集时高达 100.00%。这表明,PSO-ELM 与 MFCC 的结合可以提高学习性能,最终创造出一种识别 PD 的有效方法。
{"title":"Parkinson's disease diagnosis by voice data using particle swarm optimization-extreme learning machine approach","authors":"Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Raad Z. Homod, Fahad Taha AL-Dhief, Mohammed Hasan Mutar","doi":"10.1007/s11042-024-20108-y","DOIUrl":"https://doi.org/10.1007/s11042-024-20108-y","url":null,"abstract":"<p>Various speech processing approaches (e.g., acoustic feature extraction techniques) and Machine Learning (ML) algorithms have been applied to diagnosing Parkinson's disease (PD). However, the majority of these researches have used conventional techniques which obtain a low accuracy rate in diagnosing PD and still need further improvement. Particle Swarm Optimization-Extreme Learning Machine (PSO-ELM), one of the most recent and effective ML techniques, could be considered an accurate strategy in the classification process but has not been applied to solve the problem of PD diagnosis. Thus, in order to enhance the precision of the PD diagnosing, this study employs the PSO-ELM classifier and examines how well it performs on seven feature extraction techniques (basic features, WT (Wavelet Transform), MFCC (Mel Frequency Cepstral Coefficients), bandwidth + formant, intensity parameters, TQWT (Tunable Q-factor Wavelet Transform), and vocal fold features). The PSO-ELM approach has the capability to <b>a)</b> prevents overfitting, <b>b)</b> solve the binary and multi class classification issues, and <b>c)</b> perform like a kernel-based support vector machine with a structure of neural network. Therefore, if the combination of PSO-ELM classifier and appropriate feature extraction technique can improve learning performance, this combination can produce an effective method for identifying PD. In this study, the PD's voice samples have been taken from the Parkinson’s Disease Classification Benchmark Dataset. To discover a useful feature extraction technique to couple with the PSO-ELM classifier, we applied PSO-ELM to each extracted feature with the utilisation of unbalanced and balanced dataset. According to the experimental results, the MFCC features assist the PSO-ELM classifier to attaining its greatest accuracy, up to 97.35% using unbalanced dataset and 100.00% using balanced dataset. This shows that combining PSO-ELM with MFCC can improve learning performance, ultimately creating an effective method for identifying PD.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"64 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal component fusion based unexposed biological feature enhancement of fundus images 基于主成分融合的眼底图像未曝光生物特征增强技术
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20110-4
Neha Singh, Ashish Kumar Bhandari

In the field of ophthalmology, digital images play an important role for automatic detection of various kind of eye diseases. Digital images in the field image enhancement are the first stage to assisting ophthalmologist for diagnosis. As a result, various algorithms, and methods for the enhancement of retinal images have been developed, which may face obstacles that are common in augmentation processes, such as false edges and weak illuminated that obscure image particulars. To eliminate such issues, this paper projected a novel framework for unexposed retinal image. The proposed paper uses multiscale Gaussian function for estimation of illumination layer from unexposed color retinal image and then it is corrected by gamma method. Further to this, the principal component analysis (PCA) is utilized here to generate fused enhance result for unexposed retinal images. Then, contrast limited technique is employed here for further edge and contextual details improvement. When compared to several enhancement-based state-of-the-art procedures, experimental results show that the suggested method produces results with good contrast and brightness. The significance of the proposed method that this method may help ophthalmologists screen for unexposed retinal illnesses more efficiently and build better automated image analysis for healthcare diagnosis.

在眼科领域,数字图像在自动检测各种眼疾方面发挥着重要作用。图像增强领域的数字图像是协助眼科医生进行诊断的第一道工序。因此,人们开发了各种用于增强视网膜图像的算法和方法,这些算法和方法可能会面临增强过程中常见的障碍,如模糊图像细节的假边缘和弱照明。为了消除这些问题,本文提出了一种新颖的未曝光视网膜图像框架。本文使用多尺度高斯函数来估计未曝光彩色视网膜图像的光照层,然后用伽马方法对其进行校正。此外,本文还利用主成分分析法(PCA)生成未曝光视网膜图像的融合增强结果。然后,采用对比度限制技术进一步改善边缘和背景细节。实验结果表明,与几种基于增强技术的最先进程序相比,所建议的方法能产生具有良好对比度和亮度的结果。该方法的重要意义在于,它可以帮助眼科医生更有效地筛查未暴露的视网膜疾病,并为医疗诊断提供更好的自动图像分析。
{"title":"Principal component fusion based unexposed biological feature enhancement of fundus images","authors":"Neha Singh, Ashish Kumar Bhandari","doi":"10.1007/s11042-024-20110-4","DOIUrl":"https://doi.org/10.1007/s11042-024-20110-4","url":null,"abstract":"<p>In the field of ophthalmology, digital images play an important role for automatic detection of various kind of eye diseases. Digital images in the field image enhancement are the first stage to assisting ophthalmologist for diagnosis. As a result, various algorithms, and methods for the enhancement of retinal images have been developed, which may face obstacles that are common in augmentation processes, such as false edges and weak illuminated that obscure image particulars. To eliminate such issues, this paper projected a novel framework for unexposed retinal image. The proposed paper uses multiscale Gaussian function for estimation of illumination layer from unexposed color retinal image and then it is corrected by gamma method. Further to this, the principal component analysis (PCA) is utilized here to generate fused enhance result for unexposed retinal images. Then, contrast limited technique is employed here for further edge and contextual details improvement. When compared to several enhancement-based state-of-the-art procedures, experimental results show that the suggested method produces results with good contrast and brightness. The significance of the proposed method that this method may help ophthalmologists screen for unexposed retinal illnesses more efficiently and build better automated image analysis for healthcare diagnosis.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speed-enhanced convolutional neural networks for COVID-19 classification using X-rays 利用 X 射线对 COVID-19 进行分类的速度增强型卷积神经网络
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20153-7
Palwinder Kaur, Amandeep Kaur

