Jordi Ros-Giralt, Atul Bohara, Sruthi Yellamraju, Harper Langston, R. Lethin, Yuang Jiang, L. Tassiulas, Josie Li, Yuanlong Tan, M. Veeraraghavan
In this paper, we introduce the Theory of Bottleneck Ordering, a mathematical framework that reveals the bottleneck structure of data networks. This theoretical framework provides insights into the inherent topological properties of a network in at least three areas: (1) It identifies the regions of influence of each bottleneck; (2) it reveals the order in which bottlenecks (and flows traversing them) converge to their steady state transmission rates in distributed congestion control algorithms; and (3) it provides key insights into the design of optimized traffic engineering policies. We demonstrate the efficacy of the proposed theory in TCP congestion-controlled networks for two broad classes of algorithms: Congestion-based algorithms (TCP BBR) and loss-based additive-increase/multiplicative-decrease algorithms (TCP Cubic and Reno). Among other results, our network experiments show that: (1) Qualitatively, both classes of congestion control algorithms behave as predicted by the bottleneck structure of the network; (2) flows compete for bandwidth only with other flows operating at the same bottleneck level; (3) BBR flows achieve higher performance and fairness than Cubic and Reno flows due to their ability to operate at the right bottleneck level; (4) the bottleneck structure of a network is continuously changing and its levels can be folded due to variations in the flows' round trip times; and (5) against conventional wisdom, low-hitter flows can have a large impact to the overall performance of a network.
{"title":"On the Bottleneck Structure of Congestion-Controlled Networks","authors":"Jordi Ros-Giralt, Atul Bohara, Sruthi Yellamraju, Harper Langston, R. Lethin, Yuang Jiang, L. Tassiulas, Josie Li, Yuanlong Tan, M. Veeraraghavan","doi":"10.1145/3393691.3394204","DOIUrl":"https://doi.org/10.1145/3393691.3394204","url":null,"abstract":"In this paper, we introduce the Theory of Bottleneck Ordering, a mathematical framework that reveals the bottleneck structure of data networks. This theoretical framework provides insights into the inherent topological properties of a network in at least three areas: (1) It identifies the regions of influence of each bottleneck; (2) it reveals the order in which bottlenecks (and flows traversing them) converge to their steady state transmission rates in distributed congestion control algorithms; and (3) it provides key insights into the design of optimized traffic engineering policies. We demonstrate the efficacy of the proposed theory in TCP congestion-controlled networks for two broad classes of algorithms: Congestion-based algorithms (TCP BBR) and loss-based additive-increase/multiplicative-decrease algorithms (TCP Cubic and Reno). Among other results, our network experiments show that: (1) Qualitatively, both classes of congestion control algorithms behave as predicted by the bottleneck structure of the network; (2) flows compete for bandwidth only with other flows operating at the same bottleneck level; (3) BBR flows achieve higher performance and fairness than Cubic and Reno flows due to their ability to operate at the right bottleneck level; (4) the bottleneck structure of a network is continuously changing and its levels can be folded due to variations in the flows' round trip times; and (5) against conventional wisdom, low-hitter flows can have a large impact to the overall performance of a network.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124851450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuheng Huang, Haoyu Wang, Lei Wu, Gareth Tyson, Xiapu Luo, Run Zhang, Xuanzhe Liu, Gang Huang, Xuxian Jiang
EOSIO has become one of the most popular blockchain platforms since its mainnet launch in June 2018. In contrast to the traditional PoW-based systems (e.g., Bitcoin and Ethereum), which are limited by low throughput, EOSIO is the first high throughput Delegated Proof of Stake system that has been widely adopted by many decentralized applications. Although EOSIO has millions of accounts and billions of transactions, little is known about its ecosystem, especially related to security and fraud. In this paper, we perform a large-scale measurement study of the EOSIO blockchain and its associated DApps. We gather a large-scale dataset of EOSIO and characterize activities including money transfers, account creation and contract invocation. Using our insights, we then develop techniques to automatically detect bots and fraudulent activity. We discover thousands of bot accounts (over 30% of the accounts in the platform) and a number of real-world attacks (301 attack accounts). By the time of our study, 80 attack accounts we identified have been confirmed by DApp teams, causing 828,824 EOS tokens losses (roughly $2.6 million) in total.
