Piezoelectric materials, typically used as intelligent materials, can respond according to the design demands of the composite structures autonomously. The excitation of piezoelectric actuators generates the bending effect on the hybrid composite plates. An analytical methodology is developed to calculate the displacements of simply supported laminated composite plates induced by piezoelectric actuators and validate the results by generating MATLAB code. Further, the laminated hybrid composite plates reinforced with carbon nanotubes(CNT) are excited by piezoelectric actuators bonded to the surface on both sides with a variable electrical voltage across the thickness. The effects of location, size and thickness ratio of piezoelectric actuators on the deflection of hybrid composite plates are carried out by extending the code. The transverse displacements vary linearly with the applied voltage and size of the piezoelectric actuators. The effect of CNT volume fraction and the position of CNT lamina plays a vital role in deflections, and also it is observed that maximum displacements decrease rapidly as thickness ratio increases from 0.5 to 5 and from 10 to 50, the maximum displacements gradually decrease. Hence, it illustrated that the present technique provides a simple solution for predicting and controlling the deformed shape of reinforced hybrid composite plates induced by distributed piezoelectric actuators.
{"title":"Deformation of Carbon Nano Tubes Reinforced Hybrid Laminated Composite Plates induced by Piezoelectric Actuators","authors":"DhanunjayaRaju D, V. Rao","doi":"10.4028/p-6k4vr0","DOIUrl":"https://doi.org/10.4028/p-6k4vr0","url":null,"abstract":"Piezoelectric materials, typically used as intelligent materials, can respond according to the design demands of the composite structures autonomously. The excitation of piezoelectric actuators generates the bending effect on the hybrid composite plates. An analytical methodology is developed to calculate the displacements of simply supported laminated composite plates induced by piezoelectric actuators and validate the results by generating MATLAB code. Further, the laminated hybrid composite plates reinforced with carbon nanotubes(CNT) are excited by piezoelectric actuators bonded to the surface on both sides with a variable electrical voltage across the thickness. The effects of location, size and thickness ratio of piezoelectric actuators on the deflection of hybrid composite plates are carried out by extending the code. The transverse displacements vary linearly with the applied voltage and size of the piezoelectric actuators. The effect of CNT volume fraction and the position of CNT lamina plays a vital role in deflections, and also it is observed that maximum displacements decrease rapidly as thickness ratio increases from 0.5 to 5 and from 10 to 50, the maximum displacements gradually decrease. Hence, it illustrated that the present technique provides a simple solution for predicting and controlling the deformed shape of reinforced hybrid composite plates induced by distributed piezoelectric actuators.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"231 1","pages":"35 - 56"},"PeriodicalIF":0.4,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77175922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this work is to study the effect of nanoBentonite (NB) on the durability of concrete under normal and aggressive conditions. Different mixes were made with various amounts of NB at rates 10,15,20,25 and 30% as a partial mass replacement for cement. First group of samples were subjected to normal curing and tested after 7, 28, 90 and 180 days, while the second group of samples were subjected sulfuric acid of concentration 0.2 N and tested after the same ages. The hydration process and durability of samples was monitored using scanning microscope (SEM). The results of this study indicated that using NB as 15% partial replacement of cement improves durability and microstructure of concrete mixture against both normal and aggressive curing conditions.
{"title":"Evaluating the Effect of Using Nano Bentonite on Strength and Durability of Concrete","authors":"S. Zaki, O. Hodhod, Marium F. Eid","doi":"10.4028/p-1qwl8w","DOIUrl":"https://doi.org/10.4028/p-1qwl8w","url":null,"abstract":"The aim of this work is to study the effect of nanoBentonite (NB) on the durability of concrete under normal and aggressive conditions. Different mixes were made with various amounts of NB at rates 10,15,20,25 and 30% as a partial mass replacement for cement. First group of samples were subjected to normal curing and tested after 7, 28, 90 and 180 days, while the second group of samples were subjected sulfuric acid of concentration 0.2 N and tested after the same ages. The hydration process and durability of samples was monitored using scanning microscope (SEM). The results of this study indicated that using NB as 15% partial replacement of cement improves durability and microstructure of concrete mixture against both normal and aggressive curing conditions.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"207 1","pages":"125 - 141"},"PeriodicalIF":0.4,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75697204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Short Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Atomic Force Microscope (AFM). XRD results revealed that the broadening for the (002) peak decreased after being coated with PPy and increased for the doped samples with MNPs, indicating on decrease in the crystalline size (MWCNTs/PPy) sample and increasing for doped ones with Ag and Cu MNPs. AFM images revealed that the surface roughness of the MWCNTs-OH network decreased after being coated with PPy, PPy: Ag, and PPy: Cu. With the help of AFM and XRD results, the CNTs contain 14 layers, while the inner and outer diameters were 18.2 nm and 27 nm receptivity. The UV-Vis. spectrum of MWCNTs showed several peaks, the highest in the 350 nm range. The coated of MWCNTs greatly affected the absorption spectrum, with many bands appearing between 300 to 450 nm and increasing the absorbance along the overall spectrum. For samples doped with Ag NPs and Cu NPs, a weak absorption peak of the plasmonic resonance frequency of the metallic nanoparticles. Analysis of Raman spectra shows that (ID/IG) ratios for all networks are less than one, which prove that the fabricated networks have few impurities and have good homogeneity. This work aimed to synthesize and characterize a flexible MWCNTs network and develop it by coated with a layer of conductive polymer and metallic nanoparticles for gas sensing application using quick and straightforward preparation methods.
