Pub Date : 2024-07-17DOI: 10.1007/s00438-024-02156-z
Fanhua Kong, Zhongshan Lu, Yan Xiong, Lihua Zhou, Qifa Ye
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Cancer-associated fibroblasts (CAFs) are a special type of fibroblasts, which play an important role in the development and immune escape of tumors. Weighted gene co-expression network analysis (WGCNA) was used to construct the co-expression module. In combination with univariate Cox regression and analysis of least absolute shrinkage operator (LASSO), characteristics associated with CAFs were developed for a prognostic model. The migration and proliferation of lung cancer cells were evaluated in vitro. Finally, the expression levels of proteins were analyzed by Western blot. LASSO Cox regression algorithm was then performed to select hub genes. Finally, a total of 2 Genes (COL5A2, COL6A2) were obtained. We then divided LUAD patients into high- and low-risk groups based on CAFs risk scores. Survival analysis, CAFs score correlation analysis and tumor mutation load analysis showed that COL5A2 and COL6A2 were high-risk genes for LUAD. Human Protein Atlas (HPA), western blot and PCR results showed that COL5A2 and COL6A2 were up-regulated in LUAD tissues. When COL5A2 and COL6A2 were knocked down, the proliferation, invasion and migration of lung cancer cells were significantly decreased. Finally, COL5A2 can affect LUAD progression through the Wnt/β-Catenin and TGF-β signaling pathways. Our CAFs risk score model offers a new approach for predicting the prognosis of LUAD patients. Furthermore, the identification of high-risk genes COL5A2 and COL6A2 and drug sensitivity analysis can provide valuable candidate clues for clinical treatment of LUAD.
{"title":"A novel cancer-associated fibroblasts risk score model predict survival and immunotherapy in lung adenocarcinoma.","authors":"Fanhua Kong, Zhongshan Lu, Yan Xiong, Lihua Zhou, Qifa Ye","doi":"10.1007/s00438-024-02156-z","DOIUrl":"https://doi.org/10.1007/s00438-024-02156-z","url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Cancer-associated fibroblasts (CAFs) are a special type of fibroblasts, which play an important role in the development and immune escape of tumors. Weighted gene co-expression network analysis (WGCNA) was used to construct the co-expression module. In combination with univariate Cox regression and analysis of least absolute shrinkage operator (LASSO), characteristics associated with CAFs were developed for a prognostic model. The migration and proliferation of lung cancer cells were evaluated in vitro. Finally, the expression levels of proteins were analyzed by Western blot. LASSO Cox regression algorithm was then performed to select hub genes. Finally, a total of 2 Genes (COL5A2, COL6A2) were obtained. We then divided LUAD patients into high- and low-risk groups based on CAFs risk scores. Survival analysis, CAFs score correlation analysis and tumor mutation load analysis showed that COL5A2 and COL6A2 were high-risk genes for LUAD. Human Protein Atlas (HPA), western blot and PCR results showed that COL5A2 and COL6A2 were up-regulated in LUAD tissues. When COL5A2 and COL6A2 were knocked down, the proliferation, invasion and migration of lung cancer cells were significantly decreased. Finally, COL5A2 can affect LUAD progression through the Wnt/β-Catenin and TGF-β signaling pathways. Our CAFs risk score model offers a new approach for predicting the prognosis of LUAD patients. Furthermore, the identification of high-risk genes COL5A2 and COL6A2 and drug sensitivity analysis can provide valuable candidate clues for clinical treatment of LUAD.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"70"},"PeriodicalIF":2.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1007/s00438-024-02161-2
Imtiaz Ali, Haider Ali, Ahsanullah Unar, Fazal Rahim, Khalid Khan, Sobia Dil, Tanveer Abbas, Ansar Hussain, Aurang Zeb, Muhammad Zubair, Huan Zhang, Hui Ma, Xiaohua Jiang, Muzammil Ahmad Khan, Bo Xu, Wasim Shah, Qinghua Shi
TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.
