首页 > 最新文献

Molecular Genetics and Genomics最新文献

英文 中文
Comparative genomic analysis of Pseudomonas aeruginosa strains susceptible and resistant to carbapenems and aztreonam isolated from patients with healthcare-associated infections in a Mexican hospital. 从墨西哥一家医院的医源性感染患者中分离出的对碳青霉烯类和阿曲南易感和耐药铜绿假单胞菌菌株的基因组比较分析。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-12 DOI: 10.1007/s00438-024-02122-9
María José Martínez-Gallardo, Claudia Villicaña, Martha Yocupicio-Monroy, Sofía Lizeth Alcaraz-Estrada, Juana Salazar-Salinas, Omar Fernando Mendoza-Vázquez, Gabriel Damazo-Hernández, Josefina León-Félix

Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that causes different infections on immunocompromised patients. Within PA accessory genome, differences in virulence, antibiotic resistance and biofilm formation have been described between strains, leading to the emergence of multidrug-resistant strains. The genome sequences of 17 strains isolated from patients with healthcare-associated infections in a Mexican hospital were genomically and phylogenetically analyzed and antibiotic resistance genes, virulence genes, and biofilm formation genes were detected. Fifteen of the 17 strains were resistant to at least two of the carbapenems meropenem, imipenem, and the monobactam aztreonam. The antibiotic resistance (mexA, mexB, and oprM) and the biofilm formation (pslA and pslD) genes were detected in all strains. Differences were found between strains in accessory genome size. The strains had different sequence types, and seven strains had sequence types associated with global high risk epidemic PA clones. All strains were represented in two groups among PA global strains. In the 17 strains, horizontally acquired resistance genes to aminoglycosides and beta-lactams were found, mainly, and between 230 and 240 genes that encode virulence factors. The strains under study were variable in terms of their accessory genome, antibiotic resistance, and virulence genes. With these characteristics, we provide information about the genomic diversity of clinically relevant PA strains.

铜绿假单胞菌(Pseudomonas aeruginosa,PA)是一种重要的机会性病原体,会对免疫力低下的患者造成不同程度的感染。在铜绿假单胞菌的附属基因组中,不同菌株在毒力、抗生素耐药性和生物膜形成方面存在差异,导致了耐多药菌株的出现。对从墨西哥一家医院的医源性感染患者身上分离出的 17 株菌株的基因组序列进行了基因组和系统发育分析,并检测了抗生素耐药性基因、毒力基因和生物膜形成基因。在 17 株菌株中,有 15 株至少对两种碳青霉烯类药物美罗培南、亚胺培南和单内酰胺类药物阿兹卓南具有耐药性。所有菌株都检测到了抗生素耐药基因(mexA、mexB 和 oprM)和生物膜形成基因(pslA 和 pslD)。不同菌株的附属基因组大小存在差异。菌株具有不同的序列类型,其中 7 株菌株的序列类型与全球高风险流行性 PA 克隆有关。在全球 PA 菌株中,所有菌株都分为两组。在 17 株菌株中,主要发现了对氨基糖苷类和β-内酰胺类的水平获得抗性基因,以及 230 至 240 个编码毒力因子的基因。所研究的菌株在附属基因组、抗生素耐药性和毒力基因方面存在差异。通过这些特征,我们提供了临床相关 PA 菌株基因组多样性的信息。
{"title":"Comparative genomic analysis of Pseudomonas aeruginosa strains susceptible and resistant to carbapenems and aztreonam isolated from patients with healthcare-associated infections in a Mexican hospital.","authors":"María José Martínez-Gallardo, Claudia Villicaña, Martha Yocupicio-Monroy, Sofía Lizeth Alcaraz-Estrada, Juana Salazar-Salinas, Omar Fernando Mendoza-Vázquez, Gabriel Damazo-Hernández, Josefina León-Félix","doi":"10.1007/s00438-024-02122-9","DOIUrl":"10.1007/s00438-024-02122-9","url":null,"abstract":"<p><p>Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that causes different infections on immunocompromised patients. Within PA accessory genome, differences in virulence, antibiotic resistance and biofilm formation have been described between strains, leading to the emergence of multidrug-resistant strains. The genome sequences of 17 strains isolated from patients with healthcare-associated infections in a Mexican hospital were genomically and phylogenetically analyzed and antibiotic resistance genes, virulence genes, and biofilm formation genes were detected. Fifteen of the 17 strains were resistant to at least two of the carbapenems meropenem, imipenem, and the monobactam aztreonam. The antibiotic resistance (mexA, mexB, and oprM) and the biofilm formation (pslA and pslD) genes were detected in all strains. Differences were found between strains in accessory genome size. The strains had different sequence types, and seven strains had sequence types associated with global high risk epidemic PA clones. All strains were represented in two groups among PA global strains. In the 17 strains, horizontally acquired resistance genes to aminoglycosides and beta-lactams were found, mainly, and between 230 and 240 genes that encode virulence factors. The strains under study were variable in terms of their accessory genome, antibiotic resistance, and virulence genes. With these characteristics, we provide information about the genomic diversity of clinically relevant PA strains.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primer extension refractory PCR: an efficient and reliable genome walking method 引物延伸耐受性 PCR:一种高效可靠的基因组行走方法
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-11 DOI: 10.1007/s00438-024-02126-5
Haixing Li, Zhiyu Lin, Xinyue Guo, Zhenkang Pan, Hao Pan, Dongying Wang

Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3′ parts of the secondary and tertiary primers. The 5′ parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5′ part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.

基因组走查是一种从已知基因组序列获取未知侧翼基因组序列的分子技术,已被广泛应用于确定转基因位点、挖掘新的基因资源和填补染色体空白。这项技术推动了基因组学、遗传学和相关学科的发展。本文介绍了一种高效可靠的基因组走查技术,即引物延伸耐受性 PCR(PER-PCR)。PER-PCR 使用一组一级、二级和三级走位引物。主引物中间的 15 nt 与二级和三级引物的 3′部分重叠。这三种引物的 5′部分相互异源。短的重叠部分使得走行引物只能在松弛的 PCR 循环中与其前引物退火,从而产生一系列单链 DNA;但是,异源的 5′部分阻碍了走行引物形成完美的结合位点。在下一个严格循环中,目标单链可通过序列特异性引物扩展成双链 DNA 分子,从而在剩余的严格循环中进行指数扩增。由于任何引物都缺乏完美的结合位点,因此非目标单链无法富集。通过延伸到水稻 hyg 基因和 Levilactobacillus brevis CD0817 的 gadR 基因的未知侧翼区域,PER-PCR 得到了验证。总之,本研究构建了一种新的实用 PER-PCR 方法,有可能替代现有的基因组行走方法。
{"title":"Primer extension refractory PCR: an efficient and reliable genome walking method","authors":"Haixing Li, Zhiyu Lin, Xinyue Guo, Zhenkang Pan, Hao Pan, Dongying Wang","doi":"10.1007/s00438-024-02126-5","DOIUrl":"https://doi.org/10.1007/s00438-024-02126-5","url":null,"abstract":"<p>Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3′ parts of the secondary and tertiary primers. The 5′ parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5′ part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the <i>hyg</i> gene in rice and the <i>gadR</i> gene in <i>Levilactobacillus brevis</i> CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting genetic risk factors for AA amyloidosis in Algerian patients with familial Mediterranean fever. 预测阿尔及利亚家族性地中海热患者 AA 淀粉样变性的遗传风险因素。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-07 DOI: 10.1007/s00438-024-02133-6
Djouher Ait-Idir, Bahia Djerdjouri, Khaled Latreche, Rawda Sari-Hamidou, Ghalia Khellaf

