首页 > 最新文献

Nature Catalysis最新文献

英文 中文
Reaching out
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01297-7
This Editorial provides a few highlights from the present issue of Nature Catalysis and reflects on some of the achievements from the editorial team in 2024.
{"title":"Reaching out","authors":"","doi":"10.1038/s41929-025-01297-7","DOIUrl":"10.1038/s41929-025-01297-7","url":null,"abstract":"This Editorial provides a few highlights from the present issue of Nature Catalysis and reflects on some of the achievements from the editorial team in 2024.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"1-1"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01297-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic catalysis meets radical coupling
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01290-0
Chenyu Wang
{"title":"Enzymatic catalysis meets radical coupling","authors":"Chenyu Wang","doi":"10.1038/s41929-025-01290-0","DOIUrl":"10.1038/s41929-025-01290-0","url":null,"abstract":"","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"8-8"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01275-5
Christoph Scheurer, Karsten Reuter
Self-driving laboratories (SDLs) represent a cutting-edge convergence of machine learning with laboratory automation. SDLs operate in active learning loops, in which a machine learning algorithm plans experiments that are subsequently executed by increasingly automated (robotic) modules. Here we present our view on emerging SDLs for accelerated discovery and process optimization in heterogeneous catalysis. We argue against the paradigm of full automation and the goal of keeping the human out of the loop. Based on analysis of the involved workflows, we instead conclude that crucial advances will come from establishing fast proxy experiments and re-engineering existing apparatuses and measurement protocols. Industrially relevant use cases will also require humans to be kept in the loop for continuous decision-making. In turn, active learning algorithms will have to be advanced that can flexibly deal with corresponding adaptations of the design space and varying information content and noise in the acquired data. Uses of machine learning and automation are increasing and these techniques are becoming popular in catalysis research. This Perspective discusses how active learning workflows and human intervention should be optimized to ensure the most efficient progress for emerging self-driving laboratories performing heterogeneous catalysis research.
{"title":"Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis","authors":"Christoph Scheurer, Karsten Reuter","doi":"10.1038/s41929-024-01275-5","DOIUrl":"10.1038/s41929-024-01275-5","url":null,"abstract":"Self-driving laboratories (SDLs) represent a cutting-edge convergence of machine learning with laboratory automation. SDLs operate in active learning loops, in which a machine learning algorithm plans experiments that are subsequently executed by increasingly automated (robotic) modules. Here we present our view on emerging SDLs for accelerated discovery and process optimization in heterogeneous catalysis. We argue against the paradigm of full automation and the goal of keeping the human out of the loop. Based on analysis of the involved workflows, we instead conclude that crucial advances will come from establishing fast proxy experiments and re-engineering existing apparatuses and measurement protocols. Industrially relevant use cases will also require humans to be kept in the loop for continuous decision-making. In turn, active learning algorithms will have to be advanced that can flexibly deal with corresponding adaptations of the design space and varying information content and noise in the acquired data. Uses of machine learning and automation are increasing and these techniques are becoming popular in catalysis research. This Perspective discusses how active learning workflows and human intervention should be optimized to ensure the most efficient progress for emerging self-driving laboratories performing heterogeneous catalysis research.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"13-19"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clarifying cation control
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01284-4
Michael J. Janik
Carbon dioxide electrocatalytic reduction rates are strongly impacted by the choice of electrolyte, but most studies have focused on aqueous systems. It is now reported that in non-aqueous solvents, smaller alkylammonium cations better stabilize the CO2δ– transition state on Ag electrodes.
{"title":"Clarifying cation control","authors":"Michael J. Janik","doi":"10.1038/s41929-024-01284-4","DOIUrl":"10.1038/s41929-024-01284-4","url":null,"abstract":"Carbon dioxide electrocatalytic reduction rates are strongly impacted by the choice of electrolyte, but most studies have focused on aqueous systems. It is now reported that in non-aqueous solvents, smaller alkylammonium cations better stabilize the CO2δ– transition state on Ag electrodes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"9-10"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular basis of activity changes in acid catalysis within nanoconfined water
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01296-8
The behaviour of nanoconfined water can be very different from that of the bulk and is challenging to understand at a molecular level. Now, molecular simulations and kinetic experiments provide insight into the increased activity of hydronium ions in water nanoconfined within zeolite pores.