COVID-19 emerged as a pandemic in December 2019. This virus targets the pulmonary systems of humans. Therefore, chest radiographic imaging is required to monitor effect of the virus, prevent the spread and decrease the mortality rate. Imaging-based testing leads to a high burden on the radiologist manually screening the images. To make the imaging-based method an efficient diagnosis tool, screening automation with minimum human interference is a necessity. It opens numerous challenges for scientists and researchers to develop automatic diagnostic tools for COVID-19 detection. In this paper, we present two speed-enhanced convolutional neural networks (SECNNs) to automatically detect COVID-19 among the X-rays of COVID-19, pneumonia and healthy subjects. For 2-class classification (2CC) and 3-class classification (3CC), we named the models SECNN-2CC and SECNN-3CC respectively. The scope of this work is to highlight the significance and potential of CNN models built from scratch in COVID-19 identification. We conduct six experiments using six different balanced and imbalanced kinds of datasets. In the datasets, All X-rays are from different patients therefore it was more challenging for us to design the models which extract abstract features from a highly variable dataset. Experimental results show that the proposed models exhibit exemplary performance. The highest accuracy for 2CC (COVID-19 vs Pneumonia) is 99.92%. For 3CC (COVID-19 vs Normal vs Pneumonia), the highest accuracy achieved is 99.51%. We believe that this study will be of great importance in diagnosing COVID-19 and also provide a deeper analysis to discriminate among pneumonia, COVID-19 patients and healthy subjects using X-rays.

COVID-19 于 2019 年 12 月作为大流行病出现。这种病毒的目标是人类的肺部系统。因此,需要胸部放射成像来监测病毒的影响、防止传播并降低死亡率。基于成像的检测给放射科医生手动筛选图像带来了很大负担。要使基于成像的方法成为一种高效的诊断工具,就必须实现筛查自动化,尽量减少人为干扰。这为科学家和研究人员开发 COVID-19 检测的自动诊断工具带来了诸多挑战。在本文中,我们提出了两种速度增强型卷积神经网络(SECNN),用于在 COVID-19、肺炎和健康受试者的 X 光片中自动检测 COVID-19。对于二类分类(2CC)和三类分类(3CC),我们将模型分别命名为 SECNN-2CC 和 SECNN-3CC。这项工作的目的是强调从零开始建立的 CNN 模型在 COVID-19 识别中的意义和潜力。我们使用六种不同的平衡和不平衡数据集进行了六次实验。在这些数据集中,所有的 X 光片都来自不同的患者,因此设计从高度多变的数据集中提取抽象特征的模型对我们来说更具挑战性。实验结果表明,所提出的模型表现出卓越的性能。2CC(COVID-19 与肺炎)的最高准确率为 99.92%。3CC(COVID-19 vs 正常 vs 肺炎)的最高准确率为 99.51%。我们相信,这项研究将对诊断 COVID-19 具有重要意义,同时也为使用 X 射线区分肺炎、COVID-19 患者和健康人提供了更深入的分析。
{"title":"Speed-enhanced convolutional neural networks for COVID-19 classification using X-rays","authors":"Palwinder Kaur, Amandeep Kaur","doi":"10.1007/s11042-024-20153-7","DOIUrl":"https://doi.org/10.1007/s11042-024-20153-7","url":null,"abstract":"<p>COVID-19 emerged as a pandemic in December 2019. This virus targets the pulmonary systems of humans. Therefore, chest radiographic imaging is required to monitor effect of the virus, prevent the spread and decrease the mortality rate. Imaging-based testing leads to a high burden on the radiologist manually screening the images. To make the imaging-based method an efficient diagnosis tool, screening automation with minimum human interference is a necessity. It opens numerous challenges for scientists and researchers to develop automatic diagnostic tools for COVID-19 detection. In this paper, we present two speed-enhanced convolutional neural networks (SECNNs) to automatically detect COVID-19 among the X-rays of COVID-19, pneumonia and healthy subjects. For 2-class classification (2CC) and 3-class classification (3CC), we named the models SECNN-2CC and SECNN-3CC respectively. The scope of this work is to highlight the significance and potential of CNN models built from scratch in COVID-19 identification. We conduct six experiments using six different balanced and imbalanced kinds of datasets. In the datasets, All X-rays are from different patients therefore it was more challenging for us to design the models which extract abstract features from a highly variable dataset. Experimental results show that the proposed models exhibit exemplary performance. The highest accuracy for 2CC (COVID-19 vs Pneumonia) is 99.92%. For 3CC (COVID-19 vs Normal vs Pneumonia), the highest accuracy achieved is 99.51%. We believe that this study will be of great importance in diagnosing COVID-19 and also provide a deeper analysis to discriminate among pneumonia, COVID-19 patients and healthy subjects using X-rays.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personal mark density-based high-performance Optical Mark Recognition (OMR) system using K-means clustering algorithm 使用 K-means 聚类算法的基于个人标记密度的高性能光学标记识别(OMR)系统
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20218-7
Yasin Sancar, Ugur Yavuz, Isil Karabey Aksakalli