{"title":"Fabrication and Characterization of Functionalized Multi-Wall Carbon Nanotubes Flexible Network Modified by a Layer of Polypyrrole Conductive Polymer and Metallic Nanoparticles","authors":"Aqeel Y. Taradh, W. R. Saleh","doi":"10.4028/p-zyn5k5","DOIUrl":"https://doi.org/10.4028/p-zyn5k5","url":null,"abstract":"Short Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Atomic Force Microscope (AFM). XRD results revealed that the broadening for the (002) peak decreased after being coated with PPy and increased for the doped samples with MNPs, indicating on decrease in the crystalline size (MWCNTs/PPy) sample and increasing for doped ones with Ag and Cu MNPs. AFM images revealed that the surface roughness of the MWCNTs-OH network decreased after being coated with PPy, PPy: Ag, and PPy: Cu. With the help of AFM and XRD results, the CNTs contain 14 layers, while the inner and outer diameters were 18.2 nm and 27 nm receptivity. The UV-Vis. spectrum of MWCNTs showed several peaks, the highest in the 350 nm range. The coated of MWCNTs greatly affected the absorption spectrum, with many bands appearing between 300 to 450 nm and increasing the absorbance along the overall spectrum. For samples doped with Ag NPs and Cu NPs, a weak absorption peak of the plasmonic resonance frequency of the metallic nanoparticles. Analysis of Raman spectra shows that (ID/IG) ratios for all networks are less than one, which prove that the fabricated networks have few impurities and have good homogeneity. This work aimed to synthesize and characterize a flexible MWCNTs network and develop it by coated with a layer of conductive polymer and metallic nanoparticles for gas sensing application using quick and straightforward preparation methods.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"41 1","pages":"21 - 33"},"PeriodicalIF":0.4,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81351334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, nanostructure porous silicon surface was prepared using electrochemical etching under different current densities. I have studied the surface morphology and photoluminsense of four samples prepared at current densities 5 , 10 , 15 and 20 mA/cm2at fixed etching time 10 min.photoluminsense study showed that the energy gap of the porous silicon samples are is 3.1eV,and it was higher than the energy gap of bulk silicon which was 1.08 eV. A scanning electron microscope (SEM) micrographs were used to estimate the surface area. The surface area of the porous layer is strongly dependent on the porous layer geometry and its depth. The optical reflectance measurements were obtained by using an optical reflectometer (UV) which is equipped with an integrating sphere in the (200-1100) nm wavelength range, which reveals that the textured cells with PS layer sources have lower reflectivity value compared to the textured cell without PS structure.
