Multicomponent cross-coupling reactions involving alkenes represent a compelling strategy for accessing three-dimensional molecules, a key pursuit in contemporary medicinal chemistry. Transition metal-catalysed processes predominantly necessitate the use of conjugated alkenes or non-activated alkenes equipped with specific auxiliary functional groups, for example, 8-aminoquinoline. However, it remains a huge challenge to directly use unmodified native functional groups, such as alcohols and ethers, as directing groups. Here, by utilizing an anionic bidentate ligand such as acac, we have successfully addressed the challenge of employing weakly coordinating native functional groups as directing groups in a nickel-catalysed cross-coupling of non-activated alkenes. This reaction enables the simultaneous introduction of an sp2 fragment and an sp3 fragment to two carbons of the alkenes with high chemo- and regioselectivity. This work demonstrates the advantages and potential of anionic bidentate ligands in the cross-coupling of non-activated alkenes.
{"title":"Overcoming limitations in non-activated alkene cross-coupling with nickel catalysis and anionic ligands","authors":"Dong Wu, Weiyu Kong, Yang Bao, Chengmi Huang, Wei Liu, Yuqiang Li, Guoyin Yin","doi":"10.1038/s41929-024-01211-7","DOIUrl":"https://doi.org/10.1038/s41929-024-01211-7","url":null,"abstract":"<p>Multicomponent cross-coupling reactions involving alkenes represent a compelling strategy for accessing three-dimensional molecules, a key pursuit in contemporary medicinal chemistry. Transition metal-catalysed processes predominantly necessitate the use of conjugated alkenes or non-activated alkenes equipped with specific auxiliary functional groups, for example, 8-aminoquinoline. However, it remains a huge challenge to directly use unmodified native functional groups, such as alcohols and ethers, as directing groups. Here, by utilizing an anionic bidentate ligand such as acac, we have successfully addressed the challenge of employing weakly coordinating native functional groups as directing groups in a nickel-catalysed cross-coupling of non-activated alkenes. This reaction enables the simultaneous introduction of an <i>sp</i><sup>2</sup> fragment and an <i>sp</i><sup>3</sup> fragment to two carbons of the alkenes with high chemo- and regioselectivity. This work demonstrates the advantages and potential of anionic bidentate ligands in the cross-coupling of non-activated alkenes.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"40 1","pages":""},"PeriodicalIF":37.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1038/s41929-024-01206-4
Ricardo I. Rodríguez, Vasco Corti, Lorenzo Rizzo, Stefano Visentini, Marco Bortolus, Agnese Amati, Mirco Natali, Giorgio Pelosi, Paolo Costa, Luca Dell’Amico
The increasing popularity of four-member rings in drug discovery has prompted the synthetic chemistry community to advance and reinvent old strategies to craft these structures. Recently, the strain-release concept has been used to build complex architectures. However, although there are many strategies for accessing small carbocyclic derivatives, the synthesis of azetidines remains underdeveloped. Here we report a photocatalytic radical strategy for accessing densely functionalized azetidines from azabicyclo[1.1.0]butanes. The protocol operates with an organic photosensitizer, which finely controls the key energy-transfer process with distinct types of sulfonyl imines. The radical intermediates are intercepted by the azabicyclo[1.1.0]butanes via a radical strain-release process, providing access to difunctionalized azetidines in a single step. This radical process is revealed by a combination of spectroscopic and optical techniques and density functional theory calculations. The power and generality of this method is illustrated with the synthesis of various azetidine targets, including derivatives of celecoxib and naproxen.