To evaluate multiple choice question tests, optical forms are commonly used for large-scale exams and these forms are read by the OMR (Optical Mark Recognition) scanners. However, OMR scanners often misinterpret marks that have not been fully erased, which can lead to incorrect readings. To overcome that shortcoming and reduce the time and labor lost in the assessment process, we developed a novel system based on the density of each individual’s markings, providing a more personalized and accurate approach. Instead of reading according to a specific optical form template, a dynamic and flexible structure was generated where users can create own templates and obtain the model that reads according to that template. We also optimized certain aspects of the system for efficiency, such as image memory transfer and QR code reading. These optimizations significantly increase the performance of the OMR scanners. One of the key issues addressed is inaccurate reading of OMR scanners when a student doesn’t fully erase their markings or when markings are faint. After the scanning process, the proposed approach uses a K-means clustering algorithm to classify different density markings. This technique identifies each student’s personal marking density, enabling a more accurate interpretation of their responses. According to the experimental results, we performed 97.7% improvement compared to the misread optics scanned by the conventional OMR devices. In tests performed on 265.816 optical forms, we obtained an accuracy rate of 99.98% and a reading time of 0.12 seconds per optical form.

为了评估多选题考试,大型考试通常使用光学表格,这些表格由 OMR(光学标记识别)扫描仪读取。然而,OMR 扫描仪经常会误读未完全擦除的标记,从而导致读数错误。为了克服这一缺陷,减少评估过程中的时间和人力损耗,我们开发了一种基于每个人标记密度的新型系统,提供了一种更加个性化和准确的方法。我们不再根据特定的光学表格模板进行读取,而是生成了一个动态灵活的结构,用户可以创建自己的模板,并获得根据该模板读取的模型。我们还优化了系统的某些方面以提高效率,如图像内存传输和二维码读取。这些优化大大提高了 OMR 扫描仪的性能。解决的关键问题之一是,当学生没有完全擦除标记或标记模糊时,OMR 扫描仪的读取不准确。扫描过程结束后,建议的方法使用 K-means 聚类算法对不同密度的标记进行分类。这种技术能识别每个学生的个人标记密度,从而更准确地解读他们的回答。实验结果表明,与传统 OMR 设备扫描的误读光学图像相比,我们的性能提高了 97.7%。在对 265.816 张光学表格进行的测试中,我们获得了 99.98% 的准确率,每张光学表格的读取时间仅为 0.12 秒。
{"title":"Personal mark density-based high-performance Optical Mark Recognition (OMR) system using K-means clustering algorithm","authors":"Yasin Sancar, Ugur Yavuz, Isil Karabey Aksakalli","doi":"10.1007/s11042-024-20218-7","DOIUrl":"https://doi.org/10.1007/s11042-024-20218-7","url":null,"abstract":"<p>To evaluate multiple choice question tests, optical forms are commonly used for large-scale exams and these forms are read by the OMR (Optical Mark Recognition) scanners. However, OMR scanners often misinterpret marks that have not been fully erased, which can lead to incorrect readings. To overcome that shortcoming and reduce the time and labor lost in the assessment process, we developed a novel system based on the density of each individual’s markings, providing a more personalized and accurate approach. Instead of reading according to a specific optical form template, a dynamic and flexible structure was generated where users can create own templates and obtain the model that reads according to that template. We also optimized certain aspects of the system for efficiency, such as image memory transfer and QR code reading. These optimizations significantly increase the performance of the OMR scanners. One of the key issues addressed is inaccurate reading of OMR scanners when a student doesn’t fully erase their markings or when markings are faint. After the scanning process, the proposed approach uses a K-means clustering algorithm to classify different density markings. This technique identifies each student’s personal marking density, enabling a more accurate interpretation of their responses. According to the experimental results, we performed 97.7% improvement compared to the misread optics scanned by the conventional OMR devices. In tests performed on 265.816 optical forms, we obtained an accuracy rate of 99.98% and a reading time of 0.12 seconds per optical form.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"4 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is a poster a strong signal of film quality? evaluating the predictive power of visual elements using deep learning 利用深度学习评估视觉元素的预测能力?
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20174-2
Thaís Luiza Donega e Souza, Caetano Mazzoni Ranieri, Anand Panangadan, Jó Ueyama, Marislei Nishijima