{"title":"A novel homozygous missense TTC12 variant identified in an infertile Pakistani man with severe oligoasthenoteratozoospermia and primary ciliary dyskinesia.","authors":"Imtiaz Ali, Haider Ali, Ahsanullah Unar, Fazal Rahim, Khalid Khan, Sobia Dil, Tanveer Abbas, Ansar Hussain, Aurang Zeb, Muhammad Zubair, Huan Zhang, Hui Ma, Xiaohua Jiang, Muzammil Ahmad Khan, Bo Xu, Wasim Shah, Qinghua Shi","doi":"10.1007/s00438-024-02161-2","DOIUrl":"https://doi.org/10.1007/s00438-024-02161-2","url":null,"abstract":"<p><p>TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"69"},"PeriodicalIF":2.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
India's rich diversity encompasses individuals from varied geographical, cultural, and ethnic backgrounds. In the field of population genetics, comprehending the genetic diversity across distinct populations plays a crucial role. This study presents significant findings from genetic data obtained from the Sikkimese population of India. Autosomal markers were crucial for evaluating forensic parameters, with a combined paternity index of 1 × 109. Notably, Penta E emerged as a distinguishing marker for individual identification in the Sikkim population. Fst genetic distance values revealed insights into genetic isolation among different groups, enhancing our understanding of population dynamics in the central Himalayan region. The NJ-based phylogenetic tree highlighted close genetic relationships, of the Sikkim population with the Nepalese population surrounding neighbouring Himalayan populations providing glimpses into common ancestry. In summary, this study contributes valuable data to population genetics and underscores the importance of genetic variation in comprehending population dynamics and forensic applications.
印度拥有丰富的多样性,包括来自不同地理、文化和种族背景的个体。在群体遗传学领域,理解不同群体的遗传多样性起着至关重要的作用。本研究介绍了从印度锡金人口中获得的遗传数据的重要发现。常染色体标记对于评估法证参数至关重要,其综合亲子鉴定指数为 1 × 109。值得注意的是,Penta E 是锡金人种群中用于个体识别的区别性标记。Fst 遗传距离值揭示了不同群体之间的遗传隔离,加深了我们对喜马拉雅中部地区种群动态的了解。基于 NJ 的系统发育树突显了锡金种群与尼泊尔种群之间密切的遗传关系,周围相邻的喜马拉雅种群提供了共同祖先的一瞥。总之,这项研究为种群遗传学提供了宝贵的数据,并强调了遗传变异在理解种群动态和法医应用方面的重要性。
{"title":"Population dynamics and genetic isolation in the Central Himalayan region: insights from Sikkim population, India.","authors":"Gaurav Priyank, Avinash Vahinde, Penny H Niranjan, Vivek Sahajpal, Deepika Bhandari, Ajay S Rana, Satish Kumar, Malay Shukla, Sweta Nidhi, Abhishek Singh","doi":"10.1007/s00438-024-02160-3","DOIUrl":"10.1007/s00438-024-02160-3","url":null,"abstract":"<p><p>India's rich diversity encompasses individuals from varied geographical, cultural, and ethnic backgrounds. In the field of population genetics, comprehending the genetic diversity across distinct populations plays a crucial role. This study presents significant findings from genetic data obtained from the Sikkimese population of India. Autosomal markers were crucial for evaluating forensic parameters, with a combined paternity index of 1 × 10<sup>9</sup>. Notably, Penta E emerged as a distinguishing marker for individual identification in the Sikkim population. Fst genetic distance values revealed insights into genetic isolation among different groups, enhancing our understanding of population dynamics in the central Himalayan region. The NJ-based phylogenetic tree highlighted close genetic relationships, of the Sikkim population with the Nepalese population surrounding neighbouring Himalayan populations providing glimpses into common ancestry. In summary, this study contributes valuable data to population genetics and underscores the importance of genetic variation in comprehending population dynamics and forensic applications.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"67"},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1007/s00438-024-02159-w
Hongrui Chen, Bin Sun, Hongyuan Liu, Wei Gao, Yajing Qiu, Chen Hua, Xiaoxi Lin
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
{"title":"Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians.","authors":"Hongrui Chen, Bin Sun, Hongyuan Liu, Wei Gao, Yajing Qiu, Chen Hua, Xiaoxi Lin","doi":"10.1007/s00438-024-02159-w","DOIUrl":"10.1007/s00438-024-02159-w","url":null,"abstract":"<p><p>PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"66"},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.
