We are honored to present this special issue of Molecular Reproduction and Development in tribute to David Garbers on occasion of the year of what would have been his 80th birthday, a biochemist whose scientific contributions have significantly advanced the field of reproductive biology and have also led to foundational work in several other areas of medicine. Dave left us too soon and the biomedical research community lost a great scientist, mentor, friend, and family man. As scientific colleagues (HMF; GSK) and a mentee (GSK) of David, we believe that the reviews published in this special issue by our scientific colleagues reflect Dave's foundational work in the field of sperm signal transduction, metabolism, acrosomal exocytosis, chemotaxis, as well as his influence in areas of testicular function and contraception (Garbers, 1989). This breadth of contributions by Dave and his lab to the field of reproductive biology/medicine provides a suitable historical background for all young investigators in this field who had never met Dave nor were familiar with his impact on this and other scientific fields.
One anecdote encapsulates Dave's approach to science. He once spoke of the auriferous gravels of the Sierra Nevada range. There were reports that during the early days of the California gold rush one simply had to wade through streambeds in the mountains and pick up nuggets lying in plain view. The trick was that it was difficult to reach those rivers. The auriferous stream of science, he went on, was the research literature of the early years of the 20th century, replete with value but limited by the methods available at the time. Of course, the key to finding those nuggets was curiosity and scholarship. A case in point was Dave's work on sea urchin egg activation of sperm. In 1928, James Gray (1891–1975) found that eggs of the common sea urchin, Echinus esculentus, released factors into sea water that activated oxygen consumption by conspecific sperm, but the biochemical techniques of the time were not up to the task of identifying the active agents (Gray, 1928). Dave revisited this with the tools of 1960s biochemistry and the result was the characterization of the sperm-activating peptides, resact and speract. That was Dave-curious about the history of his field and adventurous enough to see the possibilities hidden therein. That approach served him well.
David grew up on the family farm in LaCrosse, Wisconsin and one cannot help to think that his love for the field of reproductive biology was influenced during his childhood while helping the family manage their farm. After receiving his bachelor's degree in animal science at the University of Wisconsin, Madison, he remained at Wisconsin and went on to obtain a masters in reproductive biology and a PhD in biochemistry under the tutelage of National Academy of Sciences members Drs. Neal First and Henry Lardy, respectively. During his postgra
{"title":"A tribute: David Lorn Garbers, PhD (1944–2006)","authors":"Harvey Florman, Gregory S. Kopf","doi":"10.1002/mrd.23769","DOIUrl":"10.1002/mrd.23769","url":null,"abstract":"<p>We are honored to present this special issue of <i>Molecular Reproduction and Development</i> in tribute to David Garbers on occasion of the year of what would have been his 80th birthday, a biochemist whose scientific contributions have significantly advanced the field of reproductive biology and have also led to foundational work in several other areas of medicine. Dave left us too soon and the biomedical research community lost a great scientist, mentor, friend, and family man. As scientific colleagues (HMF; GSK) and a mentee (GSK) of David, we believe that the reviews published in this special issue by our scientific colleagues reflect Dave's foundational work in the field of sperm signal transduction, metabolism, acrosomal exocytosis, chemotaxis, as well as his influence in areas of testicular function and contraception (Garbers, <span>1989</span>). This breadth of contributions by Dave and his lab to the field of reproductive biology/medicine provides a suitable historical background for all young investigators in this field who had never met Dave nor were familiar with his impact on this and other scientific fields.</p><p>One anecdote encapsulates Dave's approach to science. He once spoke of the auriferous gravels of the Sierra Nevada range. There were reports that during the early days of the California gold rush one simply had to wade through streambeds in the mountains and pick up nuggets lying in plain view. The trick was that it was difficult to reach those rivers. The auriferous stream of science, he went on, was the research literature of the early years of the 20th century, replete with value but limited by the methods available at the time. Of course, the key to finding those nuggets was curiosity and scholarship. A case in point was Dave's work on sea urchin egg activation of sperm. In 1928, James Gray (1891–1975) found that eggs of the common sea urchin, <i>Echinus esculentus</i>, released factors into sea water that activated oxygen consumption by conspecific sperm, but the biochemical techniques of the time were not up to the task of identifying the active agents (Gray, <span>1928</span>). Dave revisited this with the tools of 1960s biochemistry and the result was the characterization of the sperm-activating peptides, resact and speract. That was Dave-curious about the history of his field and adventurous enough to see the possibilities hidden therein. That approach served him well.