首页 > 最新文献

Molecular Genetics and Genomics最新文献

英文 中文
CRISPR and CRISPR-MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries. CRISPR和CRISPR-MVLST揭示了巴西和其他国家的肠炎沙门氏菌Infantis血清基因组中保守的间隔分布和高度相似性。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-28 DOI: 10.1007/s00438-024-02147-0
Felipe Pinheiro Vilela, Dália Dos Prazeres Rodrigues, Marc William Allard, Juliana Pfrimer Falcão

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.

肠炎沙门氏菌 Infantis(S. Infantis)是一种分布于全球的非伤寒型血清型,可感染人类和食用动物。考虑到该血清的人畜共患潜力和公共卫生重要性,对该病原体进行特征描述、监测和控制的策略非常重要。本研究旨在利用聚类正则间隔短合重复序列(CRISPR)和CRISPR-多焦点病毒序列分型(CRISPR-MVLST)确定80个巴西S. Infantis基因组与来自14个国家的40个非巴西基因组的遗传亲缘关系。使用 CRISPR-Cas++ 搜索 CRISPR spacers,使用 BLAST 和 MEGA X 搜索 fimH 和 sseL 等位基因,使用 BioNumerics 7.6 分析结果,以获得相似性树枝图。共检测到 23 个 CRISPR1 等位基因和 11 个 CRISPR2 等位基因,它们分别由 37 种和 26 种间隔物组成。MVLST 发现存在 5 个 fimH 和 3 个 sseL 等位基因。CRISPR 的相似性树枝图显示了 32 个菌株亚型,总体相似性≥ 78.6。CRISPR-MVLST 相似性树枝图显示了 37 个亚型,总体相似性≥ 79.2。总之,根据CRISPR和CRISPR-MVLST,从巴西和其他国家不同来源分离的S. Infantis菌株具有很高的遗传相似性,无论其来源、年份和/或分离地点如何。这些结果表明,这两种方法可能有助于利用 WGS 数据对 S. Infantis 菌株进行分子分型。
{"title":"CRISPR and CRISPR-MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries.","authors":"Felipe Pinheiro Vilela, Dália Dos Prazeres Rodrigues, Marc William Allard, Juliana Pfrimer Falcão","doi":"10.1007/s00438-024-02147-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02147-0","url":null,"abstract":"<p><p>Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"61"},"PeriodicalIF":3.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study. 血糖控制不佳的糖尿病患者对结核病易感性的潜在分子模式:一项试点研究。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-27 DOI: 10.1007/s00438-024-02139-0
Elena Jaime-Sánchez, Edgar E Lara-Ramírez, Juan Ernesto López-Ramos, Elsy Janeth Ramos-González, Ana Laura Cisneros-Méndez, Juan José Oropeza-Valdez, Roberto Zenteno-Cuevas, Gerardo Martínez-Aguilar, Yadira Bastian, Julio Enrique Castañeda-Delgado, Carmen Judith Serrano, José Antonio Enciso-Moreno

Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.

2 型糖尿病(DM2)是一种日益流行的疾病,对全球结核病(TB)控制策略构成挑战。血糖控制不佳的 2 型糖尿病患者(PDM2)易患结核病,这一点意义重大。此外,阐明这种易感性的分子机制也是解决这一问题的当务之急。因此,我们进行了一项转录组学试验研究。我们使用芯片对健康对照组(CTRL,HbA1c 10%)(每组 4 人)的人体血液样本进行了差异表达分析。我们采用网络策略来识别连接 TB-DM2 和 PDM2 特异性差异表达基因(DEGs)的潜在分子模式(P 值为 2)。我们将 OSM、PRKCD 和 SOCS3 定义为调节免疫系统和相关通路的关键调控基因 (KRG)。RT-qPCR 检测证实了 OSM、PRKCD 和 SOCS3 基因的上调(p
{"title":"Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study.","authors":"Elena Jaime-Sánchez, Edgar E Lara-Ramírez, Juan Ernesto López-Ramos, Elsy Janeth Ramos-González, Ana Laura Cisneros-Méndez, Juan José Oropeza-Valdez, Roberto Zenteno-Cuevas, Gerardo Martínez-Aguilar, Yadira Bastian, Julio Enrique Castañeda-Delgado, Carmen Judith Serrano, José Antonio Enciso-Moreno","doi":"10.1007/s00438-024-02139-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02139-0","url":null,"abstract":"<p><p>Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"60"},"PeriodicalIF":3.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability. 在酿酒酵母中表达人类 RECQL5 会导致转录缺陷和与转录相关的基因组不稳定性。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-26 DOI: 10.1007/s00438-024-02152-3
Juan Lafuente-Barquero, Jesper Q Svejstrup, Rosa Luna, Andrés Aguilera