Renal amyloid-associated (AA) amyloidosis is a harmful complication of familial Mediterranean fever (FMF). Its occurrence involves polymorphisms and mutations in the Serum Amyloid A1 (SAA1) and Mediterranean Fever (MEFV) genes, respectively. In Algeria, the association between SAA1 variants and FMF-related amyloidosis was not investigated, hence the aim of this case-control study. It included 60 healthy controls and 60 unrelated FMF patients (39 with amyloidosis, and 21 without amyloidosis). All were genotyped for the SAA1 alleles (SAA1.1, SAA1.5, and SAA1.3), and a subset of them for the - 13 C/T polymorphism by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comparisons between genotype and allele frequencies were performed using Chi-square and Fisher tests. The SAA1.1/1.1 genotype was predominant in amyloid FMF patients, compared to non-amyloid FMF patients (p = 0.001) and controls (p < 0.0001). SAA1.1/1.5 was higher in non-amyloid patients (p = 0.0069) and in controls (p = 0.0082) than in patients with amyloidosis. Bivariate logistic regression revealed an increased risk of AA amyloidosis with three genotypes, SAA1.1/1.1 [odds ratio 7.589 (OR); 95% confidence interval (CI): 2.130-27.041] (p = 0.0018), SAA1.1/1.3 [OR 5.700; 95% CI: 1.435-22.644] (p = 0.0134), and M694I/M694I [OR 4.6; 95% CI: 1.400-15.117] (p = 0.0119). The SAA1.1/1.5 genotype [OR 0.152; 95% CI: 0.040-0.587] (p = 0.0062) was protective against amyloidosis. In all groups, the - 13 C/C genotype predominated, and was not related to renal complication [OR 0.88; 95% CI: 0.07-10.43] (p = 0.915). In conclusion, in contrast to the - 13 C/T polymorphism, the SAA1.1/1.1, SAA1.1/1.3 and M694I/M694I genotypes may increase the risk of developing renal AA amyloidosis in the Algerian population.

肾淀粉样蛋白相关(AA)淀粉样变性是家族性地中海热(FMF)的一种有害并发症。其发生分别与血清淀粉样蛋白 A1(SAA1)和地中海热(MEFV)基因的多态性和突变有关。在阿尔及利亚,SAA1 变异与 FMF 相关淀粉样变性之间的关系尚未得到研究,因此本病例对照研究的目的就在于此。研究对象包括 60 名健康对照者和 60 名无亲属关系的 FMF 患者(39 人患有淀粉样变性病,21 人无淀粉样变性病)。通过聚合酶链式反应-限制性片段长度多态性(PCR-RFLP),对所有患者进行了 SAA1 等位基因(SAA1.1、SAA1.5 和 SAA1.3)的基因分型,并对其中一部分患者进行了 - 13 C/T 多态性的基因分型。基因型和等位基因频率的比较采用Chi-square和Fisher检验。与非淀粉样变性 FMF 患者(p = 0.001)和对照组(p = 0.001)相比,淀粉样变性 FMF 患者的 SAA1.1/1.1 基因型占优势。
{"title":"Predicting genetic risk factors for AA amyloidosis in Algerian patients with familial Mediterranean fever.","authors":"Djouher Ait-Idir, Bahia Djerdjouri, Khaled Latreche, Rawda Sari-Hamidou, Ghalia Khellaf","doi":"10.1007/s00438-024-02133-6","DOIUrl":"10.1007/s00438-024-02133-6","url":null,"abstract":"<p><p>Renal amyloid-associated (AA) amyloidosis is a harmful complication of familial Mediterranean fever (FMF). Its occurrence involves polymorphisms and mutations in the Serum Amyloid A1 (SAA1) and Mediterranean Fever (MEFV) genes, respectively. In Algeria, the association between SAA1 variants and FMF-related amyloidosis was not investigated, hence the aim of this case-control study. It included 60 healthy controls and 60 unrelated FMF patients (39 with amyloidosis, and 21 without amyloidosis). All were genotyped for the SAA1 alleles (SAA1.1, SAA1.5, and SAA1.3), and a subset of them for the - 13 C/T polymorphism by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comparisons between genotype and allele frequencies were performed using Chi-square and Fisher tests. The SAA1.1/1.1 genotype was predominant in amyloid FMF patients, compared to non-amyloid FMF patients (p = 0.001) and controls (p < 0.0001). SAA1.1/1.5 was higher in non-amyloid patients (p = 0.0069) and in controls (p = 0.0082) than in patients with amyloidosis. Bivariate logistic regression revealed an increased risk of AA amyloidosis with three genotypes, SAA1.1/1.1 [odds ratio 7.589 (OR); 95% confidence interval (CI): 2.130-27.041] (p = 0.0018), SAA1.1/1.3 [OR 5.700; 95% CI: 1.435-22.644] (p = 0.0134), and M694I/M694I [OR 4.6; 95% CI: 1.400-15.117] (p = 0.0119). The SAA1.1/1.5 genotype [OR 0.152; 95% CI: 0.040-0.587] (p = 0.0062) was protective against amyloidosis. In all groups, the - 13 C/C genotype predominated, and was not related to renal complication [OR 0.88; 95% CI: 0.07-10.43] (p = 0.915). In conclusion, in contrast to the - 13 C/T polymorphism, the SAA1.1/1.1, SAA1.1/1.3 and M694I/M694I genotypes may increase the risk of developing renal AA amyloidosis in the Algerian population.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria. 从革兰氏阴性细菌中高效分离基因组 DNA 的快速、廉价而有效的方法。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-07 DOI: 10.1007/s00438-024-02120-x
Lihini Ranesha Weerakkody, Chamindri Witharana

Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.