A film is considered an experience good, as its quality is only revealed after consumption. This situation creates information asymmetry before consumption, prompting producers, who are aware of their film’s quality, to search for methods to signal this. Economic literature specifies that a signal to disclose a product’s quality must be strong, meaning only producers of good-quality films can effectively utilize such a signal. However, a poster represents the most economical signal, and all producers, regardless of film quality, have access to this option. To study whether a poster can signal film quality, we first apply a low-dimensional representation of poster images and cluster them to identify quality-related patterns. We then perform a supervised classification of films into economically successful and unsuccessful categories using a deep neural network. This is based on the hypothesis that higher quality films tend to sell more tickets and that all producers invest in the highest quality poster services. The results demonstrate that a film’s quality can indeed be predicted from its poster, reinforcing its effectiveness as a strong signal. Despite the proliferation of advanced visual media technologies, a simple yet innovative poster remains an effective and appealing tool for signaling film information. Notably, posters can classify a film’s economic success comparably to trailers but with significantly lower processing costs.

电影被认为是一种体验商品,因为它的质量只有在消费之后才能显现出来。这种情况造成了消费前的信息不对称,促使意识到自己电影质量的制片人寻找发出信号的方法。经济学文献规定,披露产品质量的信号必须强烈,这意味着只有质量好的影片生产商才能有效利用这种信号。然而,海报是最经济的信号,所有生产商,无论影片质量如何,都可以选择海报。为了研究海报是否可以作为电影质量的信号,我们首先对海报图像进行了低维表示,并对其进行聚类,以识别与质量相关的模式。然后,我们使用深度神经网络对电影进行监督分类,将其分为经济上成功的类别和不成功的类别。这是基于这样一个假设:质量较高的电影往往能卖出更多的票,而且所有制片人都会投资于最高质量的海报服务。结果表明,通过海报确实可以预测一部电影的质量,从而加强了海报作为一种强烈信号的有效性。尽管先进的视觉媒体技术层出不穷,但简单而新颖的海报仍然是传递电影信息的有效而有吸引力的工具。值得注意的是,海报可以对电影的经济成就进行分类,其效果可与预告片媲美,但处理成本却大大降低。
{"title":"Is a poster a strong signal of film quality? evaluating the predictive power of visual elements using deep learning","authors":"Thaís Luiza Donega e Souza, Caetano Mazzoni Ranieri, Anand Panangadan, Jó Ueyama, Marislei Nishijima","doi":"10.1007/s11042-024-20174-2","DOIUrl":"https://doi.org/10.1007/s11042-024-20174-2","url":null,"abstract":"<p>A film is considered an experience good, as its quality is only revealed after consumption. This situation creates information asymmetry before consumption, prompting producers, who are aware of their film’s quality, to search for methods to signal this. Economic literature specifies that a signal to disclose a product’s quality must be strong, meaning only producers of good-quality films can effectively utilize such a signal. However, a poster represents the most economical signal, and all producers, regardless of film quality, have access to this option. To study whether a poster can signal film quality, we first apply a low-dimensional representation of poster images and cluster them to identify quality-related patterns. We then perform a supervised classification of films into economically successful and unsuccessful categories using a deep neural network. This is based on the hypothesis that higher quality films tend to sell more tickets and that all producers invest in the highest quality poster services. The results demonstrate that a film’s quality can indeed be predicted from its poster, reinforcing its effectiveness as a strong signal. Despite the proliferation of advanced visual media technologies, a simple yet innovative poster remains an effective and appealing tool for signaling film information. Notably, posters can classify a film’s economic success comparably to trailers but with significantly lower processing costs.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"119 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manifold grasshopper optimization based extremely disruptive vision transformer model for automatic heart disease detection in raw ECG signals 基于极具破坏性的视觉变换器模型的歧面蚂蚱优化技术,用于在原始心电信号中自动检测心脏病
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1007/s11042-024-20113-1
Avinash L. Golande, Pavankumar T.