{"title":"Radical strain-release photocatalysis for the synthesis of azetidines","authors":"Ricardo I. Rodríguez, Vasco Corti, Lorenzo Rizzo, Stefano Visentini, Marco Bortolus, Agnese Amati, Mirco Natali, Giorgio Pelosi, Paolo Costa, Luca Dell’Amico","doi":"10.1038/s41929-024-01206-4","DOIUrl":"https://doi.org/10.1038/s41929-024-01206-4","url":null,"abstract":"<p>The increasing popularity of four-member rings in drug discovery has prompted the synthetic chemistry community to advance and reinvent old strategies to craft these structures. Recently, the strain-release concept has been used to build complex architectures. However, although there are many strategies for accessing small carbocyclic derivatives, the synthesis of azetidines remains underdeveloped. Here we report a photocatalytic radical strategy for accessing densely functionalized azetidines from azabicyclo[1.1.0]butanes. The protocol operates with an organic photosensitizer, which finely controls the key energy-transfer process with distinct types of sulfonyl imines. The radical intermediates are intercepted by the azabicyclo[1.1.0]butanes via a radical strain-release process, providing access to difunctionalized azetidines in a single step. This radical process is revealed by a combination of spectroscopic and optical techniques and density functional theory calculations. The power and generality of this method is illustrated with the synthesis of various azetidine targets, including derivatives of celecoxib and naproxen.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"33 1","pages":""},"PeriodicalIF":37.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1038/s41929-024-01209-1
Zhiheng Li, Gaoxin Lin, Linqin Wang, Husileng Lee, Jian Du, Tang Tang, Guoheng Ding, Rong Ren, Wenlong Li, Xing Cao, Shiwen Ding, Wentao Ye, Wenxing Yang, Licheng Sun
Alkaline oxygen evolution reaction is critical for green hydrogen production from water electrolysis but encounters great challenges when operated at industry-required ampere-scale current densities, such as insufficient mass transfer, reduced catalytic activity and limited lifetimes. Here we develop a one-step seed-assisted heterogeneous nucleation method (25 °C, 24 h) for producing a nickel–iron-based electrocatalyst (CAPist-L1, where CAP refers to the centre of artificial photosynthesis) for robust oxygen evolution reaction at ≥1,000 mA cm−2. Based on the insoluble nanoparticles in the heterogeneous nucleation system, a dense interlayer is formed that anchors the catalyst layer tightly on the substrate, ensuring stable long-term durability of 15,200 h (>21 months) in 1 M KOH at 1,000 mA cm−2. When applying CAPist-L1 as the anode catalyst in practical anion exchange membrane water electrolysis, it delivers a high activity of 7,350 mA cm−2 at 2.0 V and good stability at 1,000 mA cm−2 for 1,500 h at 80 °C. Anion exchange membrane water electrolysis is a promising technology for H2 production using precious metal-free catalysts, but certain hurdles persist for its broad deployment such as the operational stability of its anode catalyst. Now a seed-assisted heterogeneous nucleation method is put forward to prepare a NiFe catalyst with high activity and a stability of over 21 months at 1 A cm−2.
碱性氧进化反应对于电解水制取绿色氢气至关重要,但在工业要求的安培级电流密度下运行时会遇到巨大挑战,例如传质不足、催化活性降低和寿命有限。在此,我们开发了一种一步种子辅助异质成核法(25 °C,24 小时),用于生产镍-铁基电催化剂(CAPist-L1,CAP 指人工光合作用中心),在 ≥1,000 mA cm-2 的条件下进行强效氧进化反应。基于异质成核系统中的不溶性纳米颗粒,形成了致密的夹层,将催化剂层紧紧固定在基底上,确保了在 1 M KOH 中于 1,000 mA cm-2 下 15,200 小时(21 个月)的长期稳定耐久性。将 CAPist-L1 用作实用阴离子交换膜电解水的阳极催化剂时,它在 2.0 V 电压下的活性高达 7,350 mA cm-2,在 1,000 mA cm-2 温度下的稳定性也很好,在 80 °C 下可持续 1,500 小时。
{"title":"Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density","authors":"Zhiheng Li, Gaoxin Lin, Linqin Wang, Husileng Lee, Jian Du, Tang Tang, Guoheng Ding, Rong Ren, Wenlong Li, Xing Cao, Shiwen Ding, Wentao Ye, Wenxing Yang, Licheng Sun","doi":"10.1038/s41929-024-01209-1","DOIUrl":"10.1038/s41929-024-01209-1","url":null,"abstract":"Alkaline oxygen evolution reaction is critical for green hydrogen production from water electrolysis but encounters great challenges when operated at industry-required ampere-scale current densities, such as insufficient mass transfer, reduced catalytic activity and limited lifetimes. Here we develop a one-step seed-assisted heterogeneous nucleation method (25 °C, 24 h) for producing a nickel–iron-based electrocatalyst (CAPist-L1, where CAP refers to the centre of artificial photosynthesis) for