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.

RECQL5是DNA螺旋酶保守RecQ家族的一个成员,它参与维持基因组的稳定性,专门存在于高等真核生物中,并与延伸RNA聚合酶II相关联。为了扩大对其功能的了解,我们在没有 RECQL5 同源物的酵母中表达了人类 RECQL5。我们发现,RECQL5 的表达会导致细胞生长抑制、基因毒性敏感性增加以及转录相关的过度重组。对表达人 RECQL5 的酵母细胞进行的染色质免疫沉淀和转录组分析表明,RECQL5 被转录到转录基因上,虽然它对基因表达的影响很弱,特别是在富含 G + C 的基因上,但它会导致转录终止缺陷,被检测为穿透转录。这些数据表明,从酵母到人类,RNAPII 和 RECQL5 之间的相互作用是保守的。然而,令人意想不到的是,以前在体外与 RNAPII 的结合减少的 RECQL5-ID 突变体,在细胞中也与转录聚合酶结合。因此,与野生型 RECQL5 相比,RECQL5-ID 的表达会导致类似但较弱的表型,这些表型可能是转录介导的。总之,这些数据表明,RECQL5 在 S. cerevisiae 中具有依赖转录和独立基因组动态的内在能力。
{"title":"Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability.","authors":"Juan Lafuente-Barquero, Jesper Q Svejstrup, Rosa Luna, Andrés Aguilera","doi":"10.1007/s00438-024-02152-3","DOIUrl":"10.1007/s00438-024-02152-3","url":null,"abstract":"<p><p>RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"59"},"PeriodicalIF":3.1,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling epigenetic mechanisms in Cerastoderma edule genome: a comparison of healthy and neoplastic cockles. 揭示毛蚶基因组的表观遗传机制:健康毛蚶与肿瘤毛蚶的比较。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-25 DOI: 10.1007/s00438-024-02148-z
Alejandro Viña-Feás, Javier Temes-Rodríguez, André Vidal-Capón, Samuel Novas, Jorge Rodríguez-Castro, Ana Pequeño-Valtierra, Juan José Pasantes, Jose M C Tubío, Daniel Garcia-Souto

Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.