目前,有几种基于不同原理提取细菌 DNA 的方案。然而,每种方法获得的 DNA 数量和质量都有很大差异,而且取决于微生物。在这些经典的粗略方法中,大多数都使用苯酚和氯仿等剧毒和有害的有机溶剂进行脱蛋白,而在某些方案中,则使用昂贵的酶,包括 RN 酶和蛋白酶。本研究旨在介绍一种简单、快速、廉价且有效的革兰氏阴性细菌基因组 DNA 分离程序,无需使用有毒化学物质和昂贵的酶。这项新方法与另一种使用蛋白酶 K 的经典方法(盐析法)进行了比较。通过比较样本 DNA 与 DNA 定量标准的凝胶条带强度和 Quantus™ 荧光仪,用凝胶电泳法测定提取 DNA 的浓度和产量。结果表明,与盐析法相比,新方法的 DNA 提取率更高。此外,新方法的整个过程不到 2 小时。两种方法提取的基因组 DNA 的纯度和完整性相似。此外,DNA 的质量是通过聚合酶链反应(PCR)的多拷贝相关丝状化(MAF)基因扩增来确定的。因此,所述技术无毒、耗时少、耗资少、效率高,是一种非常适合从革兰氏阴性细菌中进行常规 DNA 分离的方法。
{"title":"A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria.","authors":"Lihini Ranesha Weerakkody, Chamindri Witharana","doi":"10.1007/s00438-024-02120-x","DOIUrl":"10.1007/s00438-024-02120-x","url":null,"abstract":"<p><p>Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. 基于基因组学的四种猪源性乳酸菌株分析及其作为潜在益生菌的评估。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-05 DOI: 10.1007/s00438-024-02101-0
Dekai Niu, Ni Feng, Siteng Xi, Jianjian Xu, Yong Su

The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.

寻找益生菌并探索其功能对畜牧业至关重要。最近,猪源性乳酸菌(LAB)显示出作为益生菌的巨大潜力。然而,通过基因组学分析评估猪源性乳酸菌作为潜在益生菌的研究相对有限。本研究利用基因组学技术分析了四种猪源性 LAB 菌株(约翰逊乳杆菌 L16、卷曲乳杆菌 ZHA1、唾液乳杆菌 ZSA5 和动物乳杆菌 ZSB1),并结合体外试验评估了它们作为益生菌的潜力。这四种菌株的基因组大小从 1,897,301 bp 到 2,318,470 bp 不等,GC 含量从 33.03% 到 41.97%。泛基因组分析和共线性分析表明,四株菌株的基因组之间存在差异。碳水化合物活性酶分析表明,约翰逊酵母 L16 编码的碳水化合物活性酶多于其他菌株。KEGG 通路分析和体外试验证实,L. johnsonii L16 可以利用多种碳水化合物,并且对每种碳水化合物都有很好的利用能力。这四种菌株都含有与耐酸性相关的基因,并能耐受低 pH 值,其中 L. johnsonii L16 的耐酸性最强。四株菌株含有与胆盐耐受性相关的基因,能够耐受 0.1% 的胆盐。四株菌株含有抗氧化相关基因,并在体外测试中表现出抗氧化活性。它们含有与有机酸生物合成相关的基因,对肠毒素性大肠杆菌 K88(ETEC K88)和沙门氏菌 6,7:c:1,5具有抗菌活性,其中约翰逊酵母菌 L16 和唾液酵母菌 ZSA5 具有编码细菌素的基因簇。结果表明,基因组分析与体外测试相结合是评估不同菌株作为益生菌的有效方法。本研究结果表明,在四种菌株中,L. johnsonii L16具有作为益生菌株的潜力,并为猪生产中益生菌的开发提供了理论依据。
{"title":"Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics.","authors":"Dekai Niu, Ni Feng, Siteng Xi, Jianjian Xu, Yong Su","doi":"10.1007/s00438-024-02101-0","DOIUrl":"10.1007/s00438-024-02101-0","url":null,"abstract":"<p><p>The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization. 通过属间杂交,将不同基因背景的刺桐引入马卢斯。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02131-8
Takuya Morimoto, Ryuya Narazaki, Hiroaki Okabe, Lumin Zhang, Kazusa Nishimura, Akihiro Itai

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.