</p><p>David grew up on the family farm in LaCrosse, Wisconsin and one cannot help to think that his love for the field of reproductive biology was influenced during his childhood while helping the family manage their farm. After receiving his bachelor's degree in animal science at the University of Wisconsin, Madison, he remained at Wisconsin and went on to obtain a masters in reproductive biology and a PhD in biochemistry under the tutelage of National Academy of Sciences members Drs. Neal First and Henry Lardy, respectively. During his postgra","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pathologic mechanism of polycystic ovary syndrome (PCOS) is related to increased autophagy of granulosa cells. Both berberine and metformin have been shown to improve PCOS, but whether the combination of berberine and metformin can better improve PCOS by inhibiting autophagy remains unclear. PCOS models were constructed by injecting dehydroepiandrosterone into rats, and berberine, metformin or berberine combined with metformin was administered to rats after modeling. Rats' body weight and ovarian weight were measured before and after modeling. Histopathological examination of ovarian tissue and estrous cycle analysis of rats were performed. Insulin resistance, hormone levels, oxidative stress, and lipid metabolism in PCOS rats were assessed. Expression of the AMPK/AKT/mTOR pathway and autophagy-related proteins was analyzed by Western blot assays. Granulosa cells were isolated from rat ovarian tissue and identified by immunofluorescence staining followed by transmission electron microscopy analysis. Berberine combined with metformin reduced the body weight and ovarian weight of PCOS rats, increased the number of primordial and primary follicles, decreased the number of secondary and atretic follicles, normalized the estrous cycle, and improved insulin resistance, androgen biosynthesis, oxidative stress and lipid metabolism disorders, and increased estrogen production. In addition, berberine combined with metformin reduced the number of autophagosomes in granulosa cells, which may be related to AMPK/AKT/mTOR pathway activation, decreased Beclin1 and LC3II/LC3I levels, and increased p62 expression. Berberine combined with metformin could inhibit autophagy by activating the AMPK/AKT/mTOR pathway in PCOS, indicating that berberine combined with metformin is a potential treatment strategy for PCOS.
{"title":"Effect of berberine combined with metformin on autophagy in polycystic ovary syndrome by regulating AMPK/AKT/mTOR pathway","authors":"Ruiying Jin, Aixue Chen, Yongju Ye, Yuefang Ren, Jiali Lu, Feilan Xuan, Weimei Zhou","doi":"10.1002/mrd.23768","DOIUrl":"10.1002/mrd.23768","url":null,"abstract":"<p>The pathologic mechanism of polycystic ovary syndrome (PCOS) is related to increased autophagy of granulosa cells. Both berberine and metformin have been shown to improve PCOS, but whether the combination of berberine and metformin can better improve PCOS by inhibiting autophagy remains unclear. PCOS models were constructed by injecting dehydroepiandrosterone into rats, and berberine, metformin or berberine combined with metformin was administered to rats after modeling. Rats' body weight and ovarian weight were measured before and after modeling. Histopathological examination of ovarian tissue and estrous cycle analysis of rats were performed. Insulin resistance, hormone levels, oxidative stress, and lipid metabolism in PCOS rats were assessed. Expression of the AMPK/AKT/mTOR pathway and autophagy-related proteins was analyzed by Western blot assays. Granulosa cells were isolated from rat ovarian tissue and identified by immunofluorescence staining followed by transmission electron microscopy analysis. Berberine combined with metformin reduced the body weight and ovarian weight of PCOS rats, increased the number of primordial and primary follicles, decreased the number of secondary and atretic follicles, normalized the estrous cycle, and improved insulin resistance, androgen biosynthesis, oxidative stress and lipid metabolism disorders, and increased estrogen production. In addition, berberine combined with metformin reduced the number of autophagosomes in granulosa cells, which may be related to AMPK/AKT/mTOR pathway activation, decreased Beclin1 and LC3II/LC3I levels, and increased p62 expression. Berberine combined with metformin could inhibit autophagy by activating the AMPK/AKT/mTOR pathway in PCOS, indicating that berberine combined with metformin is a potential treatment strategy for PCOS.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Hernández-Herrador, García-Aranda Marilina, María Luisa Hortas, Silvia Carrillo-Lucena, Zaira Caracuel, José Antonio Castilla-Alcalá, Desirée Martín-García, Maximino Redondo