癌症是一种多方面的遗传性疾病,其特征是获得若干基本标志。值得注意的是,某些癌症表现出横向传播性,可在哺乳动物物种和各种双壳类动物之间观察到,后者被称为血癌。在这种复杂的情况下,组蛋白修饰和胞嘧啶甲基化等表观遗传机制成为这些可传播癌症发病机制的基本因素。我们的研究通过 Nanopore 长线程测序技术,深入研究了 Cerastoderma edule 的表观遗传学特征,重点研究了热标本和传染性肿瘤的全基因组甲基化和羟甲基化特征。我们的研究结果表明,与健康标本相比,肿瘤标本中的DNA甲基化存在整体低甲基化现象,强调了DNA甲基化在这些致瘤过程中的作用。此外,我们还验证了基因内 CpG 甲基化与基因表达呈正相关,强调了其在调节健康和肿瘤蚶子转录中的作用,一些甲基化程度较高的致癌基因也凸显了这一点。羟甲基化水平在肿瘤样本中明显升高,尤其是在卫星和复杂重复序列中,这可能与结构功能有关。此外,我们的分析还揭示了逆转录转座子独特的甲基化和活性模式,为双壳类动物的肿瘤过程提供了更多的启示。总之,这些发现有助于理解双壳类肿瘤的表观遗传动态,并揭示 DNA 甲基化和羟甲基化在肿瘤发生中的作用。了解这些表观遗传学改变有望促进我们对癌症表观遗传学的更广泛了解。
{"title":"Unravelling epigenetic mechanisms in Cerastoderma edule genome: a comparison of healthy and neoplastic cockles.","authors":"Alejandro Viña-Feás, Javier Temes-Rodríguez, André Vidal-Capón, Samuel Novas, Jorge Rodríguez-Castro, Ana Pequeño-Valtierra, Juan José Pasantes, Jose M C Tubío, Daniel Garcia-Souto","doi":"10.1007/s00438-024-02148-z","DOIUrl":"10.1007/s00438-024-02148-z","url":null,"abstract":"<p><p>Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"58"},"PeriodicalIF":3.1,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise diagnosis of a hereditary spherocytosis patient with complicated hematological phenotype. 精确诊断出一名具有复杂血液表型的遗传性球形红细胞增多症患者。
IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-24 DOI: 10.1007/s00438-024-02150-5
Guanxia Liang, Zezhang Lin, Yang Zhang, Qianqian Zhang, Dina Zhu, Xiongda Liang, Hongting Xie, Xiaofeng Wei, Xuan Shang

Hereditary spherocytosis (HS) is one of the most common causes of hereditary hemolytic anemia. The current diagnostic guidelines for HS are mainly based on a combination of physical examination and laboratory investigation. However, some patients present with complicated clinical manifestations that cannot be explained by routine diagnostic protocols. Here, we report a rare HS case of mild anemia with extremely high indirect bilirubin levels and high expression of fetal hemoglobin. Using whole exome sequencing analysis, this patient was identified as a heterozygous carrier of a de novo SPTB nonsense mutation (c.605G > A; p.W202*) and a compound heterozygous carrier of known UGT1A1 and KLF1 mutations. This genetic analysis based on the interpretation of the patient's genomic data not only achieved precise diagnosis by an excellent explanation of the complicated phenotype but also provided valuable suggestions for subsequent appropriate approaches for treatment, surveillance and prophylaxis.

遗传性球形红细胞增多症(HS)是遗传性溶血性贫血最常见的病因之一。目前,遗传性球形红细胞增多症的诊断指南主要基于体格检查和实验室检查。然而,有些患者的临床表现比较复杂,常规诊断方案无法解释。在此,我们报告了一例罕见的轻度贫血、间接胆红素水平极高和胎儿血红蛋白高表达的 HS 病例。通过全外显子组测序分析,该患者被确定为新发 SPTB 无义突变(c.605G > A; p.W202*)的杂合子携带者和已知 UGT1A1 和 KLF1 突变的复合杂合子携带者。这种基于患者基因组数据解读的遗传分析不仅通过对复杂表型的出色解释实现了精确诊断,而且还为后续治疗、监测和预防的适当方法提供了有价值的建议。
{"title":"Precise diagnosis of a hereditary spherocytosis patient with complicated hematological phenotype.","authors":"Guanxia Liang, Zezhang Lin, Yang Zhang, Qianqian Zhang, Dina Zhu, Xiongda Liang, Hongting Xie, Xiaofeng Wei, Xuan Shang","doi":"10.1007/s00438-024-02150-5","DOIUrl":"10.1007/s00438-024-02150-5","url":null,"abstract":"<p><p>Hereditary spherocytosis (HS) is one of the most common causes of hereditary hemolytic anemia. The current diagnostic guidelines for HS are mainly based on a combination of physical examination and laboratory investigation. However, some patients present with complicated clinical manifestations that cannot be explained by routine diagnostic protocols. Here, we report a rare HS case of mild anemia with extremely high indirect bilirubin levels and high expression of fetal hemoglobin. Using whole exome sequencing analysis, this patient was identified as a heterozygous carrier of a de novo SPTB nonsense mutation (c.605G > A; p.W202*) and a compound heterozygous carrier of known UGT1A1 and KLF1 mutations. This genetic analysis based on the interpretation of the patient's genomic data not only achieved precise diagnosis by an excellent explanation of the complicated phenotype but also provided valuable suggestions for subsequent appropriate approaches for treatment, surveillance and prophylaxis.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"57"},"PeriodicalIF":2.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BECN1 mRNA expression in breast cancer tissue; significant correlation to tumor grade. 乳腺癌组织中 BECN1 mRNA 的表达;与肿瘤分级显著相关。
IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-24 DOI: 10.1007/s00438-024-02145-2
Sarah Ahmed Aglan, Ahmed Mostafa Awad, Yasmine Nagy Elwany, Sanaa Shawky, Radwa Mohamed Abdel Salam, Rasha Said Omar, Rasha Abdel Mawla Ghazala, Nada Ahmed Soliman, Marwa Ibrahim Khedr, Lamia Said Kandil, Mohamed Sultan, Yasser Hamed, Noha Said Kandil

