Pub Date : 2024-02-01DOI: 10.1016/S1016-8478(24)00058-X
{"title":"Cover and caption","authors":"","doi":"10.1016/S1016-8478(24)00058-X","DOIUrl":"https://doi.org/10.1016/S1016-8478(24)00058-X","url":null,"abstract":"","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S101684782400058X/pdfft?md5=6ce39b3c966a083b37c6ff5a3c362dc8&pid=1-s2.0-S101684782400058X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mocell.2024.100030
Gargi Mishra, Kristy L. Townsend
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue’s sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
棕色脂肪组织和白色脂肪组织(BAT/WAT)都受到周围神经系统(PNS)的支配,包括从大脑/中枢神经系统(CNS)传出到组织的交感神经,以及从组织传回大脑并在受到刺激时向组织局部释放神经肽的传入感觉神经。这种双向神经交流对于能量平衡和代谢控制以及通过褐变(在 WAT 中发育代谢健康的棕色脂肪细胞)、产热、脂肪分解和脂肪生成等过程维持脂肪组织健康非常重要。数十年的感觉神经剥夺研究表明,脂肪感觉神经对 BAT 和 WAT 的功能尤为重要,但与研究较多的交感神经及其神经递质去甲肾上腺素相比,人们对脂肪组织感觉神经支配的了解要少得多。在这篇综述中,我们将介绍关于脂肪中感觉神经活动的已知和未知信息,重点是它们在组织中的效应神经肽作用。
{"title":"Sensory nerve and neuropeptide diversity in adipose tissues","authors":"Gargi Mishra, Kristy L. Townsend","doi":"10.1016/j.mocell.2024.100030","DOIUrl":"10.1016/j.mocell.2024.100030","url":null,"abstract":"<div><p>Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue’s sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824000359/pdfft?md5=148038ab6dbe2084b83138a0dd382c93&pid=1-s2.0-S1016847824000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mocell.2024.100032
Jongsoon Lee
{"title":"The emerging era of multidisciplinary metabolism research","authors":"Jongsoon Lee","doi":"10.1016/j.mocell.2024.100032","DOIUrl":"10.1016/j.mocell.2024.100032","url":null,"abstract":"","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824000372/pdfft?md5=1d018bd00770cdf1d9fd9a626afba2fa&pid=1-s2.0-S1016847824000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mocell.2024.100010
So Jung Kim , Jeongeun Hyun
Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.
{"title":"Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD","authors":"So Jung Kim , Jeongeun Hyun","doi":"10.1016/j.mocell.2024.100010","DOIUrl":"10.1016/j.mocell.2024.100010","url":null,"abstract":"<div><p>Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824000037/pdfft?md5=0f96546f4bc43b3ce064cb2fe952565d&pid=1-s2.0-S1016847824000037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mocell.2024.100011
Seong Kyu Han , Hyunwoo C. Kwon , Jae-Seong Yang , Sanguk Kim , Seung-Jae V. Lee
Online application for survival analysis (OASIS) and its update, OASIS 2, have been widely used for survival analysis in biological and medical sciences. Here, we provide a portable version of OASIS, an all-in-one offline suite, to facilitate secure survival analysis without uploading the data to online servers. OASIS portable provides a virtualized and isolated instance of the OASIS 2 webserver, operating on the users’ personal computers, and enables user-friendly survival analysis without internet connection and security issues.