{"title":"Molecular basis of activity changes in acid catalysis within nanoconfined water","authors":"","doi":"10.1038/s41929-025-01296-8","DOIUrl":"10.1038/s41929-025-01296-8","url":null,"abstract":"The behaviour of nanoconfined water can be very different from that of the bulk and is challenging to understand at a molecular level. Now, molecular simulations and kinetic experiments provide insight into the increased activity of hydronium ions in water nanoconfined within zeolite pores.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"11-12"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-driven decentralized production of essential chemicals
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01283-5
Maria L. Carreon
Non-thermal plasma offers a remarkable alternative to traditional catalysis methods, meeting the rising demands for essential chemicals like fertilizers and fuels. This Comment explores how this approach can support sustainability goals by promoting economic growth, and decentralizing chemical production processes.
{"title":"Plasma-driven decentralized production of essential chemicals","authors":"Maria L. Carreon","doi":"10.1038/s41929-024-01283-5","DOIUrl":"10.1038/s41929-024-01283-5","url":null,"abstract":"Non-thermal plasma offers a remarkable alternative to traditional catalysis methods, meeting the rising demands for essential chemicals like fertilizers and fuels. This Comment explores how this approach can support sustainability goals by promoting economic growth, and decentralizing chemical production processes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"2-7"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-28 DOI: 10.1038/s41929-024-01281-7
Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li
Haem peroxygenases are attractive biocatalysts for incorporating oxygen into organic molecules using H2O2. However, their practical applications are hindered by irreversible oxidative inactivation due to exogenous H2O2 usage. Here we present an alternative catalytic route in haem peroxygenases that uses O2 and small-molecule reductants such as ascorbic acid and dehydroascorbic acid (DHA) to drive reactions. Our experimental and computational studies indicated that DHAA, the hydrated form of DHA, serves as the key co-substrate that activates oxygen to generate the active oxyferryl haem compound I. We also demonstrate the broad applicability of this O2/reductant-dependent route across various haem peroxygenases, highlighting its biological significance for mono-oxygenase functionality. Importantly, this innovative route avoids the use of H2O2, thereby preventing the risk of irreversible enzyme inactivation. Finally, scaled-up reactions yielded chiral, value-added products with excellent productivity, underscoring the synthetic potential of this developed peroxygenase technology for sustainable chemical transformations. H2O2-dependent haem-peroxygenase-catalysed C–H bond oxyfunctionalization reactions have attracted much attention, but elevated concentrations of H2O2 are detrimental to the enzyme. Now, it is reported that this biocatalyst can operate via an alternative pathway using O2 and small-molecule reductants.
{"title":"An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications","authors":"Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li","doi":"10.1038/s41929-024-01281-7","DOIUrl":"10.1038/s41929-024-01281-7","url":null,"abstract":"Haem peroxygenases are attractive biocatalysts for incorporating oxygen into organic molecules using H2O2. However, their practical applications are hindered by irreversible oxidative inactivation due to exogenous H2O2 usage. Here we present an alternative catalytic route in haem peroxygenases that uses O2 and small-molecule reductants such as ascorbic acid and dehydroascorbic acid (DHA) to drive reactions. Our experimental and computational studies indicated that DHAA, the hydrated form of DHA, serves as the key co-substrate that activates oxygen to generate the active oxyferryl haem compound I. We also demonstrate the broad applicability of this O2/reductant-dependent route across various haem peroxygenases, highlighting its biological significance for mono-oxygenase functionality. Importantly, this innovative route avoids the use of H2O2, thereby preventing the risk of irreversible enzyme inactivation. Finally, scaled-up reactions yielded chiral, value-added products with excellent productivity, underscoring the synthetic potential of this developed peroxygenase technology for sustainable chemical transformations. H2O2-dependent haem-peroxygenase-catalysed C–H bond oxyfunctionalization reactions have attracted much attention, but elevated concentrations of H2O2 are detrimental to the enzyme. Now, it is reported that this biocatalyst can operate via an alternative pathway using O2 and small-molecule reductants.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"20-32"},"PeriodicalIF":42.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ electrochemical production of solid peroxide from urine 用尿液原位电化学生产固体过氧化物
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-20 DOI: 10.1038/s41929-024-01277-3
Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng
The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value. The extraction of urea is an important part of wastewater purification and a potential source of valuable fixed nitrogen. Here the authors combine electrocatalytic oxygen reduction with precipitation of urea from urine in the form of a solid peroxide (percarbamide) and demonstrate several potential applications.