Breast cancer (BC) is a heterogenous disease with multiple pathways implicated in its development, progression, and drug resistance. Autophagy, a cellular process responsible for self-digestion of damaged organelles, had been recognized as eminent player in cancer progression and chemotherapeutic resistance. The haploinsufficiency of Beclin 1 (BECN1), autophagy protein, is believed to contribute to cancer pathogenesis and progression. In our study, we investigated the expression of BECN1 in a BC female Egyptian patient cohort, as well as its prognostic role through evaluating its association with disease free survival (DFS) after 2 years follow up and association of tumor clinicopathological features. Twenty frozen female BC tissue samples and 17 adjacent normal tissue were included and examined for the expression levels of BECN1. Although the tumor tissues showed lower expression 0.73 (0-8.95) than their corresponding normal tissues 1.02 (0.04-19.59), it was not statistically significant, p: 0.463. BECN1 expression was not associated with stage, nodal metastasis or tumor size, p:0.435, 0.541, 0.296, respectively. However, statistically significant negative correlation was found between grade and BECN1 mRNA expression in the studied cases, p:0.028. BECN1 expression had no statistically significant association with DFS, P = 0.944. However, we observed that triple negative (TNBC) cases had significantly lower DFS rate than luminal BC patients, p: 0.022, with mean DFS 19.0 months, while luminal BC patients had mean DFS of 23.41 months. Our study highlights the potential role of BECN1 in BC pathogenesis, showing that BECN1 expression correlates with poorer differentiation of BC, indicating its probable link with disease aggressiveness. DFS two years follow up showed that TNBC subtype remains associated with less favorable prognosis.