{"title":"OASIS portable: User-friendly offline suite for secure survival analysis","authors":"Seong Kyu Han , Hyunwoo C. Kwon , Jae-Seong Yang , Sanguk Kim , Seung-Jae V. Lee","doi":"10.1016/j.mocell.2024.100011","DOIUrl":"10.1016/j.mocell.2024.100011","url":null,"abstract":"<div><p>Online application for survival analysis (OASIS) and its update, OASIS 2, have been widely used for survival analysis in biological and medical sciences. Here, we provide a portable version of OASIS, an all-in-one offline suite, to facilitate secure survival analysis without uploading the data to online servers. OASIS portable provides a virtualized and isolated instance of the OASIS 2 webserver, operating on the users’ personal computers, and enables user-friendly survival analysis without internet connection and security issues.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824000049/pdfft?md5=98134ff275f8d1660f590d31a947dbef&pid=1-s2.0-S1016847824000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.mocell.2024.100008
Sang-Hyeon Mun, Cheol-Sang Hwang
{"title":"Marchf6: A guardian against cytosol-spilled POMC-induced ferroptosis","authors":"Sang-Hyeon Mun, Cheol-Sang Hwang","doi":"10.1016/j.mocell.2024.100008","DOIUrl":"10.1016/j.mocell.2024.100008","url":null,"abstract":"","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824000013/pdfft?md5=c5fa6b954e50311946fd153277d04919&pid=1-s2.0-S1016847824000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.mocell.2023.10.002
Yerim Lee, Jaesang Kim
{"title":"Unraveling the mystery of oligogenic inheritance under way?","authors":"Yerim Lee, Jaesang Kim","doi":"10.1016/j.mocell.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.mocell.2023.10.002","url":null,"abstract":"","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S101684782325253X/pdfft?md5=ba1dd691bb47fb2fe1d01f2b56ebb37a&pid=1-s2.0-S101684782325253X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139675182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.mocell.2023.12.004
Sangyun Jeong
Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.
一氧化氮(NO)是一种进化保守的信号分子,在多种细胞过程中发挥着重要作用。对黑腹果蝇进行的广泛研究发现,在许多不同类型的细胞中,发育、生理和应激反应都需要一氧化氮信号。在神经细胞中,多种 NO 信号通路似乎以不同的组合方式运行,以调节学习和记忆的形成、突触传递、选择性突触连接、轴突退化和轴突再生。在器官发育过程中,NO 信号的升高会抑制细胞周期的进展,而下调 NO 则会通过调节激素信号导致幼虫体型的增大。果蝇 NO 合成酶最显著的特点是,神经肽、异常蛋白、缺氧、细菌感染和机械损伤等各种应激源都能激活果蝇 NO 合成酶,最初调节细胞生理机能,使细胞得以存活。然而,在严重的压力或病理生理条件下,高水平的 NO 会促进调节性细胞死亡和神经退行性疾病的发生。在这篇综述中,我将重点介绍和讨论目前对 NO 信号调节不同细胞功能和行为的分子机制的理解。
{"title":"Function and regulation of nitric oxide signaling in Drosophila","authors":"Sangyun Jeong","doi":"10.1016/j.mocell.2023.12.004","DOIUrl":"10.1016/j.mocell.2023.12.004","url":null,"abstract":"<div><p>Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in <em>Drosophila melanogaster</em> have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the <em>Drosophila</em> NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate <em>Drosophila</em> NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847823252565/pdfft?md5=fe343c570fcd664f3f2eb25079fa6b37&pid=1-s2.0-S1016847823252565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138989752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.mocell.2023.12.002
Yurong Gao , Hanguk Ryu , Hyejin Lee , Young-Joon Kim , Ji-Hye Lee , Jaemin Lee
Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R’s Gq utilization rather than reversing GLP-1R’s signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R’s signaling, which can be used in type 2 diabetes treatment.
{"title":"ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets","authors":"Yurong Gao , Hanguk Ryu , Hyejin Lee , Young-Joon Kim , Ji-Hye Lee , Jaemin Lee","doi":"10.1016/j.mocell.2023.12.002","DOIUrl":"10.1016/j.mocell.2023.12.002","url":null,"abstract":"<div><p>Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R’s Gq utilization rather than reversing GLP-1R’s signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R’s signaling, which can be used in type 2 diabetes treatment.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847823252541/pdfft?md5=ee2b156b8a71f002eb64d694ae623355&pid=1-s2.0-S1016847823252541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138993844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}