{"title":"Morphology and Optical Properties of Nanostructure Porous Silicon Prepared by Electrochemical Etching for Solar Cells Application","authors":"G. M. Yousef, Mustafa Mohammad Yousef, D. Rayan","doi":"10.4028/p-4si0m1","DOIUrl":"https://doi.org/10.4028/p-4si0m1","url":null,"abstract":"In this work, nanostructure porous silicon surface was prepared using electrochemical etching under different current densities. I have studied the surface morphology and photoluminsense of four samples prepared at current densities 5 , 10 , 15 and 20 mA/cm2at fixed etching time 10 min.photoluminsense study showed that the energy gap of the porous silicon samples are is 3.1eV,and it was higher than the energy gap of bulk silicon which was 1.08 eV. A scanning electron microscope (SEM) micrographs were used to estimate the surface area. The surface area of the porous layer is strongly dependent on the porous layer geometry and its depth. The optical reflectance measurements were obtained by using an optical reflectometer (UV) which is equipped with an integrating sphere in the (200-1100) nm wavelength range, which reveals that the textured cells with PS layer sources have lower reflectivity value compared to the textured cell without PS structure.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"34 1","pages":"13 - 20"},"PeriodicalIF":0.4,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90188937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Moussa, L. Hadjeris, L. Herissi, N. Attaf, Nadjet Moussa
Ultrasonic Spray Pyrolysis (USP) technique was used to prepare undoped and (2, 4, 6 and 10 at. %) Zn-doped iron oxide (FexOy:Zn) thin films for use in photocatalytic applications. The effect of Zn ion substitution on structural, optical, and electrical properties was studied. The X-ray diffraction patterns showed that there are two different phases of iron oxide, a hematite phase (α‑Fe2O3) and a magnetite phase (Fe3O4) that crystallized in the prepared samples. The nominal fractions of α‑Fe2O3 and Fe3O4 phases changed from 74 % to 42 % for the hematite phase and from 26 % to 58 % for the magnetite phase and this confirmed that the Zn doping favored the growth of Fe3O4 phase. The crystallite size decreased from 15.43 nm to 8.99 nm, while the micro-strain changed from 0.0056 to 0.0215 and the dislocation density from 0.0099 nm‑2 to 0.0639 nm‑2. The unit cell parameters were also improved when the doping rate was changed. Optical measurements showed that the energy gap decreased from 2.26 eV to 2.16 eV, the film thickness changed from 569 nm to 479 nm while the refractive index increased from 2.99 to 3.51 and the Urbach energy from 544 meV to 558 meV. Electrical measurements performed by the two-point probe method showed that the electrical conductivity increased directly with increasing Zn concentration reaching 18.5 10‑15 (Ω.cm)‑1 with 10 at. % Zn concentration. The variation of the electrical conductivity curves versus the sample heating temperature as well as the activation energy showed a semiconductor behavior of the films. Zinc doped iron oxide thin films exhibit 51.85 % photocatalytic degradation efficiency for methyl green organic dye.
{"title":"Zn-Doped Iron Oxide Thin Films Prepared by Spray Pyrolysis Technique and Characterized for Use as an Efficient Photocatalyst for Methyl Green Organic Dye","authors":"Zahra Moussa, L. Hadjeris, L. Herissi, N. Attaf, Nadjet Moussa","doi":"10.4028/p-av96pz","DOIUrl":"https://doi.org/10.4028/p-av96pz","url":null,"abstract":"Ultrasonic Spray Pyrolysis (USP) technique was used to prepare undoped and (2, 4, 6 and 10 at. %) Zn-doped iron oxide (FexOy:Zn) thin films for use in photocatalytic applications. The effect of Zn ion substitution on structural, optical, and electrical properties was studied. The X-ray diffraction patterns showed that there are two different phases of iron oxide, a hematite phase (α‑Fe2O3) and a magnetite phase (Fe3O4) that crystallized in the prepared samples. The nominal fractions of α‑Fe2O3 and Fe3O4 phases changed from 74 % to 42 % for the hematite phase and from 26 % to 58 % for the magnetite phase and this confirmed that the Zn doping favored the growth of Fe3O4 phase. The crystallite size decreased from 15.43 nm to 8.99 nm, while the micro-strain changed from 0.0056 to 0.0215 and the dislocation density from 0.0099 nm‑2 to 0.0639 nm‑2. The unit cell parameters were also improved when the doping rate was changed. Optical measurements showed that the energy gap decreased from 2.26 eV to 2.16 eV, the film thickness changed from 569 nm to 479 nm while the refractive index increased from 2.99 to 3.51 and the Urbach energy from 544 meV to 558 meV. Electrical measurements performed by the two-point probe method showed that the electrical conductivity increased directly with increasing Zn concentration reaching 18.5 10‑15 (Ω.cm)‑1 with 10 at. % Zn concentration. The variation of the electrical conductivity curves versus the sample heating temperature as well as the activation energy showed a semiconductor behavior of the films. Zinc doped iron oxide thin films exhibit 51.85 % photocatalytic degradation efficiency for methyl green organic dye.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"54 1","pages":"95 - 109"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75692017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Wibowo, Achmad Nandang Roziafanto, Ichsan Farizi, A. P. Tirta, Arifur Rahman, A. Subagio
Nanosilica from rice husk ash (RHA) has been synthesized by a simple heating method. The obtained nanosilica was characterized by several techniques such as x-ray diffractometer (XRD), Fourirer transform infrared (FTIR), scanning electron microscope (SEM), and simultaneous thermal analysis (STA). The products had white color indicating that there were no impurities such as carbon or other elements. The XRD showed that the obtained nanosilica exhibited the pattern of amorphous silica material. FTIR spectra confirmed Si-O-Si and Si-O bonds in the obtained nanosilica. SEM images displayed the agglomeration of nanosilica particles with the average diameter of about 12 nm. STA showed that acid treatment was needed to remove carbon or mettalic ellements from nanosilica during the heating process. These results were important in supporting the utilization of rice husk to convert into other more valuable products with a simple method.