乳腺癌(BC)是一种异质性疾病,其发病、进展和耐药性涉及多种途径。自噬是一种负责自我消化受损细胞器的细胞过程,已被认为是癌症进展和化疗耐药性的重要参与者。自噬蛋白 Beclin 1(BECN1)的单倍体缺陷被认为是导致癌症发病和进展的原因之一。在我们的研究中,我们调查了BECN1在埃及女性BC患者队列中的表达情况,并通过评估其与2年随访后无病生存期(DFS)的相关性以及与肿瘤临床病理特征的相关性,研究了BECN1的预后作用。研究人员纳入了 20 份冰冻的女性 BC 组织样本和 17 份邻近的正常组织样本,并检测了 BECN1 的表达水平。虽然肿瘤组织的表达量为0.73(0-8.95),低于相应正常组织的表达量1.02(0.04-19.59),但差异无统计学意义(P:0.463)。BECN1 的表达与分期、结节转移和肿瘤大小无关,分别为 0.435、0.541 和 0.296。然而,在研究病例中,分级与 BECN1 mRNA 表达之间存在统计学意义上的负相关,P:0.028。BECN1 表达与 DFS 无统计学意义,P = 0.944。然而,我们观察到三阴性(TNBC)病例的 DFS 率明显低于管腔 BC 患者,P:0.022,平均 DFS 为 19.0 个月,而管腔 BC 患者的平均 DFS 为 23.41 个月。我们的研究强调了BECN1在BC发病机制中的潜在作用,显示BECN1的表达与BC的分化程度相关,表明其可能与疾病的侵袭性有关。随访两年的 DFS 显示,TNBC 亚型仍然与较差的预后相关。
{"title":"BECN1 mRNA expression in breast cancer tissue; significant correlation to tumor grade.","authors":"Sarah Ahmed Aglan, Ahmed Mostafa Awad, Yasmine Nagy Elwany, Sanaa Shawky, Radwa Mohamed Abdel Salam, Rasha Said Omar, Rasha Abdel Mawla Ghazala, Nada Ahmed Soliman, Marwa Ibrahim Khedr, Lamia Said Kandil, Mohamed Sultan, Yasser Hamed, Noha Said Kandil","doi":"10.1007/s00438-024-02145-2","DOIUrl":"10.1007/s00438-024-02145-2","url":null,"abstract":"<p><p>Breast cancer (BC) is a heterogenous disease with multiple pathways implicated in its development, progression, and drug resistance. Autophagy, a cellular process responsible for self-digestion of damaged organelles, had been recognized as eminent player in cancer progression and chemotherapeutic resistance. The haploinsufficiency of Beclin 1 (BECN1), autophagy protein, is believed to contribute to cancer pathogenesis and progression. In our study, we investigated the expression of BECN1 in a BC female Egyptian patient cohort, as well as its prognostic role through evaluating its association with disease free survival (DFS) after 2 years follow up and association of tumor clinicopathological features. Twenty frozen female BC tissue samples and 17 adjacent normal tissue were included and examined for the expression levels of BECN1. Although the tumor tissues showed lower expression 0.73 (0-8.95) than their corresponding normal tissues 1.02 (0.04-19.59), it was not statistically significant, p: 0.463. BECN1 expression was not associated with stage, nodal metastasis or tumor size, p:0.435, 0.541, 0.296, respectively. However, statistically significant negative correlation was found between grade and BECN1 mRNA expression in the studied cases, p:0.028. BECN1 expression had no statistically significant association with DFS, P = 0.944. However, we observed that triple negative (TNBC) cases had significantly lower DFS rate than luminal BC patients, p: 0.022, with mean DFS 19.0 months, while luminal BC patients had mean DFS of 23.41 months. Our study highlights the potential role of BECN1 in BC pathogenesis, showing that BECN1 expression correlates with poorer differentiation of BC, indicating its probable link with disease aggressiveness. DFS two years follow up showed that TNBC subtype remains associated with less favorable prognosis.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"56"},"PeriodicalIF":2.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exome sequencing in four families with neurodevelopmental disorders: genotype-phenotype correlation and identification of novel disease-causing variants in VPS13B and RELN. 四个神经发育障碍家族的外显子组测序:基因型与表型的相关性以及 VPS13B 和 RELN 中新型致病变异的鉴定。
IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-21 DOI: 10.1007/s00438-024-02149-y
Tehseen Ullah Khan Afridi, Ambrin Fatima, Humayoon Shafique Satti, Zaineb Akram, Imran Khan Yousafzai, Wajahat Bin Naeem, Nasreen Fatima, Asmat Ali, Zafar Iqbal, Ayaz Khan, Muhammad Shahzad, Chunyu Liu, Mathias Toft, Feng Zhang, Muhammad Tariq, Erica E Davis, Tahir N Khan

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.