Automated detection of cardiovascular diseases based on heartbeats is a difficult and demanding task in signal processing because the routine analysis of the patient’s cardiac arrhythmia is crucial to reducing the mortality rate. Detecting and preventing these deaths requires long-term monitoring and manual examination of electrocardiogram (ECG) signals, which takes a lot of time. This article uses an optimized Vision Transformer technique to effectively detect heart disease. The four key processes are pre-processing input data, feature extraction from pre-processed data, and optimal feature selection and classification to detect heart disease. In the pre-processing phase, single-channel adaptive blind source separation is used for artifact removal and empirical mode decomposition for noise reduction of the ECG signal. After pre-processing, the ECG signal is fed into the Enhanced Pan-Tompkins algorithm (EPTA) and the Hybrid Gabor-Walsh-Hadamard transform (HGWHT) for feature extraction. The extracted feature is selected using a Manifold Grasshopper Optimization algorithm (MGOA). Finally, an Optimized Vision Transformer (OVT) detects heart disease. The experiment is carried out on PTB diagnostic ECG and PTB-XL database, a publicly accessible research datasets. The experiment obtained the following values: accuracy 99.9%, sensitivity 98%, F1 score 99.9%, specificity 90%, processing time 13.254 s, AUC 99.9% and MCC 91% using PTB diagnostic ECG. On the other hand, the proposed method has obtained an accuracy of 99.57%, f1-score of 99.17% and AUC of 99% using PTB-XL dataset. Thus, the overall findings prove that the proposed method outperforms the existing methodology.

根据心跳自动检测心血管疾病是信号处理中一项困难而艰巨的任务,因为对患者心律失常的常规分析对于降低死亡率至关重要。检测和预防这些死亡需要对心电图(ECG)信号进行长期监测和人工检查,这需要花费大量时间。本文采用优化的 Vision Transformer 技术来有效检测心脏病。四个关键过程分别是预处理输入数据、从预处理数据中提取特征、优化特征选择和分类,以检测心脏病。在预处理阶段,使用单通道自适应盲源分离去除伪影,并使用经验模式分解对心电图信号进行降噪。预处理后,心电信号被送入增强泛汤金斯算法(EPTA)和混合 Gabor-Walsh-Hadamard 变换(HGWHT)进行特征提取。提取出的特征使用 "蚱蜢优化算法"(MGOA)进行选择。最后,使用优化视觉变换器(OVT)检测心脏病。实验在 PTB 诊断心电图和 PTB-XL 数据库(可公开访问的研究数据集)上进行。实验结果如下:使用 PTB 诊断心电图的准确率为 99.9%,灵敏度为 98%,F1 分数为 99.9%,特异性为 90%,处理时间为 13.254 秒,AUC 为 99.9%,MCC 为 91%。另一方面,建议的方法在使用 PTB-XL 数据集时获得了 99.57% 的准确率、99.17% 的 F1 分数和 99% 的 AUC。因此,总体结果证明,建议的方法优于现有方法。
{"title":"Manifold grasshopper optimization based extremely disruptive vision transformer model for automatic heart disease detection in raw ECG signals","authors":"Avinash L. Golande, Pavankumar T.","doi":"10.1007/s11042-024-20113-1","DOIUrl":"https://doi.org/10.1007/s11042-024-20113-1","url":null,"abstract":"<p>Automated detection of cardiovascular diseases based on heartbeats is a difficult and demanding task in signal processing because the routine analysis of the patient’s cardiac arrhythmia is crucial to reducing the mortality rate. Detecting and preventing these deaths requires long-term monitoring and manual examination of electrocardiogram (ECG) signals, which takes a lot of time. This article uses an optimized Vision Transformer technique to effectively detect heart disease. The four key processes are pre-processing input data, feature extraction from pre-processed data, and optimal feature selection and classification to detect heart disease. In the pre-processing phase, single-channel adaptive blind source separation is used for artifact removal and empirical mode decomposition for noise reduction of the ECG signal. After pre-processing, the ECG signal is fed into the Enhanced Pan-Tompkins algorithm (EPTA) and the Hybrid Gabor-Walsh-Hadamard transform (HGWHT) for feature extraction. The extracted feature is selected using a Manifold Grasshopper Optimization algorithm (MGOA). Finally, an Optimized Vision Transformer (OVT) detects heart disease. The experiment is carried out on PTB diagnostic ECG and PTB-XL database, a publicly accessible research datasets. The experiment obtained the following values: accuracy 99.9%, sensitivity 98%, F1 score 99.9%, specificity 90%, processing time 13.254 s, AUC 99.9% and MCC 91% using PTB diagnostic ECG. On the other hand, the proposed method has obtained an accuracy of 99.57%, f1-score of 99.17% and AUC of 99% using PTB-XL dataset. Thus, the overall findings prove that the proposed method outperforms the existing methodology.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"21 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cross-domain person re-identification algorithm based on distribution-consistency and multi-label collaborative learning 基于分布一致性和多标签协作学习的跨域人员再识别算法
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-13 DOI: 10.1007/s11042-024-20142-w
Baohua Zhang, Chen Hao, Xiaoqi Lv, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li