跨种和跨属的广泛杂交被用来提高作物的重要农业性状。在蔷薇科马缨丹属(Maleae)中,不同的属和种表现出多种特性,可通过杂交增加多样性和基因库。本研究旨在开发和鉴定马蔺和黄杨之间的属间杂交个体。通过种子萌发、嫩枝繁殖和离体生根,从由 Pyrus communis、P. bretschneideri 和 Pyrus 种间杂交种(P. communis × P. pyrifolia)授粉的 Malus × domestica 杂交品种中获得了适应性幼苗,这些幼苗显示出自身根系的无性生长。叶片形态学、流式细胞仪和分子基因分型的比较分析证实了这些个体的杂交地位。全基因组基因分型显示,所有杂交个体都对称地继承了马蔺和刺桐亲本的基因组片段。据我们所知,这是首次报道 Malus × domestica 和 P. bretschneideri 之间的属间杂种幼苗的发育情况。此外,该种间杂种个体还是将 P. pyrifolia 的遗传背景引入 Malus × domestica 的桥梁植物。这项研究的结果为通过 Malus 和 Pyrus 之间的种间杂交进行育种奠定了重要基础,促进了从不同基因库中吸收有价值的性状。
{"title":"Introduction of a diverse genetic background of Pyrus into Malus through intergeneric hybridization.","authors":"Takuya Morimoto, Ryuya Narazaki, Hiroaki Okabe, Lumin Zhang, Kazusa Nishimura, Akihiro Itai","doi":"10.1007/s00438-024-02131-8","DOIUrl":"10.1007/s00438-024-02131-8","url":null,"abstract":"<p><p>Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C and G are frequently mutated into T and A in coding regions of human genes 在人类基因的编码区,C 和 G 经常变异为 T 和 A
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02118-5
Yong Wang, Ke-Ping Chen

Nucleotide mutations in human genes have long been a hot subject for study because some of them may lead to severe human diseases. Understanding the general mutational process and evolutionary trend of human genes could help answer such questions as why certain diseases occur and what challenges we face in protecting human health. In this study, we conducted statistics on 89,895 single-nucleotide variations identified in coding regions of 18,339 human genes. The results show that C and G are frequently mutated into T and A in human genes. C/G (C or G)-to-T/A mutations lead to reduction of hydrogen bonds in double-stranded DNA because C–G and T–A base pairs are maintained by three and two hydrogen bonds respectively. C-to-T and G-to-A mutations occur predominantly in human genes because they not only reduce hydrogen bonds but also belong to transition mutation. Reduction of hydrogen bonds could reduce energy consumption not only in separating double strands of mutated DNA for transcription and replication but also in disrupting stem-loop structure of mutated mRNA for translation. It is thus considered that to reduce hydrogen bonds (and thus to reduce energy consumption in gene expression) is one of the driving forces for nucleotide mutation. Moreover, codon mutation is positively correlated to its content, suggesting that most mutations are not targeted on changing any specific codons (amino acids) but are merely for reducing hydrogen bonds. Our study provides an example of utilizing single-nucleotide variation data to infer evolutionary trend of human genes, which can be referenced to conduct similar studies in other organisms.