神经发育障碍(NDDs)是一组临床和遗传异质性的早发性儿科疾病,影响中枢或外周神经系统的结构和/或功能。由于遗传基础和临床变异的多样性,对 NDDs 进行精确的分子诊断可能具有挑战性。在本研究中,我们调查了四个无亲属关系的巴基斯坦家庭中 NDDs 的潜在遗传原因。利用外显子组测序(ES)作为诊断方法,我们在所有家族中发现了已确定的 NDD 相关基因中的致病变异,包括一个迄今未报道的 RELN 变异以及 VPS13B、DEGS1 和 SPG11 中的三个复发性变异。总之,我们的研究凸显了 ES 作为临床诊断工具的潜力。
{"title":"Exome sequencing in four families with neurodevelopmental disorders: genotype-phenotype correlation and identification of novel disease-causing variants in VPS13B and RELN.","authors":"Tehseen Ullah Khan Afridi, Ambrin Fatima, Humayoon Shafique Satti, Zaineb Akram, Imran Khan Yousafzai, Wajahat Bin Naeem, Nasreen Fatima, Asmat Ali, Zafar Iqbal, Ayaz Khan, Muhammad Shahzad, Chunyu Liu, Mathias Toft, Feng Zhang, Muhammad Tariq, Erica E Davis, Tahir N Khan","doi":"10.1007/s00438-024-02149-y","DOIUrl":"10.1007/s00438-024-02149-y","url":null,"abstract":"<p><p>Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"55"},"PeriodicalIF":2.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of soybean mosaic virus strain SC7 resistance loci and candidate genes in soybean [Glycine max (L.) Merr.]. 大豆[Glycine max (L.) Merr.]中大豆花叶病毒株 SC7 抗性基因座和候选基因的鉴定。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-17 DOI: 10.1007/s00438-024-02151-4
Yixiang Pu, Rujuan Yan, Dongbing Jia, Zhijun Che, Rufei Yang, Changyun Yang, Hui Wang, Hao Cheng, Deyue Yu

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.

大豆(Glycine max (L.) Merr.)是世界上重要的豆科作物,为人类提供了丰富的植物蛋白和油脂。大豆花叶病毒(SMV)会对大豆的产量和品质造成严重危害,但很难用化学药剂控制 SMV,培育抗 SMV 的品种已成为控制该病害的最有效途径。因此,从大豆资源中鉴定 SMV 抗性基因并将其应用于大豆育种具有重要意义。本研究调查了 219 个大豆品种在两种环境中对 SMV 株系 SC7 的发病率(DRs)。利用高密度 NJAU 355 K SoySNP 阵列对 DR 进行了全基因组关联研究(GWAS)。在两个环境中重复检测了 15 号染色体上的 274 kb 区域(1,110,567 bp 至 1,384,173 bp)。在 15 号染色体上发现了六个新的重要单核苷酸多态性(SNPs)。其中四个 SNP 位于两个候选基因 Glyma.15G015700 和 Glyma.15G015800。具有低 DR 的精英单倍型 Glyma.15G015700Hap I 对 SC7 表现出很强的抗性。在接种 SC7 后,抗 SMV 群体中 Glyma.15G015700 的表达量显著增加。此外,预测与 Glyma.15G015700 相互作用的蛋白大多是热休克蛋白,而热休克蛋白已被证明与抗病性有关。总之,研究发现了新的 SMV 抗性基因座和新的候选基因 Glyma.15G015700,可用于进一步的大豆抗病育种。
{"title":"Identification of soybean mosaic virus strain SC7 resistance loci and candidate genes in soybean [Glycine max (L.) Merr.].","authors":"Yixiang Pu, Rujuan Yan, Dongbing Jia, Zhijun Che, Rufei Yang, Changyun Yang, Hui Wang, Hao Cheng, Deyue Yu","doi":"10.1007/s00438-024-02151-4","DOIUrl":"https://doi.org/10.1007/s00438-024-02151-4","url":null,"abstract":"<p><p>Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700<sup>Hap I</sup> with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"54"},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SoxB family genes delay regeneration and cause abnormal movement in Dugesia japonica. SoxB 家族基因会延迟再生,并导致日本杉属植物的异常运动。
IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-16 DOI: 10.1007/s00438-024-02142-5
Yibo Yang, Ziyi Lin, Nannan Li, Ning Li, Dezeng Liu, Zimei Dong, Guangwen Chen