To decrease domain shift in cross-domain person re-identification, existing methods generate pseudo labels for training models, however, the inherent distribution between source domain data and the hard quantization loss is ignored. Therefore, a cross-domain person re-identification method based on distribution consistency and multi-label collaborative learning is proposed. Firstly, a soft binary cross-entropy loss function is constructed to constrain the inter-sample relationship of cross-domain transformation, which can ensure the consistency of appearance features and sample distribution, and achieving feature cross-domain alignment. On this basis, in order to suppress the noise of hard pseudo labels, a multi-label collaborative learning network is constructed. The soft pseudo labels are generated by using the collaborative foreground features and global features to guide the network training, making the model adapt to the target domain. The experimental results show that the proposed method has better performance than that of recent representative methods.

为了减少跨域人员再识别中的域偏移,现有方法为训练模型生成伪标签,但忽略了源域数据之间的固有分布和硬量化损失。因此,本文提出了一种基于分布一致性和多标签协同学习的跨域人物再识别方法。首先,构建软二值交叉熵损失函数来约束跨域变换的样本间关系,从而保证外观特征与样本分布的一致性,实现特征的跨域对齐。在此基础上,为了抑制硬伪标签的噪声,构建了多标签协同学习网络。利用协作前景特征和全局特征生成软伪标签,指导网络训练,使模型适应目标域。实验结果表明,所提出的方法比近期具有代表性的方法具有更好的性能。
{"title":"A cross-domain person re-identification algorithm based on distribution-consistency and multi-label collaborative learning","authors":"Baohua Zhang, Chen Hao, Xiaoqi Lv, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li","doi":"10.1007/s11042-024-20142-w","DOIUrl":"https://doi.org/10.1007/s11042-024-20142-w","url":null,"abstract":"<p>To decrease domain shift in cross-domain person re-identification, existing methods generate pseudo labels for training models, however, the inherent distribution between source domain data and the hard quantization loss is ignored. Therefore, a cross-domain person re-identification method based on distribution consistency and multi-label collaborative learning is proposed. Firstly, a soft binary cross-entropy loss function is constructed to constrain the inter-sample relationship of cross-domain transformation, which can ensure the consistency of appearance features and sample distribution, and achieving feature cross-domain alignment. On this basis, in order to suppress the noise of hard pseudo labels, a multi-label collaborative learning network is constructed. The soft pseudo labels are generated by using the collaborative foreground features and global features to guide the network training, making the model adapt to the target domain. The experimental results show that the proposed method has better performance than that of recent representative methods.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"29 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-clustering method for cold start issue in collaborative filtering movie recommender system 协同过滤电影推荐系统中冷启动问题的聚类方法
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-13 DOI: 10.1007/s11042-024-20103-3
Ensieh AbbasiRad, Mohammad Reza Keyvanpour, Nasim Tohidi

Recommender systems play an essential role in decision-making in the information age by reducing information overload via retrieving the most relevant information in various applications. They also present great opportunities and challenges for business, government, education, and other fields. The cold start problem is a significant issue in these systems. If recommender systems fail to provide satisfactory personalized recommendations for new users, the user’s trust can easily be lost. Hence, in this paper, using co-clustering and utilizing user demographic information and the behavioral history of users, a solution to this critical issue for recommending movies is introduced. In the proposed method, in addition to dealing with the problem of relative cold start, the problem of absolute cold start is also addressed. The proposed method was evaluated via two RMSE and MAE criteria, which accordingly has achieved 0.85 and 0.49 on the Movielens dataset and 1.05 and 0.6 on the EachMovie dataset, respectively, according to the number of comments that Cold Start users have registered. Moreover, it achieved 0.9 and 0.55 on the Movielens dataset and 1.42 and 0.89 on the EachMovie dataset, respectively, according to the number of registered comments for the cold start items.