robust oxygen evolution reaction at ≥1,000 mA cm−2. Based on the insoluble nanoparticles in the heterogeneous nucleation system, a dense interlayer is formed that anchors the catalyst layer tightly on the substrate, ensuring stable long-term durability of 15,200 h (>21 months) in 1 M KOH at 1,000 mA cm−2. When applying CAPist-L1 as the anode catalyst in practical anion exchange membrane water electrolysis, it delivers a high activity of 7,350 mA cm−2 at 2.0 V and good stability at 1,000 mA cm−2 for 1,500 h at 80 °C. Anion exchange membrane water electrolysis is a promising technology for H2 production using precious metal-free catalysts, but certain hurdles persist for its broad deployment such as the operational stability of its anode catalyst. Now a seed-assisted heterogeneous nucleation method is put forward to prepare a NiFe catalyst with high activity and a stability of over 21 months at 1 A cm−2.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 8","pages":"944-952"},"PeriodicalIF":42.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1038/s41929-024-01207-3
Liang-Wen Qi, Torben Rogge, K. N. Houk, Yixin Lu
Direct arene C−H functionalization via nucleophilic aromatic substitution remains a challenging task. Here we report an iridium nitrenoid-catalysed arene C−H functionalization strategy, making use of readily available aryl azides as electrophiles to react with different nucleophilic reaction partners. The practicality of this methodology is demonstrated by enantioselective synthesis of chiral 2-amino-2′-hydroxy-1,1′-binaphthyl, a class of building blocks, ligands and catalysts in asymmetric transformation, using β-naphthols and β-naphthyl azides as starting materials under the catalysis of a tailored oxazoline-chelated iridium complex. Mechanistic studies and density functional theory calculations show that the reaction proceeds through an iridium nitrenoid-mediated C−H functionalization pathway. The reported arene C−H functionalization strategy serves as a blueprint to expand the applicability of nucleophilic aromatic substitution reactions and is particularly valuable for the synthesis of aniline-containing molecules. Effective strategies for direct arene C−H functionalization are sought after. Here arene C−H functionalization via iridium nitrenoid-catalysed nucleophilic aromatic substitution allows the coupling of aryl azides with different carbon nucleophiles and is applied to the enantioselective synthesis of NOBINs
{"title":"Iridium nitrenoid-enabled arene C−H functionalization","authors":"Liang-Wen Qi, Torben Rogge, K. N. Houk, Yixin Lu","doi":"10.1038/s41929-024-01207-3","DOIUrl":"10.1038/s41929-024-01207-3","url":null,"abstract":"Direct arene C−H functionalization via nucleophilic aromatic substitution remains a challenging task. Here we report an iridium nitrenoid-catalysed arene C−H functionalization strategy, making use of readily available aryl azides as electrophiles to react with different nucleophilic reaction partners. The practicality of this methodology is demonstrated by enantioselective synthesis of chiral 2-amino-2′-hydroxy-1,1′-binaphthyl, a class of building blocks, ligands and catalysts in asymmetric transformation, using β-naphthols and β-naphthyl azides as starting materials under the catalysis of a tailored oxazoline-chelated iridium complex. Mechanistic studies and density functional theory calculations show that the reaction proceeds through an iridium nitrenoid-mediated C−H functionalization pathway. The reported arene C−H functionalization strategy serves as a blueprint to expand the applicability of nucleophilic aromatic substitution reactions and is particularly valuable for the synthesis of aniline-containing molecules. Effective strategies for direct arene C−H functionalization are sought after. Here arene C−H functionalization via iridium nitrenoid-catalysed nucleophilic aromatic substitution allows the coupling of aryl azides with different carbon nucleophiles and is applied to the enantioselective synthesis of NOBINs","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 8","pages":"934-943"},"PeriodicalIF":42.