长期以来,人类基因中的核苷酸突变一直是研究的热点,因为其中一些突变可能导致严重的人类疾病。了解人类基因的一般变异过程和进化趋势有助于回答某些疾病发生的原因以及保护人类健康所面临的挑战等问题。在这项研究中,我们对 18339 个人类基因的编码区中发现的 89 895 个单核苷酸变异进行了统计。结果显示,在人类基因中,C 和 G 经常变异为 T 和 A。C/G(C或G)-T/A突变会导致双链DNA中氢键的减少,因为C-G和T-A碱基对分别由三个和两个氢键维持。C-T和G-A突变主要发生在人类基因中,因为它们不仅减少了氢键,而且属于过渡突变。减少氢键不仅可以减少分离突变 DNA 双链进行转录和复制时的能量消耗,还可以减少破坏突变 mRNA 的茎环结构进行翻译时的能量消耗。因此,减少氢键(从而减少基因表达的能量消耗)被认为是核苷酸突变的驱动力之一。此外,密码子突变与其含量呈正相关,这表明大多数突变并不以改变任何特定密码子(氨基酸)为目标,而只是为了减少氢键。我们的研究为利用单核苷酸变异数据推断人类基因的进化趋势提供了一个范例,可供其他生物进行类似研究时参考。
{"title":"C and G are frequently mutated into T and A in coding regions of human genes","authors":"Yong Wang, Ke-Ping Chen","doi":"10.1007/s00438-024-02118-5","DOIUrl":"https://doi.org/10.1007/s00438-024-02118-5","url":null,"abstract":"<p>Nucleotide mutations in human genes have long been a hot subject for study because some of them may lead to severe human diseases. Understanding the general mutational process and evolutionary trend of human genes could help answer such questions as why certain diseases occur and what challenges we face in protecting human health. In this study, we conducted statistics on 89,895 single-nucleotide variations identified in coding regions of 18,339 human genes. The results show that C and G are frequently mutated into T and A in human genes. C/G (C or G)-to-T/A mutations lead to reduction of hydrogen bonds in double-stranded DNA because C–G and T–A base pairs are maintained by three and two hydrogen bonds respectively. C-to-T and G-to-A mutations occur predominantly in human genes because they not only reduce hydrogen bonds but also belong to transition mutation. Reduction of hydrogen bonds could reduce energy consumption not only in separating double strands of mutated DNA for transcription and replication but also in disrupting stem-loop structure of mutated mRNA for translation. It is thus considered that to reduce hydrogen bonds (and thus to reduce energy consumption in gene expression) is one of the driving forces for nucleotide mutation. Moreover, codon mutation is positively correlated to its content, suggesting that most mutations are not targeted on changing any specific codons (amino acids) but are merely for reducing hydrogen bonds. Our study provides an example of utilizing single-nucleotide variation data to infer evolutionary trend of human genes, which can be referenced to conduct similar studies in other organisms.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. 小麦(Triticum aestivum L.)耐旱性的全基因组关联研究确定了 SNP 标记和候选基因。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-02 DOI: 10.1007/s00438-024-02104-x
Sina Nouraei, Md Sultan Mia, Hui Liu, Neil C Turner, Guijun Yan

Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.

干旱胁迫对全球小麦生产构成严重威胁,因此有必要深入探讨耐旱相关性状的遗传基础。本研究利用 90 K SNP 阵列进行了全基因组关联分析,揭示了小麦耐旱性相关关键性状(即株高、根长、根和芽干重)的遗传决定因素。利用混合线性模型(MLM)方法对 125 个小麦品种进行了水分充足和干旱胁迫处理,我们发现了 53 个 SNPs 与目标性状的胁迫易感性(SSI)和耐受性指数(STI)显著相关。值得注意的是,2A 和 3B 染色体分别有 10 个和 9 个相关标记。在 17 条染色体上,确定了 44 个独特的候选基因,主要位于 1A、1B、1D、2A、3A、3B、4A、6A、6B、7A、7B 和 7D 染色体的远端。这些基因与植物生长、发育和胁迫反应相关的多种功能有关,为今后的研究提供了丰富的资源。在 2AS 和 3BL 染色体臂的特定区域出现了一种聚类模式,特别是有 7 个基因与植株高度的 SSI 相关,4 个基因与植株高度和芽干重的 STI 相关。此外,多聚半乳糖醛酸酶、辅苷相关蛋白 1、肽变形酶和受体样激酶等编码基因的共用突显了植株高度和芽干重之间的相互联系。总之,我们的研究结果深入揭示了小麦耐旱性的分子机制,为进一步探索和作物改良战略确定了有前景的基因组位点。
{"title":"Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes.","authors":"Sina Nouraei, Md Sultan Mia, Hui Liu, Neil C Turner, Guijun Yan","doi":"10.1007/s00438-024-02104-x","DOIUrl":"10.1007/s00438-024-02104-x","url":null,"abstract":"<p><p>Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe. 鉴定可通过激活 Sty1 MAPK 延长鼠李酵母寿命的 plb1 突变。
IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-29 DOI: 10.1007/s00438-024-02107-8
Yasukichi Maekawa, Kotaro Matsui, Keisuke Okamoto, Takafumi Shimasaki, Hokuto Ohtsuka, Motohiro Tani, Kunio Ihara, Hirofumi Aiba

To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.