SoxB subfamily is an important branch of Sox family and plays a key role in animal physiological process, but little is known about their function in planarian regeneration. This study aims to evaluate the function of DjSoxB family genes in intact and regenerating planarians Dugesia japonica. Here, we amplify the full-length cDNA of DjSoxB1 and DjSoxB2 in D. japonica by rapid amplification of the cDNA ends (RACE), detect the expression of DjSoxB family genes in planarian. The results show that DjSoxBs are expressed in parenchymal tissue and the hybridization signals partially disappear after irradiation indicates DjSoxB family genes are expressed in neoblasts. After the RNA interference (RNAi) of DjSoxB1, DjSoxB2 and DjSoxB3 separately, the numbers of proliferative cells are all reduced that causes planarians show slower growth of blastema in the early stage of regeneration, and nerves of planarians are affected that the movement speed of planarians decreases in varying degrees. Specially, planarians in the DjSoxB3 RNAi group show shrinkage and twisting. Overall, this study reveals that DjSoxB family genes play a role in cell proliferation during regeneration. They also play an important role in the maintenance of normal nerve function and nerve regeneration. These results provide directions for the functional study of SoxB family genes and provide an important foundation for planarian regeneration.

SoxB 亚家族是 Sox 家族的一个重要分支,在动物生理过程中起着关键作用,但人们对其在扁形动物再生过程中的功能知之甚少。本研究旨在评估DjSoxB家族基因在完整和再生刨花中的功能。本文通过快速扩增 cDNA末端(RACE)技术扩增了DjSoxB1和DjSoxB2的全长cDNA,并检测了DjSoxB家族基因在刨食者中的表达。结果表明,DjSoxBs在实质组织中表达,照射后杂交信号部分消失,表明DjSoxB家族基因在新生细胞中表达。分别对DjSoxB1、DjSoxB2和DjSoxB3进行RNA干扰(RNAi)后,增殖细胞的数量均减少,导致刨花在再生早期的胚泡生长缓慢,刨花的神经受到影响,刨花的运动速度有不同程度的下降。特别是,DjSoxB3 RNAi 组的刨花出现萎缩和扭曲。总之,这项研究揭示了DjSoxB家族基因在再生过程中对细胞增殖的作用。它们在维持正常神经功能和神经再生方面也发挥着重要作用。这些研究结果为SoxB家族基因的功能研究提供了方向,并为平面动物的再生提供了重要的基础。
{"title":"SoxB family genes delay regeneration and cause abnormal movement in Dugesia japonica.","authors":"Yibo Yang, Ziyi Lin, Nannan Li, Ning Li, Dezeng Liu, Zimei Dong, Guangwen Chen","doi":"10.1007/s00438-024-02142-5","DOIUrl":"https://doi.org/10.1007/s00438-024-02142-5","url":null,"abstract":"<p><p>SoxB subfamily is an important branch of Sox family and plays a key role in animal physiological process, but little is known about their function in planarian regeneration. This study aims to evaluate the function of DjSoxB family genes in intact and regenerating planarians Dugesia japonica. Here, we amplify the full-length cDNA of DjSoxB1 and DjSoxB2 in D. japonica by rapid amplification of the cDNA ends (RACE), detect the expression of DjSoxB family genes in planarian. The results show that DjSoxBs are expressed in parenchymal tissue and the hybridization signals partially disappear after irradiation indicates DjSoxB family genes are expressed in neoblasts. After the RNA interference (RNAi) of DjSoxB1, DjSoxB2 and DjSoxB3 separately, the numbers of proliferative cells are all reduced that causes planarians show slower growth of blastema in the early stage of regeneration, and nerves of planarians are affected that the movement speed of planarians decreases in varying degrees. Specially, planarians in the DjSoxB3 RNAi group show shrinkage and twisting. Overall, this study reveals that DjSoxB family genes play a role in cell proliferation during regeneration. They also play an important role in the maintenance of normal nerve function and nerve regeneration. These results provide directions for the functional study of SoxB family genes and provide an important foundation for planarian regeneration.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"53"},"PeriodicalIF":3.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMP1 correlated with cancer progression and immune characteristics in pan-cancer and ovarian cancer. EMP1与泛癌症和卵巢癌的癌症进展和免疫特征相关。
IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-14 DOI: 10.1007/s00438-024-02146-1
Jun Zhang, Jing Yang, Xing Li, Lin Mao, Yan Zhang, Yi Liu, Yindi Bao