P 型 ATP 酶超家族基因是阳离子和磷脂泵,通过水解 ATP 跨膜运输离子。它们参与了多种功能,包括植物生长过程中发生的基本细胞事件,尤其是在生殖器官中。本研究旨在了解和鉴定鸽子豆基因组中的 P 型 ATP 酶及其在花药发育和花粉育性中的潜在作用。鸽子豆基因组中共预测出 59 个 P 型 ATP 酶。系统进化分析将这些ATP酶分为五个亚家族:11个P1B、18个P2A/B、14个P3A、15个P4和1个P5。23 对 P 型 ATP 酶被串联重复,导致它们在鸽子豆基因组中的进化过程中不断扩大。在鸽子豆基因组中搜索了所报道的花药发育相关基因的直向同源物,并通过 qRT-PCR 对特定基因在鸽子豆 AKCMS11A(雄性不育系)、AKCMS11B(保持系)和 AKPR303(生育力恢复系)花药减数分裂前期和后期的表达谱进行了研究。与恢复系和保持系相比,雄性不育系减数分裂后花药中 CcP-typeATPase22 的下调可能是造成花粉不育的原因之一。此外,与雄性不育系相比,CcP-typeATPase2 在雄性不育系恢复系的花药后期以及 CcP-typeATPase46、CcP-typeATPase51 和 CcP-typeATPase52 在雄性不育系的花药后期均有较强的表达,这清楚地表明了它们在鸽子豆雄性生殖器官发育中的潜在作用。
{"title":"Understanding the role of P-type ATPases in regulating pollen fertility and development in pigeonpea.","authors":"Rishu Jain, Harsha Srivastava, Kuldeep Kumar, Sandhya Sharma, Anandita Singh, Kishor Gaikwad","doi":"10.1007/s00438-024-02155-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02155-0","url":null,"abstract":"<p><p>The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"68"},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-07DOI: 10.1007/s00438-024-02158-x
Yanfeng Ji, Junfan Zhao, Jiao Gong, Fritz J Sedlazeck, Shaohua Fan
Background: A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations.
Results: Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution.
Conclusion: Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
{"title":"Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations.","authors":"Yanfeng Ji, Junfan Zhao, Jiao Gong, Fritz J Sedlazeck, Shaohua Fan","doi":"10.1007/s00438-024-02158-x","DOIUrl":"https://doi.org/10.1007/s00438-024-02158-x","url":null,"abstract":"<p><strong>Background: </strong>A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations.</p><p><strong>Results: </strong>Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution.</p><p><strong>Conclusion: </strong>Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"65"},"PeriodicalIF":2.3,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-23DOI: 10.1007/s00438-024-02157-y
Yessine Amri, Rym Dabboubi, Monia Khemiri, Elham Jebabli, Sondess Hadj Fredj, Sarra Ben Ahmed, Yosr Jouini, Faida Ouali, Taieb Messaoud
Familial Hypophosphatasia presents a complex diagnostic challenge due to its wide-ranging clinical manifestations and genetic heterogeneity. This study aims to elucidate the molecular underpinnings of familial Hypophosphatasia within a Tunisian family harboring a rare c.896 T > C mutation in the ALPL gene, offering insights into genotype-phenotype correlations and potential therapeutic avenues. The study employs a comprehensive approach, integrating biochemical examination, genetic analysis, structural modeling, and functional insights to unravel the impact of this rare mutation. Genetic investigation revealed the presence of the p.Leu299Pro mutation within the ALPL gene in affected family members. This mutation is strategically positioned in proximity to both the catalytic site and the metal-binding domain, suggesting potential functional consequences. Homology modeling techniques were employed to predict the 3D structure of TNSALP, providing insights into the structural context of the mutation. Our findings suggest that the mutation may induce conformational changes in the vicinity of the catalytic site and metal-binding domain, potentially affecting substrate recognition and catalytic efficiency. Molecular dynamics simulations were instrumental in elucidating the dynamic behavior of the tissue-nonspecific alkaline phosphatase isozyme (TNSALP) in the presence of the p.Leu299Pro mutation. The simulations indicated alterations in structural flexibility near the mutation site, with potential ramifications for the enzyme's overall stability and function. These dynamic changes may influence the catalytic efficiency of TNSALP, shedding light on the molecular underpinnings of the observed clinical manifestations within the Tunisian family. The clinical presentation of affected individuals highlighted significant phenotypic heterogeneity, underscoring the complex genotype-phenotype correlations in familial Hypophosphatasia. Variability in age of onset, severity of symptoms, and radiographic features was observed, emphasizing the need for a nuanced understanding of the clinical spectrum associated with the p.Leu299Pro mutation. This study advances our understanding of familial Hypophosphatasia by delineating the molecular consequences of the p.Leu299Pro mutation in the ALPL gene. By integrating genetic, structural, and clinical analyses, we provide insights into disease pathogenesis and lay the groundwork for personalized therapeutic strategies tailored to specific genetic profiles. Our findings underscore the importance of comprehensive genetic and clinical evaluation in guiding precision medicine approaches for familial Hypophosphatasia.