要了解包括人类在内的高等生物的寿命,必须以了解细胞水平的寿命为前提。因此,裂殖酵母是研究寿命的良好模式生物。为了找出参与长寿的新因素,我们正在利用裂殖酵母大规模筛选延长计时寿命(细胞在静止期存活)的长寿突变株。我们选择了其中一个新获得的长寿突变株(No.98 突变株)进行分析,发现其长寿表型是由 plb1+ 基因中的一个错义突变(92Phe → Ile)引起的。裂殖酵母中的 plb1+ 基因是一个编码磷脂酶 B 同源物的非必要基因,但其在正常生长条件下的功能以及磷脂酶 B 的活性仍未得到解决。我们对 No.98 突变体的分析表明,plb1 突变会降低细胞膜和细胞壁的完整性,并通过磷酸化激活 Sty1。
{"title":"Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe.","authors":"Yasukichi Maekawa, Kotaro Matsui, Keisuke Okamoto, Takafumi Shimasaki, Hokuto Ohtsuka, Motohiro Tani, Kunio Ihara, Hirofumi Aiba","doi":"10.1007/s00438-024-02107-8","DOIUrl":"10.1007/s00438-024-02107-8","url":null,"abstract":"<p><p>To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1<sup>+</sup> gene. plb1<sup>+</sup> gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GaKAN2, a KANADI transcription factor, modulates stem trichomes in Gossypium arboreum. KANADI转录因子GaKAN2调节旱生麻的茎毛。
IF 3.1 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-28 DOI: 10.1007/s00438-024-02098-6
Xujiao Ren, Luying Yang, Yasir Muhammad, Yuxing Xie, Xinyi Lin, Li Yu, Yuefen Cao, Mingquan Ding, Yurong Jiang, Junkang Rong

Key message: GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.

关键信息研究发现,KANADI 家族成员 GaKAN2 在棉花组织中广泛表达,并通过复杂的途径调控毛状体的发育。棉花毛状体被认为是抵御害虫的屏障。棉纤维和毛状体是单细胞表皮延伸,具有共同的调控机制。尽管进行了多项研究,但毛状体发育的基本机制仍然难以捉摸。KANADI 是拟南芥毛状体生长的关键转录因子(TFs)家族之一。然而,KANADI基因在棉花中的功能仍然未知。本研究采用全基因组扫描、转录组分析、基因沉默、亚细胞定位和酵母双杂交等技术,对棉花作物中KANADI TFs家族基因的功能进行了解读。研究发现,棉花中共有 7 个 GaKAN 基因。转录组数据显示,这些基因在茎和根中有显著表达。此外,GaKAN2 也在其他组织中广泛表达。随后,我们选择了 GaKAN2 来验证 KANADI 基因的功能。沉默GaKAN2后,单细胞毛状体减少了24.99%,节间距离减少了11.33%,这表明它在调控毛状体和植物生长中的潜在作用。RNA-Seq分析表明,GaSuS和GaERS是GaKAN2的下游基因。GaKAN2和GaERS的转录激活和沉默表型相似,表明GaKAN2通过GaERS调控毛状体的发育。此外,KEGG分析显示,大量基因富集在次生代谢产物的生物合成和植物激素信号转导途径中,从而表明GaKAN2调控茎毛状体和植物生长。GFP亚细胞定位和酵母转录激活分析阐明,GaKAN2位于细胞核内,能够调控下游基因的转录。该研究阐明了棉花中KANADI基因家族的功能和特点,为进一步研究GaKAN2基因在棉花植物毛状体和植物发育过程中的作用提供了基础。
{"title":"The GaKAN2, a KANADI transcription factor, modulates stem trichomes in Gossypium arboreum.","authors":"Xujiao Ren, Luying Yang, Yasir Muhammad, Yuxing Xie, Xinyi Lin, Li Yu, Yuefen Cao, Mingquan Ding, Yurong Jiang, Junkang Rong","doi":"10.1007/s00438-024-02098-6","DOIUrl":"10.1007/s00438-024-02098-6","url":null,"abstract":"<p><strong>Key message: </strong>GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Genetics and Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1