在信息时代,推荐系统通过在各种应用中检索最相关的信息来减少信息超载,从而在决策过程中发挥着至关重要的作用。它们也为商业、政府、教育和其他领域带来了巨大的机遇和挑战。冷启动问题是这些系统中的一个重要问题。如果推荐系统不能为新用户提供令人满意的个性化推荐,用户的信任就很容易丧失。因此,本文利用共聚类法,并利用用户人口信息和用户行为历史记录,提出了一种解决推荐电影这一关键问题的方法。在所提出的方法中,除了处理相对冷启动问题外,还解决了绝对冷启动问题。通过 RMSE 和 MAE 两项标准对所提出的方法进行了评估,根据冷启动用户注册的评论数量,该方法在 Movielens 数据集上的 RMSE 和 MAE 分别为 0.85 和 0.49,在 EachMovie 数据集上的 RMSE 和 MAE 分别为 1.05 和 0.6。此外,根据冷启动项目的注册评论数,在 Movielens 数据集上分别达到了 0.9 和 0.55,在 EachMovie 数据集上分别达到了 1.42 和 0.89。
{"title":"Co-clustering method for cold start issue in collaborative filtering movie recommender system","authors":"Ensieh AbbasiRad, Mohammad Reza Keyvanpour, Nasim Tohidi","doi":"10.1007/s11042-024-20103-3","DOIUrl":"https://doi.org/10.1007/s11042-024-20103-3","url":null,"abstract":"<p>Recommender systems play an essential role in decision-making in the information age by reducing information overload via retrieving the most relevant information in various applications. They also present great opportunities and challenges for business, government, education, and other fields. The cold start problem is a significant issue in these systems. If recommender systems fail to provide satisfactory personalized recommendations for new users, the user’s trust can easily be lost. Hence, in this paper, using co-clustering and utilizing user demographic information and the behavioral history of users, a solution to this critical issue for recommending movies is introduced. In the proposed method, in addition to dealing with the problem of relative cold start, the problem of absolute cold start is also addressed. The proposed method was evaluated via two RMSE and MAE criteria, which accordingly has achieved 0.85 and 0.49 on the Movielens dataset and 1.05 and 0.6 on the EachMovie dataset, respectively, according to the number of comments that Cold Start users have registered. Moreover, it achieved 0.9 and 0.55 on the Movielens dataset and 1.42 and 0.89 on the EachMovie dataset, respectively, according to the number of registered comments for the cold start items.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"13 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic data acquisition and integration for semantic organization of sentimental data and analysis in a PWSN 采集和整合声学数据,以便在 PWSN 中对情感数据进行语义组织和分析
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-13 DOI: 10.1007/s11042-024-20229-4
Sushovan Das, Uttam Kr. Mondal

In an acoustic pervasive wireless sensor network (PWSN), the BASE station plays a vital role in gathering and integrating acoustic sensor data from various nodes, including end and router devices tracking time-driven events. The semantic BASE station is crucial in the IoT landscape as it consolidates data from these networks, enabling thorough sentiment analysis of acoustic signals and yielding insights across domains. A semantic processor at the BASE station is essential for an energy-efficient and intelligent PWSN, managing data collection, integration, signal feature extraction, and publication for model training and sentiment analysis. This paper introduces a novel approach to designing a semantic BASE station, focusing on ontology generation, evaluation, and updates to bolster pervasive wireless sensors in capturing and depicting events and time through an ontological framework. The study addresses challenges in efficiently gathering, integrating, and processing acoustic data from pervasive nodes, proposing a semantic processor at the BASE station to enhance feature extraction and metadata publication. The semantic organization of feature-extracted labeled metadata enables the analysis of comprehensive machine learning (ML) applications such as sentiment analysis, type detection, and environment detection by generating confusion matrix. Evaluation includes performance metrics (NEEN, LSNS, BDAS) as well as accuracy, precision, sensitivity, and specificity for sentimental data analysis to validate the proposed technique’s efficacy.