This study examines the prognostic role and immunological relevance of EMP1 (epithelial membrane protein-1) in a pan-cancer analysis, with a focus on ovarian cancer. Utilizing data from TCGA, CCLE, and GTEx databases, we assessed EMP1 mRNA expression and its correlation with tumor progression, prognosis, and immune microenvironment across various cancers. Our results indicate that EMP1 expression is significantly associated with poor prognosis in multiple cancer types, including ovarian, bladder, testicular, pancreatic, breast, brain, and uveal melanoma. Immune-related analyses reveal a positive correlation between EMP1 and immune cell infiltration, particularly neutrophils, macrophages, and dendritic cells, as well as high expression of immune checkpoint such as CD274, HAVCR2, IL10, PDCD1LG2, and TGFB1 in most tumors. In vivo experiments confirm that EMP1 promotes ovarian cancer cell proliferation, metastasis, and invasion. In conclusion, EMP1 emerges as a potential prognostic biomarker and therapeutic target in various cancers, particularly ovarian cancer, due to its influence on tumor progression and immune cell dynamics. Further research is warranted to elucidate the precise mechanisms of EMP1 in cancer biology and to translate these findings into clinical applications.

本研究通过泛癌症分析研究了 EMP1(上皮膜蛋白-1)的预后作用和免疫学相关性,重点是卵巢癌。利用来自 TCGA、CCLE 和 GTEx 数据库的数据,我们评估了 EMP1 mRNA 的表达及其与各种癌症的肿瘤进展、预后和免疫微环境的相关性。我们的研究结果表明,在多种癌症类型中,EMP1 的表达与不良预后显著相关,包括卵巢癌、膀胱癌、睾丸癌、胰腺癌、乳腺癌、脑癌和葡萄膜黑色素瘤。免疫相关分析表明,在大多数肿瘤中,EMP1 与免疫细胞浸润(尤其是中性粒细胞、巨噬细胞和树突状细胞)以及免疫检查点(如 CD274、HAVCR2、IL10、PDCD1LG2 和 TGFB1)的高表达呈正相关。体内实验证实,EMP1 能促进卵巢癌细胞的增殖、转移和侵袭。总之,由于 EMP1 对肿瘤进展和免疫细胞动态的影响,它已成为各种癌症(尤其是卵巢癌)的潜在预后生物标志物和治疗靶点。要阐明 EMP1 在癌症生物学中的确切机制并将这些发现转化为临床应用,还需要进一步的研究。
{"title":"EMP1 correlated with cancer progression and immune characteristics in pan-cancer and ovarian cancer.","authors":"Jun Zhang, Jing Yang, Xing Li, Lin Mao, Yan Zhang, Yi Liu, Yindi Bao","doi":"10.1007/s00438-024-02146-1","DOIUrl":"10.1007/s00438-024-02146-1","url":null,"abstract":"<p><p>This study examines the prognostic role and immunological relevance of EMP1 (epithelial membrane protein-1) in a pan-cancer analysis, with a focus on ovarian cancer. Utilizing data from TCGA, CCLE, and GTEx databases, we assessed EMP1 mRNA expression and its correlation with tumor progression, prognosis, and immune microenvironment across various cancers. Our results indicate that EMP1 expression is significantly associated with poor prognosis in multiple cancer types, including ovarian, bladder, testicular, pancreatic, breast, brain, and uveal melanoma. Immune-related analyses reveal a positive correlation between EMP1 and immune cell infiltration, particularly neutrophils, macrophages, and dendritic cells, as well as high expression of immune checkpoint such as CD274, HAVCR2, IL10, PDCD1LG2, and TGFB1 in most tumors. In vivo experiments confirm that EMP1 promotes ovarian cancer cell proliferation, metastasis, and invasion. In conclusion, EMP1 emerges as a potential prognostic biomarker and therapeutic target in various cancers, particularly ovarian cancer, due to its influence on tumor progression and immune cell dynamics. Further research is warranted to elucidate the precise mechanisms of EMP1 in cancer biology and to translate these findings into clinical applications.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"51"},"PeriodicalIF":2.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Genetics and Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1