{"title":"Understanding (Mis)Behavior on the EOSIO Blockchain","authors":"Yuheng Huang, Haoyu Wang, Lei Wu, Gareth Tyson, Xiapu Luo, Run Zhang, Xuanzhe Liu, Gang Huang, Xuxian Jiang","doi":"10.1145/3393691.3394223","DOIUrl":"https://doi.org/10.1145/3393691.3394223","url":null,"abstract":"EOSIO has become one of the most popular blockchain platforms since its mainnet launch in June 2018. In contrast to the traditional PoW-based systems (e.g., Bitcoin and Ethereum), which are limited by low throughput, EOSIO is the first high throughput Delegated Proof of Stake system that has been widely adopted by many decentralized applications. Although EOSIO has millions of accounts and billions of transactions, little is known about its ecosystem, especially related to security and fraud. In this paper, we perform a large-scale measurement study of the EOSIO blockchain and its associated DApps. We gather a large-scale dataset of EOSIO and characterize activities including money transfers, account creation and contract invocation. Using our insights, we then develop techniques to automatically detect bots and fraudulent activity. We discover thousands of bot accounts (over 30% of the accounts in the platform) and a number of real-world attacks (301 attack accounts). By the time of our study, 80 attack accounts we identified have been confirmed by DApp teams, causing 828,824 EOS tokens losses (roughly $2.6 million) in total.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"21 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116643562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a study on the practicality of operating system (OS) kernel debloating---reducing kernel code that is not needed by the target applications---in real-world systems. Despite their significant benefits regarding security (attack surface reduction) and performance (fast boot times and reduced memory footprints), the state-of-the-art OS kernel debloating techniques are seldom adopted in practice, especially in production systems. We identify the limitations of existing kernel debloating techniques that hinder their practical adoption, including both accidental and essential limitations. To understand these limitations, we build an advanced debloating framework named tool which enables us to conduct a number of experiments on different types of OS kernels (including Linux and the L4 microkernel) with a wide variety of applications (including HTTPD, Memcached, MySQL, NGINX, PHP and Redis). Our experimental results reveal the challenges and opportunities towards making kernel debloating techniques practical for real-world systems. The main goal of this paper is to share these insights and our experiences to shed light on addressing the limitations of kernel debloating in future research and development efforts.
{"title":"Set the Configuration for the Heart of the OS: On the Practicality of Operating System Kernel Debloating","authors":"H. Kuo, Jianyan Chen, Sibin Mohan, Tianyin Xu","doi":"10.1145/3393691.3394215","DOIUrl":"https://doi.org/10.1145/3393691.3394215","url":null,"abstract":"This paper presents a study on the practicality of operating system (OS) kernel debloating---reducing kernel code that is not needed by the target applications---in real-world systems. Despite their significant benefits regarding security (attack surface reduction) and performance (fast boot times and reduced memory footprints), the state-of-the-art OS kernel debloating techniques are seldom adopted in practice, especially in production systems. We identify the limitations of existing kernel debloating techniques that hinder their practical adoption, including both accidental and essential limitations. To understand these limitations, we build an advanced debloating framework named tool which enables us to conduct a number of experiments on different types of OS kernels (including Linux and the L4 microkernel) with a wide variety of applications (including HTTPD, Memcached, MySQL, NGINX, PHP and Redis). Our experimental results reveal the challenges and opportunities towards making kernel debloating techniques practical for real-world systems. The main goal of this paper is to share these insights and our experiences to shed light on addressing the limitations of kernel debloating in future research and development efforts.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129711077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, M. Kandemir
Due to the high density storage demand coming from applications from different domains, 3D NAND flash is becoming a promising candidate to replace 2D NAND flash as the dominant non-volatile memory. However, denser 3D NAND presents various performance and reliability issues, which can be addressed by the 3D NAND specific full-sequence program (FSP) operation. The FSP programs multiple pages simultaneously to mitigate the performance degradation caused by the long latency 3D NAND baseline program operations. However, the FSP-enabled 3D NAND-based SSDs introduce lifetime degradation due to the larger write granularities accessed by the FSP. To address the lifetime issue, in this paper, we propose and experimentally evaluate Centaur, a heterogeneous 2D/3D NAND heterogeneous SSD, as a solution. Centaur has three main components: a lifetime-aware inter-NAND request dispatcher, a lifetime-aware inter-NAND work stealer, and a data migration strategy from 2D NAND to 3D NAND. We used twelve SSD workloads to compare Centaur against a state-of-the-art 3D NAND-based SSD with the same capacity. Our experimental results indicate that the SSD lifetime and performance are improved by 3.7x and 1.11x, respectively, when using our 2D/3D heterogeneous SSD.