在声学普适无线传感器网络(PWSN)中,基站在收集和整合来自不同节点(包括跟踪时间驱动事件的终端和路由器设备)的声学传感器数据方面发挥着至关重要的作用。语义 BASE 站在物联网领域至关重要,因为它能整合来自这些网络的数据,对声学信号进行全面的情感分析,并提供跨领域的见解。BASE 站的语义处理器对于节能、智能的 PWSN 至关重要,它可以管理数据收集、整合、信号特征提取以及用于模型训练和情感分析的发布。本文介绍了一种设计语义 BASE 站的新方法,重点关注本体的生成、评估和更新,通过本体框架支持无处不在的无线传感器捕捉和描述事件和时间。该研究解决了高效收集、整合和处理来自普适性节点的声学数据所面临的挑战,提出了在 BASE 站使用语义处理器来加强特征提取和元数据发布的方法。通过生成混淆矩阵,对特征提取的标注元数据进行语义组织,可对情感分析、类型检测和环境检测等综合机器学习(ML)应用进行分析。评估包括情感数据分析的性能指标(NEEN、LSNS、BDAS)以及准确度、精确度、灵敏度和特异性,以验证所提技术的功效。
{"title":"Acoustic data acquisition and integration for semantic organization of sentimental data and analysis in a PWSN","authors":"Sushovan Das, Uttam Kr. Mondal","doi":"10.1007/s11042-024-20229-4","DOIUrl":"https://doi.org/10.1007/s11042-024-20229-4","url":null,"abstract":"<p>In an acoustic pervasive wireless sensor network (PWSN), the BASE station plays a vital role in gathering and integrating acoustic sensor data from various nodes, including end and router devices tracking time-driven events. The semantic BASE station is crucial in the IoT landscape as it consolidates data from these networks, enabling thorough sentiment analysis of acoustic signals and yielding insights across domains. A semantic processor at the BASE station is essential for an energy-efficient and intelligent PWSN, managing data collection, integration, signal feature extraction, and publication for model training and sentiment analysis. This paper introduces a novel approach to designing a semantic BASE station, focusing on ontology generation, evaluation, and updates to bolster pervasive wireless sensors in capturing and depicting events and time through an ontological framework. The study addresses challenges in efficiently gathering, integrating, and processing acoustic data from pervasive nodes, proposing a semantic processor at the BASE station to enhance feature extraction and metadata publication. The semantic organization of feature-extracted labeled metadata enables the analysis of comprehensive machine learning (ML) applications such as sentiment analysis, type detection, and environment detection by generating confusion matrix. Evaluation includes performance metrics (NEEN, LSNS, BDAS) as well as accuracy, precision, sensitivity, and specificity for sentimental data analysis to validate the proposed technique’s efficacy.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"15 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new four-tier technique for efficient multiple images encryption 高效多图像加密的新四层技术
IF 3.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-13 DOI: 10.1007/s11042-024-20125-x
Khalid M. Hosny, Sara T. Kamal

People transmit millions of digital images daily over various networks, where securing these images is a big challenge. Image encryption is a successful approach widely used in securing digital images while transmitting. Researchers developed different encryption techniques that focus on securing individual images. Recently, encryption of multiple images has gained more interest as an emerging encryption approach. In this paper, we proposed a four-tier technique for multiple image encryption (MIE) to increase the transmission speed and improve digital image security. First, we attached the plain images to create an augmented image. Second, the randomized augmented image is obtained by randomly changing the position of each plain image. Third, we scrambled the randomized augmented image using the zigzag pattern, rotation, and random permutation between blocks. Finally, we diffuse the scrambled augmented image using an Altered Sine-logistic-based Tent map (ASLT). We draw a flowchart, write a pseudo-code, and present an illustrative example to simplify the proposed method and make it easy to understand. Many experiments were performed to evaluate this Four-Tier technique, and the results show that this technique is extremely effective and secure to withstand various attacks.

人们每天通过各种网络传输数以百万计的数字图像,如何确保这些图像的安全是一个巨大的挑战。图像加密是一种成功的方法,被广泛应用于数字图像传输过程中的安全保护。研究人员开发了不同的加密技术,重点确保单张图像的安全。最近,作为一种新兴的加密方法,多图像加密技术越来越受到关注。在本文中,我们提出了一种四层多重图像加密(MIE)技术,以提高传输速度和数字图像的安全性。首先,我们将普通图像附加到增强图像上。其次,通过随机改变每个普通图像的位置来获得随机增强图像。第三,我们使用之字形图案、旋转和块间随机排列对随机增强图像进行加扰。最后,我们使用基于正弦逻辑的 Altered Sine-logistic Tent map (ASLT) 扩散加扰的增强图像。我们绘制了流程图,编写了伪代码,并举例说明,以简化所提出的方法,使其易于理解。我们进行了许多实验来评估这种四层技术,结果表明这种技术非常有效、安全,可以抵御各种攻击。
{"title":"A new four-tier technique for efficient multiple images encryption","authors":"Khalid M. Hosny, Sara T. Kamal","doi":"10.1007/s11042-024-20125-x","DOIUrl":"https://doi.org/10.1007/s11042-024-20125-x","url":null,"abstract":"<p>People transmit millions of digital images daily over various networks, where securing these images is a big challenge. Image encryption is a successful approach widely used in securing digital images while transmitting. Researchers developed different encryption techniques that focus on securing individual images. Recently, encryption of multiple images has gained more interest as an emerging encryption approach. In this paper, we proposed a four-tier technique for multiple image encryption (MIE) to increase the transmission speed and improve digital image security. First, we attached the plain images to create an augmented image. Second, the randomized augmented image is obtained by randomly changing the position of each plain image. Third, we scrambled the randomized augmented image using the zigzag pattern, rotation, and random permutation between blocks. Finally, we diffuse the scrambled augmented image using an Altered Sine-logistic-based Tent map (ASLT). We draw a flowchart, write a pseudo-code, and present an illustrative example to simplify the proposed method and make it easy to understand. Many experiments were performed to evaluate this Four-Tier technique, and the results show that this technique is extremely effective and secure to withstand various attacks.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"35 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Multimedia Tools and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1