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While electrochemical nitrate reduction to ammonia represents a promising route for water treatment and ammonia generation, one critical challenge in the field is the need for high-concentration supporting electrolytes in this electrochemical system. Here we report a three-chamber porous solid electrolyte reactor design coupled with cation shielding effects for efficient nitrate reduction reaction without supporting electrolytes. By feeding treated water from the cathode chamber to the middle porous solid electrolyte layer, we can realize an alkali metal cation shuttling loop from the middle layer back into the cathode chamber to boost the nitrate reduction selectivity and suppress the hydrogen evolution side reaction. This reactor system can deliver high ammonia Faradaic efficiencies (>90%) at practical current densities (>100 mA cm−2) under a typical wastewater nitrate concentration of 2,000 ppm, enabling a high-purity water effluent and NH3(g) as products with no need for electrolyte recovery processes. Electrocatalysis offers a route to improving the treatment of wastewater, yet the need for supporting electrolytes complicates the purification of products. Here a cell is designed based on a porous solid electrolyte layer with a cation shuttling strategy that allows direct conversion of nitrate-containing wastewater into NH3(g) and purified water.
虽然电化学硝酸盐还原成氨是水处理和合成氨的一条很有前景的途径,但该领域的一个关键挑战是这种电化学系统需要高浓度的支撑电解质。在此,我们报告了一种三室多孔固体电解质反应器设计,该设计与阳离子屏蔽效应相结合,可在无支撑电解质的情况下进行高效硝酸盐还原反应。通过将处理过的水从阴极室送入中间多孔固体电解质层,我们可以实现碱金属阳离子从中间层穿梭回阴极室的循环,从而提高硝酸盐还原选择性并抑制氢演化副反应。该反应器系统可在典型废水硝酸盐浓度为 2,000 ppm 的情况下,以实用的电流密度(100 mA cm-2)提供较高的氨法拉第效率(90%),从而无需电解质回收过程即可获得高纯度的出水和 NH3(g)产品。
{"title":"Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor","authors":"Feng-Yang Chen, Ahmad Elgazzar, Stephanie Pecaut, Chang Qiu, Yuge Feng, Sushanth Ashokkumar, Zhou Yu, Chase Sellers, Shaoyun Hao, Peng Zhu, Haotian Wang","doi":"10.1038/s41929-024-01200-w","DOIUrl":"10.1038/s41929-024-01200-w","url":null,"abstract":"While electrochemical nitrate reduction to ammonia represents a promising route for water treatment and ammonia generation, one critical challenge in the field is the need for high-concentration supporting electrolytes in this electrochemical system. Here we report a three-chamber porous solid electrolyte reactor design coupled with cation shielding effects for efficient nitrate reduction reaction without supporting electrolytes. By feeding treated water from the cathode chamber to the middle porous solid electrolyte layer, we can realize an alkali metal cation shuttling loop from the middle layer back into the cathode chamber to boost the nitrate reduction selectivity and suppress the hydrogen evolution side reaction. This reactor system can deliver high ammonia Faradaic efficiencies (>90%) at practical current densities (>100 mA cm−2) under a typical wastewater nitrate concentration of 2,000 ppm, enabling a high-purity water effluent and NH3(g) as products with no need for electrolyte recovery processes. Electrocatalysis offers a route to improving the treatment of wastewater, yet the need for supporting electrolytes complicates the purification of products. Here a cell is designed based on a porous solid electrolyte layer with a cation shuttling strategy that allows direct conversion of nitrate-containing wastewater into NH3(g) and purified water.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"1032-1043"},"PeriodicalIF":42.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The activation and transformation of carbon monoxide (CO), a versatile C1 feedstock, continues to attract substantial attention. Traditionally, researchers have focused on the development of catalytic systems to activate CO and then quench the generated acyl intermediate with nucleophiles to complete the carbonylative transformations. Here, non-classically, we unveil a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction, in which the CO insertion step is a key element for functional group migration. The selective insertion of a carbonyl group into the newly generated carbon radical provides a bridge for (hetero)aryl group migration, and the positive feedback of group migration also enables the carbon radical to capture CO more efficiently. A series of 1,4-dicarbonyl compounds containing fluoroalkyl and heterocycles are synthesized successfully under mild conditions, and the conversion of the products to valuable heteroaromatic biaryls indicates the synthetic potential of this platform. The activation and transformation of carbon monoxide (CO) continues to attract much attention. Now, the authors report a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction in which the CO insertion step enables (hetero)aryl group migration.