{"title":"Catalyzing precision: unraveling the diagnostic conundrum of tunisian familial hypophosphatasia case through integrative clinical and molecular approaches.","authors":"Yessine Amri, Rym Dabboubi, Monia Khemiri, Elham Jebabli, Sondess Hadj Fredj, Sarra Ben Ahmed, Yosr Jouini, Faida Ouali, Taieb Messaoud","doi":"10.1007/s00438-024-02157-y","DOIUrl":"https://doi.org/10.1007/s00438-024-02157-y","url":null,"abstract":"<p><p>Familial Hypophosphatasia presents a complex diagnostic challenge due to its wide-ranging clinical manifestations and genetic heterogeneity. This study aims to elucidate the molecular underpinnings of familial Hypophosphatasia within a Tunisian family harboring a rare c.896 T > C mutation in the ALPL gene, offering insights into genotype-phenotype correlations and potential therapeutic avenues. The study employs a comprehensive approach, integrating biochemical examination, genetic analysis, structural modeling, and functional insights to unravel the impact of this rare mutation. Genetic investigation revealed the presence of the p.Leu299Pro mutation within the ALPL gene in affected family members. This mutation is strategically positioned in proximity to both the catalytic site and the metal-binding domain, suggesting potential functional consequences. Homology modeling techniques were employed to predict the 3D structure of TNSALP, providing insights into the structural context of the mutation. Our findings suggest that the mutation may induce conformational changes in the vicinity of the catalytic site and metal-binding domain, potentially affecting substrate recognition and catalytic efficiency. Molecular dynamics simulations were instrumental in elucidating the dynamic behavior of the tissue-nonspecific alkaline phosphatase isozyme (TNSALP) in the presence of the p.Leu299Pro mutation. The simulations indicated alterations in structural flexibility near the mutation site, with potential ramifications for the enzyme's overall stability and function. These dynamic changes may influence the catalytic efficiency of TNSALP, shedding light on the molecular underpinnings of the observed clinical manifestations within the Tunisian family. The clinical presentation of affected individuals highlighted significant phenotypic heterogeneity, underscoring the complex genotype-phenotype correlations in familial Hypophosphatasia. Variability in age of onset, severity of symptoms, and radiographic features was observed, emphasizing the need for a nuanced understanding of the clinical spectrum associated with the p.Leu299Pro mutation. This study advances our understanding of familial Hypophosphatasia by delineating the molecular consequences of the p.Leu299Pro mutation in the ALPL gene. By integrating genetic, structural, and clinical analyses, we provide insights into disease pathogenesis and lay the groundwork for personalized therapeutic strategies tailored to specific genetic profiles. Our findings underscore the importance of comprehensive genetic and clinical evaluation in guiding precision medicine approaches for familial Hypophosphatasia.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"64"},"PeriodicalIF":2.3,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s00438-024-02154-1
Sachin Kumar, Prajjval Pratap Singh, Nagarjuna Pasupuleti, Shivanand S Shendre, Jaison Jeevan Sequeira, Idrees Babu, Mohammed S Mustak, Niraj Rai, Gyaneshwer Chaubey
{"title":"Correction: Genetic evidence for a single founding population of the Lakshadweep Islands.","authors":"Sachin Kumar, Prajjval Pratap Singh, Nagarjuna Pasupuleti, Shivanand S Shendre, Jaison Jeevan Sequeira, Idrees Babu, Mohammed S Mustak, Niraj Rai, Gyaneshwer Chaubey","doi":"10.1007/s00438-024-02154-1","DOIUrl":"https://doi.org/10.1007/s00438-024-02154-1","url":null,"abstract":"","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"63"},"PeriodicalIF":2.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1007/s00438-024-02153-2
Yu-Lin Ko, Wei-Lun Tuan, Ming-Sheng Teng, Wei-Chih Su, Chia-Chi Wang, Leay-Kiaw Er, Semon Wu, Lung-An Hsu
Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter, plays a crucial role in regulating bile acid levels and influencing the risk of HBV infection. Genetic variations in the SLC10A1 gene, which encodes NTCP, affect these functions. However, the impact of SLC10A1 gene variants on the metabolic and biochemical traits remained unclear. We aimed to investigate the association of SLC10A1 gene variants with the clinical and biochemical parameters, and the risk of different HBV infection statuses and gallstone disease in the Taiwanese population. Genotyping data from 117,679 Taiwan Biobank participants were analyzed using the Axiom genome-wide CHB arrays. Regional-plot association analysis demonstrated genome-wide significant association between the SLC10A1 rs2296651 genotypes and lipid profile, gamma glutamyl transferase (γGT) level and anti-HBc-positivity. Genotype-phenotype association analyses revealed significantly lower total cholesterol, low-density lipoprotein (LDL) cholesterol and uric acid levels, a higher γGT level and a higher gallstone incidence in rare rs2296651-A allele carrier. Participants with the rs2296651 AA-genotype exhibited significantly lower rates of anti-HBc-positivity and HBsAg-positivity. Compared to those with the GG-genotype, individuals with non-GG-genotypes had reduced risks for various HBV infection statuses: the AA-genotype showed substantially lower risks, while the GA-genotype demonstrated modestly lower risks. Predictive tools also suggested that the rs2296651 variant potentially induced protein damage and pathogenic effects. In conclusion, our data revealed pleiotropic effects of the SLC10A1 rs2296651 genotypes on the levels of biochemical traits and the risk of HBV infection and gallstone disease. This confirms SLC10A1's versatility and implicates its genotypes in predicting both biochemical traits and disease susceptibility.
{"title":"SLC10A1 rs2296651 variant (S267F mutation) predicts biochemical traits, hepatitis B virus infection susceptibility and the risk of gallstone disease.","authors":"Yu-Lin Ko, Wei-Lun Tuan, Ming-Sheng Teng, Wei-Chih Su, Chia-Chi Wang, Leay-Kiaw Er, Semon Wu, Lung-An Hsu","doi":"10.1007/s00438-024-02153-2","DOIUrl":"10.1007/s00438-024-02153-2","url":null,"abstract":"<p><p>Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter, plays a crucial role in regulating bile acid levels and influencing the risk of HBV infection. Genetic variations in the SLC10A1 gene, which encodes NTCP, affect these functions. However, the impact of SLC10A1 gene variants on the metabolic and biochemical traits remained unclear. We aimed to investigate the association of SLC10A1 gene variants with the clinical and biochemical parameters, and the risk of different HBV infection statuses and gallstone disease in the Taiwanese population. Genotyping data from 117,679 Taiwan Biobank participants were analyzed using the Axiom genome-wide CHB arrays. Regional-plot association analysis demonstrated genome-wide significant association between the SLC10A1 rs2296651 genotypes and lipid profile, gamma glutamyl transferase (γGT) level and anti-HBc-positivity. Genotype-phenotype association analyses revealed significantly lower total cholesterol, low-density lipoprotein (LDL) cholesterol and uric acid levels, a higher γGT level and a higher gallstone incidence in rare rs2296651-A allele carrier. Participants with the rs2296651 AA-genotype exhibited significantly lower rates of anti-HBc-positivity and HBsAg-positivity. Compared to those with the GG-genotype, individuals with non-GG-genotypes had reduced risks for various HBV infection statuses: the AA-genotype showed substantially lower risks, while the GA-genotype demonstrated modestly lower risks. Predictive tools also suggested that the rs2296651 variant potentially induced protein damage and pathogenic effects. In conclusion, our data revealed pleiotropic effects of the SLC10A1 rs2296651 genotypes on the levels of biochemical traits and the risk of HBV infection and gallstone disease. This confirms SLC10A1's versatility and implicates its genotypes in predicting both biochemical traits and disease susceptibility.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"62"},"PeriodicalIF":2.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1007/s00438-024-02147-0
Felipe Pinheiro Vilela, Dália Dos Prazeres Rodrigues, Marc William Allard, Juliana Pfrimer Falcão
Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.
{"title":"CRISPR and CRISPR-MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries.","authors":"Felipe Pinheiro Vilela, Dália Dos Prazeres Rodrigues, Marc William Allard, Juliana Pfrimer Falcão","doi":"10.1007/s00438-024-02147-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02147-0","url":null,"abstract":"<p><p>Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"61"},"PeriodicalIF":3.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}