在温和条件下从尿液中选择性提取尿素是城市污水处理的必要条件。在这里,我们设计了一种原位电化学技术,将尿素,一种富含氮的废物,转化为过尿素,尿素的结晶过氧化物衍生物。这一过程同时促进了尿液的处理,并将废物转化为有价值的产品。该系统使用经过优化的活性位点和结构的改性石墨碳基催化剂,固化过氧化氢并加速尿素转化。温度和尿素浓度的精确控制进一步提高了催化性能。优化后的工艺在人类和哺乳动物尿液中都能达到近100%的过脲沉淀纯度。所收集的过氨基脲在各个领域显示出显著的应用潜力。该方法建立了一个生产、利用和回收的闭环系统,为大规模尿液处理提供了一个可扩展的解决方案,具有重要的经济和环境价值。
{"title":"In situ electrochemical production of solid peroxide from urine","authors":"Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng","doi":"10.1038/s41929-024-01277-3","DOIUrl":"10.1038/s41929-024-01277-3","url":null,"abstract":"The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value. The extraction of urea is an important part of wastewater purification and a potential source of valuable fixed nitrogen. Here the authors combine electrocatalytic oxygen reduction with precipitation of urea from urine in the form of a solid peroxide (percarbamide) and demonstrate several potential applications.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"67-78"},"PeriodicalIF":42.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water 水催化n -杂芳烃一步合成内酰胺的氢化氧化策略
IF 37.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-20 DOI: 10.1038/s41929-024-01286-2
Yaoyu Liang, Jie Luo, Cai You, Yael Diskin-Posner, David Milstein

Using water as a hydrogen or oxygen source in organic synthesis has enabled various reductive and oxidative transformations, but incorporation of both hydrogen and oxygen atoms into the same molecule, representing an atom-economic and environmentally benign process, has scarcely been explored. Here we report a hydrogenative oxidation strategy using water as both a source of H2 and formal oxidant, enabling the direct synthesis of lactams from N-heteroarenes and thereby eliminating the need for additional reductants and oxidants and minimizing waste generation. The reaction can be initiated either under low H2 pressure or with a catalytic amount of H2, leading to the efficient transformation of various N-heteroarenes into lactams in excellent yield thanks to an in situ-generated, piperidine-based, ruthenium pincer complex that balances the hydrogenation and dehydrogenation processes. This study will promote the design of other hydrogenative oxidation reactions using water.

在有机合成中使用水作为氢或氧源已经实现了各种还原和氧化转化,但是将氢原子和氧原子结合到同一个分子中,这是一种原子经济和环境友好的过程,很少被探索。在这里,我们报道了一种氢化氧化策略,利用水作为H2和形式氧化剂的来源,使n -杂芳烃直接合成内酰胺,从而消除了对额外还原剂和氧化剂的需要,并最大限度地减少了废物的产生。该反应既可以在低H2压力下启动,也可以在催化量的H2下启动,由于现场生成的基于哌替啶的钌螯合物平衡了加氢和脱氢过程,导致各种n -杂芳烃高效转化为内酰胺,收率很高。该研究将促进其他用水加氢氧化反应的设计。
{"title":"A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water","authors":"Yaoyu Liang, Jie Luo, Cai You, Yael Diskin-Posner, David Milstein","doi":"10.1038/s41929-024-01286-2","DOIUrl":"https://doi.org/10.1038/s41929-024-01286-2","url":null,"abstract":"<p>Using water as a hydrogen or oxygen source in organic synthesis has enabled various reductive and oxidative transformations, but incorporation of both hydrogen and oxygen atoms into the same molecule, representing an atom-economic and environmentally benign process, has scarcely been explored. Here we report a hydrogenative oxidation strategy using water as both a source of H<sub>2</sub> and formal oxidant, enabling the direct synthesis of lactams from <i>N</i>-heteroarenes and thereby eliminating the need for additional reductants and oxidants and minimizing waste generation. The reaction can be initiated either under low H<sub>2</sub> pressure or with a catalytic amount of H<sub>2</sub>, leading to the efficient transformation of various <i>N</i>-heteroarenes into lactams in excellent yield thanks to an in situ-generated, piperidine-based, ruthenium pincer complex that balances the hydrogenation and dehydrogenation processes. This study will promote the design of other hydrogenative oxidation reactions using water.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"31 1","pages":""},"PeriodicalIF":37.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics Pt(111)/全氟磺酸离聚体界面阳离子-电子耦合转移及其对氧还原反应动力学的影响
IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-13 DOI: 10.1038/s41929-024-01279-1
Kaiyue Zhao, Mingchuan Luo, Yongfan Zhang, Xiaoxia Chang, Bingjun Xu
Electrochemical interfaces between polymer electrolytes and electrodes are central to electrochemical devices in the global transition towards renewable energy. Here we show that the adsorption and desorption of sulfonates in Nafion on Pt(111) involve distinct elementary steps, with the latter proceeding through a coupled cation–electron transfer. Adsorbed sulfonates not only block a fraction of surface Pt sites but, more importantly, generate two additional types of surface adsorbate, OHNafion and ONafion, which exhibit distinct kinetic properties from adsorbed OH and O on bare Pt(111), respectively. The impact of the adsorption of sulfonate groups in Nafion on the activity of the oxygen reduction reaction (ORR) on Pt cannot be rationalized by existing thermodynamic descriptors. The reduced ORR activity on the Nafion-covered Pt(111) is caused by the kinetically hindered *O→*OH conversion and *OH reduction on sites close to adsorbed sulfonates. The understanding of electrochemical interfaces between polymer electrolytes and metal electrodes, which is critical to many practical devices, remains limited. Now, the interaction between Nafion’s sulfonate groups and platinum and its impact on the oxygen reduction reaction is studied in detail, and a distinct coupled cation–electron transfer mechanism is identified.
聚合物电解质和电极之间的电化学界面是全球向可再生能源过渡的电化学装置的核心。在这里,我们证明了磺酸盐在Pt(111)上的吸附和解吸涉及不同的基本步骤,后者通过一个耦合的阳离子-电子转移进行。吸附的磺酸盐不仅阻断了部分表面Pt位点,更重要的是,还生成了两种额外的表面吸附物,OHNafion和ONafion,它们分别与裸Pt(111)上吸附的OH和O表现出不同的动力学性质。现有的热力学描述符无法解释Nafion中磺酸基对Pt上氧还原反应(ORR)活性的影响。Pt(111)表面的ORR活性降低是由于吸附的磺酸盐附近的*O→*OH转化和*OH还原受到动力学阻碍所致。
{"title":"Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics","authors":"Kaiyue Zhao,&nbsp;Mingchuan Luo,&nbsp;Yongfan Zhang,&nbsp;Xiaoxia Chang,&nbsp;Bingjun Xu","doi":"10.1038/s41929-024-01279-1","DOIUrl":"10.1038/s41929-024-01279-1","url":null,"abstract":"Electrochemical interfaces between polymer electrolytes and electrodes are central to electrochemical devices in the global transition towards renewable energy. Here we show that the adsorption and desorption of sulfonates in Nafion on Pt(111) involve distinct elementary steps, with the latter proceeding through a coupled cation–electron transfer. Adsorbed sulfonates not only block a fraction of surface Pt sites but, more importantly, generate two additional types of surface adsorbate, OHNafion and ONafion, which exhibit distinct kinetic properties from adsorbed OH and O on bare Pt(111), respectively. The impact of the adsorption of sulfonate groups in Nafion on the activity of the oxygen reduction reaction (ORR) on Pt cannot be rationalized by existing thermodynamic descriptors. The reduced ORR activity on the Nafion-covered Pt(111) is caused by the kinetically hindered *O→*OH conversion and *OH reduction on sites close to adsorbed sulfonates. The understanding of electrochemical interfaces between polymer electrolytes and metal electrodes, which is critical to many practical devices, remains limited. Now, the interaction between Nafion’s sulfonate groups and platinum and its impact on the oxygen reduction reaction is studied in detail, and a distinct coupled cation–electron transfer mechanism is identified.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"46-57"},"PeriodicalIF":42.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1