{"title":"Nanosilica from Rice Husk Synthesized by a Simple Heating Method and its Characterization","authors":"S. Wibowo, Achmad Nandang Roziafanto, Ichsan Farizi, A. P. Tirta, Arifur Rahman, A. Subagio","doi":"10.4028/p-9wx28g","DOIUrl":"https://doi.org/10.4028/p-9wx28g","url":null,"abstract":"Nanosilica from rice husk ash (RHA) has been synthesized by a simple heating method. The obtained nanosilica was characterized by several techniques such as x-ray diffractometer (XRD), Fourirer transform infrared (FTIR), scanning electron microscope (SEM), and simultaneous thermal analysis (STA). The products had white color indicating that there were no impurities such as carbon or other elements. The XRD showed that the obtained nanosilica exhibited the pattern of amorphous silica material. FTIR spectra confirmed Si-O-Si and Si-O bonds in the obtained nanosilica. SEM images displayed the agglomeration of nanosilica particles with the average diameter of about 12 nm. STA showed that acid treatment was needed to remove carbon or mettalic ellements from nanosilica during the heating process. These results were important in supporting the utilization of rice husk to convert into other more valuable products with a simple method.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"16 1","pages":"11 - 17"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89343686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work confers to the preparation of Magnesium metal matrix composites reinforced with Lanthanum Hexa-aluminate nanoparticles by a stir casting technique and the tribological characteristics of the composites in dry condition were investigated. A Comparison is also made with AZ91E magnesium alloy and the prepared composites for the assessment of wear behavior. A design of experiments based on the Taguchi technique is used to collect data in a controlled manner. A L25 orthogonal array is used to investigate the effect of wear parameters such as Percentage of Reinforcement, Sliding Speed, Applied Load, and Sliding Distance on dry sliding wear of composites. The aim of the model was to investigate dry sliding wear with "smaller is better" characteristics. The results showed that sliding distance has the largest effect on wear, while the load is the most important factor in friction response. In GRA analysis, the combined effect of wear and frictional force is considered and the optimum combination is identified (S5 L1 D1 R4). The percent of the contribution of load, L (60.97 %) was known to be the most important factor influencing performance to wear. The % reinforcement, R (31.17%) was found to be the 2nd most influencing factor, followed by sliding distance, D (4.81%), and sliding velocity S (0.25%). The worn surfaces of fabricated composites in the best and worst conditions were examined using scanning electron microscopy for understanding the wear mechanism.