{"title":"Centaur: A Novel Architecture for Reliable, Low-Wear, High-Density 3D NAND Storage","authors":"Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, M. Kandemir","doi":"10.1145/3393691.3394177","DOIUrl":"https://doi.org/10.1145/3393691.3394177","url":null,"abstract":"Due to the high density storage demand coming from applications from different domains, 3D NAND flash is becoming a promising candidate to replace 2D NAND flash as the dominant non-volatile memory. However, denser 3D NAND presents various performance and reliability issues, which can be addressed by the 3D NAND specific full-sequence program (FSP) operation. The FSP programs multiple pages simultaneously to mitigate the performance degradation caused by the long latency 3D NAND baseline program operations. However, the FSP-enabled 3D NAND-based SSDs introduce lifetime degradation due to the larger write granularities accessed by the FSP. To address the lifetime issue, in this paper, we propose and experimentally evaluate Centaur, a heterogeneous 2D/3D NAND heterogeneous SSD, as a solution. Centaur has three main components: a lifetime-aware inter-NAND request dispatcher, a lifetime-aware inter-NAND work stealer, and a data migration strategy from 2D NAND to 3D NAND. We used twelve SSD workloads to compare Centaur against a state-of-the-art 3D NAND-based SSD with the same capacity. Our experimental results indicate that the SSD lifetime and performance are improved by 3.7x and 1.11x, respectively, when using our 2D/3D heterogeneous SSD.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133407915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of the network caching algorithms from an online learning point-of-view remain poorly understood to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently, an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in the above settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the expected load in the most populated half of the bins, which might also be of independent interest. We evaluate the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude the paper with design recommendations and a list of open problems.
{"title":"Fundamental Limits on the Regret of Online Network-Caching","authors":"Rajarshi Bhattacharjee, Subhankar Banerjee, Abhishek Sinha","doi":"10.1145/3393691.3394189","DOIUrl":"https://doi.org/10.1145/3393691.3394189","url":null,"abstract":"Optimal caching of files in a content distribution network (CDN) is a problem of fundamental and growing commercial interest. Although many different caching algorithms are in use today, the fundamental performance limits of the network caching algorithms from an online learning point-of-view remain poorly understood to date. In this paper, we resolve this question in the following two settings: (1) a single user connected to a single cache, and (2) a set of users and a set of caches interconnected through a bipartite network. Recently, an online gradient-based coded caching policy was shown to enjoy sub-linear regret. However, due to the lack of known regret lower bounds, the question of the optimality of the proposed policy was left open. In this paper, we settle this question by deriving tight non-asymptotic regret lower bounds in the above settings. In addition to that, we propose a new Follow-the-Perturbed-Leader-based uncoded caching policy with near-optimal regret. Technically, the lower-bounds are obtained by relating the online caching problem to the classic probabilistic paradigm of balls-into-bins. Our proofs make extensive use of a new result on the expected load in the most populated half of the bins, which might also be of independent interest. We evaluate the performance of the caching policies by experimenting with the popular MovieLens dataset and conclude the paper with design recommendations and a list of open problems.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128546959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyed Armin Vakil-Ghahani, M. Kandemir, Jagadish B. Kotra
The number of cores and the capacities of main memory in modern systems have been growing significantly. Specifically, memory scaling, although at a slower pace than computation scaling, provided opportunities for very large DRAMs with Terabytes (TBs) capacity. Consequently, addressing the performance and energy consumption bottlenecks of DRAMs is more important than ever. DRAM memory refresh operation is one of the main contributing factors to the memory overheads, especially for large capacity DRAMs used in modern servers and emerging large-scale data centers. This paper addresses the memory refresh problem by leveraging the fact that most cloud servers host virtualized systems that use similar kernels, libraries, etc. We propose and experimentally evaluate a novel approach that exploits this observation to address the DRAM refresh overhead in such systems. More specifically, in this work, we present DSM, a light-weight hardware extension in memory controller to detect the pages with same content in memory and refresh only one of them and redirect the requests to the others to this page. Our detailed experimental analysis shows that the proposed DSM design can reduce 99th percentile memory access latency by up to 2.01x, and it also reduces the overall memory energy consumption by up to 8.5%.