一氧化碳(CO)是一种用途广泛的 C1 原料,其活化和转化一直备受关注。传统上,研究人员一直专注于开发催化系统,以活化一氧化碳,然后用亲核物淬灭生成的酰基中间体,完成羰基转化。在这里,我们非经典地揭示了一种可见光诱导、羰基化触发的自由基中继重排反应,其中 CO 插入步骤是官能团迁移的关键因素。选择性地将羰基插入新生成的碳自由基为(杂)芳基迁移提供了桥梁,而基团迁移的正反馈也使碳自由基能够更有效地捕获 CO。在温和的条件下成功合成了一系列含有氟烷基和杂环的 1,4-二羰基化合物,并将产物转化为有价值的杂芳香族双芳基化合物,显示了这一平台的合成潜力。
{"title":"Carbon monoxide enabling synergistic carbonylation and (hetero)aryl migration","authors":"Yuanrui Wang, Hefei Yang, Yan Zheng, Mingxia Hu, Jintao Zhu, Zhi-Peng Bao, Yanying Zhao, Xiao-Feng Wu","doi":"10.1038/s41929-024-01204-6","DOIUrl":"10.1038/s41929-024-01204-6","url":null,"abstract":"The activation and transformation of carbon monoxide (CO), a versatile C1 feedstock, continues to attract substantial attention. Traditionally, researchers have focused on the development of catalytic systems to activate CO and then quench the generated acyl intermediate with nucleophiles to complete the carbonylative transformations. Here, non-classically, we unveil a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction, in which the CO insertion step is a key element for functional group migration. The selective insertion of a carbonyl group into the newly generated carbon radical provides a bridge for (hetero)aryl group migration, and the positive feedback of group migration also enables the carbon radical to capture CO more efficiently. A series of 1,4-dicarbonyl compounds containing fluoroalkyl and heterocycles are synthesized successfully under mild conditions, and the conversion of the products to valuable heteroaromatic biaryls indicates the synthetic potential of this platform. The activation and transformation of carbon monoxide (CO) continues to attract much attention. Now, the authors report a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction in which the CO insertion step enables (hetero)aryl group migration.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1065-1075"},"PeriodicalIF":42.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1038/s41929-024-01198-1
Jimin Kim, Jia-An Lin, Jinhyun Kim, Inwhan Roh, Soohyung Lee, Peidong Yang
A bias-free photochemical diode, in which a p-type photocathode is connected to an n-type photoanode to harness light for driving photoelectrochemical reduction and oxidation pairs, serves as a platform for realizing light-driven fuel generation from CO2. However, the conventional design, in which cathodic CO2 reduction is coupled with the anodic oxygen evolution reaction (OER), requires substantial energy input. Here we present a photochemical diode device that harnesses red light (740 nm) to simultaneously drive biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation as an alternative to the OER to overcome the above thermodynamic limitation. The device consists of an efficient CO2-fixing microorganism, Sporomusa ovata, interfaced with a silicon nanowire photocathode and a Pt–Au-loaded silicon nanowire photoanode. This photochemical diode operates bias-free under low-intensity (20 mW cm−2) red light irradiation with ~80% Faradaic efficiency for both the cathodic and anodic products. This work provides an alternative photosynthetic route to mitigate excessive CO2 emissions and efficiently generate value-added chemicals from CO2 and glycerol. CO2 reduction to value-added products is an attractive strategy in sustainable chemistry. Now a photochemical diode simultaneously drives biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation under red light with a photocurrent density of ~1.2 mA cm−2 and a Faradaic efficiency of ~80%.
{"title":"A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization","authors":"Jimin Kim, Jia-An Lin, Jinhyun Kim, Inwhan Roh, Soohyung Lee, Peidong Yang","doi":"10.1038/s41929-024-01198-1","DOIUrl":"10.1038/s41929-024-01198-1","url":null,"abstract":"A bias-free photochemical diode, in which a p-type photocathode is connected to an n-type photoanode to harness light for driving photoelectrochemical reduction and oxidation pairs, serves as a platform for realizing light-driven fuel generation from CO2. However, the conventional design, in which cathodic CO2 reduction is coupled with the anodic oxygen evolution reaction (OER), requires substantial energy input. Here we present a photochemical diode device that harnesses red light (740 nm) to simultaneously drive biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation as an alternative to the OER to overcome the above thermodynamic limitation. The device consists of an efficient CO2-fixing microorganism, Sporomusa ovata, interfaced with a silicon nanowire photocathode and a Pt–Au-loaded silicon nanowire photoanode. This photochemical diode operates bias-free under low-intensity (20 mW cm−2) red light irradiation with ~80% Faradaic efficiency for both the cathodic and anodic products. This work provides an alternative photosynthetic route to mitigate excessive CO2 emissions and efficiently generate value-added chemicals from CO2 and glycerol. CO2 reduction to value-added products is an attractive strategy in sustainable chemistry. Now a photochemical diode simultaneously drives biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation under red light with a photocurrent density of ~1.2 mA cm−2 and a Faradaic efficiency of ~80%.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"977-986"},"PeriodicalIF":42.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1038/s41929-024-01184-7
Soumyadip Mondal, Stefan A. Freunberger
Aqueous zinc-ion batteries are attractive due to their low cost, environmental friendliness, and exceptional performance, but the latter remains poorly understood. Now, a fast catalytic step involved in oxygen redox catalysis is shown to contribute to capacity at a high rate.
{"title":"Catalysing rate and capacity","authors":"Soumyadip Mondal, Stefan A. Freunberger","doi":"10.1038/s41929-024-01184-7","DOIUrl":"10.1038/s41929-024-01184-7","url":null,"abstract":"Aqueous zinc-ion batteries are attractive due to their low cost, environmental friendliness, and exceptional performance, but the latter remains poorly understood. Now, a fast catalytic step involved in oxygen redox catalysis is shown to contribute to capacity at a high rate.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"759-760"},"PeriodicalIF":42.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1038/s41929-024-01185-6
Rik V. Mom
Unravelling the key parameters that govern the activity of oxygen evolution reaction catalysts is an essential step towards efficient production of green hydrogen. Now, the repulsion between adsorbates on the electrocatalyst surface has been identified as a powerful promoter for the rate-limiting O–O coupling step.
{"title":"Repulsion attractive for electrocatalysis","authors":"Rik V. Mom","doi":"10.1038/s41929-024-01185-6","DOIUrl":"10.1038/s41929-024-01185-6","url":null,"abstract":"Unravelling the key parameters that govern the activity of oxygen evolution reaction catalysts is an essential step towards efficient production of green hydrogen. Now, the repulsion between adsorbates on the electrocatalyst surface has been identified as a powerful promoter for the rate-limiting O–O coupling step.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"757-758"},"PeriodicalIF":42.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}