{"title":"DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content","authors":"Seyed Armin Vakil-Ghahani, M. Kandemir, Jagadish B. Kotra","doi":"10.1145/3393691.3394182","DOIUrl":"https://doi.org/10.1145/3393691.3394182","url":null,"abstract":"The number of cores and the capacities of main memory in modern systems have been growing significantly. Specifically, memory scaling, although at a slower pace than computation scaling, provided opportunities for very large DRAMs with Terabytes (TBs) capacity. Consequently, addressing the performance and energy consumption bottlenecks of DRAMs is more important than ever. DRAM memory refresh operation is one of the main contributing factors to the memory overheads, especially for large capacity DRAMs used in modern servers and emerging large-scale data centers. This paper addresses the memory refresh problem by leveraging the fact that most cloud servers host virtualized systems that use similar kernels, libraries, etc. We propose and experimentally evaluate a novel approach that exploits this observation to address the DRAM refresh overhead in such systems. More specifically, in this work, we present DSM, a light-weight hardware extension in memory controller to detect the pages with same content in memory and refresh only one of them and redirect the requests to the others to this page. Our detailed experimental analysis shows that the proposed DSM design can reduce 99th percentile memory access latency by up to 2.01x, and it also reduces the overall memory energy consumption by up to 8.5%.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127922745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the problem of forecasting fine-grained company financials, such as daily revenue, from two input types: noisy proxy signals a la alternative data (e.g. credit card transactions) and sparse ground-truth observations (e.g. quarterly earnings reports). We utilize a classical linear systems model to capture both the evolution of the hidden or latent state (e.g. daily revenue), as well as the proxy signal (e.g. credit cards transactions). The linear system model is particularly well suited here as data is extremely sparse (4 quarterly reports per year). In classical system identification, where the central theme is to learn parameters for such linear systems, unbiased and consistent estimation of parameters is not feasible: the likelihood is non-convex; and worse, the global optimum for maximum likelihood estimation is often non-unique. As the main contribution of this work, we provide a simple, consistent estimator of all parameters for the linear system model of interest; in addition the estimation is unbiased for some of the parameters. In effect, the additional sparse observations of aggregate hidden state (e.g. quarterly reports) enable system identification in our setup that is not feasible in general. For estimating and forecasting hidden state (actual earnings) using the noisy observations (daily credit card transactions), we utilize the learned linear model along with a natural adaptation of classical Kalman filtering (or Belief Propagation). This leads to optimal inference with respect to mean-squared error. Analytically, we argue that even though the underlying linear system may be "unstable,'' "uncontrollable,'' or "undetectable'' in the classical setting, our setup and inference algorithm allow for estimation of hidden state with bounded error. Further, the estimation error of the algorithm monotonically decreases as the frequency of the sparse observations increases. This, seemingly intuitive insight contradicts the word on the Street. Finally, we utilize our framework to estimate quarterly earnings of 34 public companies using credit card transaction data. Our data-driven method convincingly outperforms the Wall Street consensus (analyst) estimates even though our method uses only credit card data as input, while the Wall Street consensus is based on various data sources including experts' input.
{"title":"Forecasting with Alternative Data","authors":"Michael Fleder, D. Shah","doi":"10.1145/3393691.3394187","DOIUrl":"https://doi.org/10.1145/3393691.3394187","url":null,"abstract":"We consider the problem of forecasting fine-grained company financials, such as daily revenue, from two input types: noisy proxy signals a la alternative data (e.g. credit card transactions) and sparse ground-truth observations (e.g. quarterly earnings reports). We utilize a classical linear systems model to capture both the evolution of the hidden or latent state (e.g. daily revenue), as well as the proxy signal (e.g. credit cards transactions). The linear system model is particularly well suited here as data is extremely sparse (4 quarterly reports per year). In classical system identification, where the central theme is to learn parameters for such linear systems, unbiased and consistent estimation of parameters is not feasible: the likelihood is non-convex; and worse, the global optimum for maximum likelihood estimation is often non-unique. As the main contribution of this work, we provide a simple, consistent estimator of all parameters for the linear system model of interest; in addition the estimation is unbiased for some of the parameters. In effect, the additional sparse observations of aggregate hidden state (e.g. quarterly reports) enable system identification in our setup that is not feasible in general. For estimating and forecasting hidden state (actual earnings) using the noisy observations (daily credit card transactions), we utilize the learned linear model along with a natural adaptation of classical Kalman filtering (or Belief Propagation). This leads to optimal inference with respect to mean-squared error. Analytically, we argue that even though the underlying linear system may be \"unstable,'' \"uncontrollable,'' or \"undetectable'' in the classical setting, our setup and inference algorithm allow for estimation of hidden state with bounded error. Further, the estimation error of the algorithm monotonically decreases as the frequency of the sparse observations increases. This, seemingly intuitive insight contradicts the word on the Street. Finally, we utilize our framework to estimate quarterly earnings of 34 public companies using credit card transaction data. Our data-driven method convincingly outperforms the Wall Street consensus (analyst) estimates even though our method uses only credit card data as input, while the Wall Street consensus is based on various data sources including experts' input.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132711472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially continuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven discretization. The central idea is to maintain a finer partition of the state-action space in regions which are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sacrificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for continuous state-action spaces, which additionally require either an optimal discretization as input, and/or access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to the underlying structure of the problem, resulting in much better performance compared both to heuristics and Q-learning with uniform discretization.
{"title":"Adaptive Discretization for Episodic Reinforcement Learning in Metric Spaces","authors":"Sean R. Sinclair, Siddhartha Banerjee, C. Yu","doi":"10.1145/3393691.3394176","DOIUrl":"https://doi.org/10.1145/3393691.3394176","url":null,"abstract":"We present an efficient algorithm for model-free episodic reinforcement learning on large (potentially continuous) state-action spaces. Our algorithm is based on a novel Q-learning policy with adaptive data-driven discretization. The central idea is to maintain a finer partition of the state-action space in regions which are frequently visited in historical trajectories, and have higher payoff estimates. We demonstrate how our adaptive partitions take advantage of the shape of the optimal Q-function and the joint space, without sacrificing the worst-case performance. In particular, we recover the regret guarantees of prior algorithms for continuous state-action spaces, which additionally require either an optimal discretization as input, and/or access to a simulation oracle. Moreover, experiments demonstrate how our algorithm automatically adapts to the underlying structure of the problem, resulting in much better performance compared both to heuristics and Q-learning with uniform discretization.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133070268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.
{"title":"Latency Imbalance Among Internet Load-Balanced Paths: A Cloud-Centric View","authors":"Yibo Pi, S. Jamin, P. Danzig, Feng Qian","doi":"10.1145/3393691.3394196","DOIUrl":"https://doi.org/10.1145/3393691.3394196","url":null,"abstract":"Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114686175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","authors":"","doi":"10.1145/3393691","DOIUrl":"https://doi.org/10.1145/3393691","url":null,"abstract":"","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123534108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}