{"title":"Optimization of Dry-Sliding Wear Parameters on Lanthanum Hexa Aluminate Reinforced Magnesium AZ91E Composites Using Grey Relation Analysis","authors":"Sai Ram Ynv, C. Tara Sasanka, J. Prabakaran","doi":"10.4028/p-08w7lk","DOIUrl":"https://doi.org/10.4028/p-08w7lk","url":null,"abstract":"This work confers to the preparation of Magnesium metal matrix composites reinforced with Lanthanum Hexa-aluminate nanoparticles by a stir casting technique and the tribological characteristics of the composites in dry condition were investigated. A Comparison is also made with AZ91E magnesium alloy and the prepared composites for the assessment of wear behavior. A design of experiments based on the Taguchi technique is used to collect data in a controlled manner. A L25 orthogonal array is used to investigate the effect of wear parameters such as Percentage of Reinforcement, Sliding Speed, Applied Load, and Sliding Distance on dry sliding wear of composites. The aim of the model was to investigate dry sliding wear with \"smaller is better\" characteristics. The results showed that sliding distance has the largest effect on wear, while the load is the most important factor in friction response. In GRA analysis, the combined effect of wear and frictional force is considered and the optimum combination is identified (S5 L1 D1 R4). The percent of the contribution of load, L (60.97 %) was known to be the most important factor influencing performance to wear. The % reinforcement, R (31.17%) was found to be the 2nd most influencing factor, followed by sliding distance, D (4.81%), and sliding velocity S (0.25%). The worn surfaces of fabricated composites in the best and worst conditions were examined using scanning electron microscopy for understanding the wear mechanism.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"112 1","pages":"55 - 73"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87741199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polypyrrole (PPy), functionalized multi-walled carbon nanotube (f-MWCNT), nickel oxide (NiO) nanocomposites (NCs) films did prepare by PLD technique. The weight percentage of PPy/ f-MWCNT varied from 1 to 5 wt.% whereas NiO fixed with 8wt.%. The nanocomposite films were characteristics by XRD, Raman, FTIR, SEM, and EDS. The XRD pattern shows that the films of (NCs) indicating the amorphous structure of PPy and polycrystalline cubic crystal of NiO and hexagonal phase of f-MWCNT. The dominant phase for (NCs) represented by (002) for f-MWCNT, NCs were shifted to different values of 2θ. Raman spectroscopy the characteristics peaks of (G-D) band at (1280,1320,1570,1610) and the intensity increases with concentration increase to the NCs. FTIR spectra of (NCs) films, refer that C2 has a prominent absorption peak at 1292 cm-1 and C4 at 1550 cm-1 indicated the spectrum of PPy/NiO and from C1 at 2360 cm−1 and C4 at 709 cm−1 indicated the spectrum of PPy/CNT. The morphological studies revealed that tubular surface structure at (C1, C3, and C5) and cluster branching in (C2, C4). It shows agglomeration particles and porosity for the surface of the (NCs) films. For all measurements, the (NCs) succeeded in making the nanoparticles (f-MWCNT/NiO) held together in the polymer (PPy) matrix indicating, that a good interlinkage between PPy, f-MWCNT, and NiO. Keywords: PPy/f-MWCNT/NiO nanocomposites, pulsed laser deposition, Nd:YAG Laser.
{"title":"Polypyrrole/ Functionalized Multi-Walled Carbon Nanotube / Nickel Oxide Nanocomposites: Structural, Morphological, Optical and Composition Analysis Studies","authors":"M. Saleh, M. Jawad","doi":"10.4028/p-5ijt59","DOIUrl":"https://doi.org/10.4028/p-5ijt59","url":null,"abstract":"Polypyrrole (PPy), functionalized multi-walled carbon nanotube (f-MWCNT), nickel oxide (NiO) nanocomposites (NCs) films did prepare by PLD technique. The weight percentage of PPy/ f-MWCNT varied from 1 to 5 wt.% whereas NiO fixed with 8wt.%. The nanocomposite films were characteristics by XRD, Raman, FTIR, SEM, and EDS. The XRD pattern shows that the films of (NCs) indicating the amorphous structure of PPy and polycrystalline cubic crystal of NiO and hexagonal phase of f-MWCNT. The dominant phase for (NCs) represented by (002) for f-MWCNT, NCs were shifted to different values of 2θ. Raman spectroscopy the characteristics peaks of (G-D) band at (1280,1320,1570,1610) and the intensity increases with concentration increase to the NCs. FTIR spectra of (NCs) films, refer that C2 has a prominent absorption peak at 1292 cm-1 and C4 at 1550 cm-1 indicated the spectrum of PPy/NiO and from C1 at 2360 cm−1 and C4 at 709 cm−1 indicated the spectrum of PPy/CNT. The morphological studies revealed that tubular surface structure at (C1, C3, and C5) and cluster branching in (C2, C4). It shows agglomeration particles and porosity for the surface of the (NCs) films. For all measurements, the (NCs) succeeded in making the nanoparticles (f-MWCNT/NiO) held together in the polymer (PPy) matrix indicating, that a good interlinkage between PPy, f-MWCNT, and NiO. Keywords: PPy/f-MWCNT/NiO nanocomposites, pulsed laser deposition, Nd:YAG Laser.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"38 1","pages":"85 - 94"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79031547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Agunsoye, Joachin Eberechukwu Anyanwu, S. Bello, S. B. Hassan
Palm kernel shells (PKS) are wastes and are rich in carbon making them potential sources of reinforcement for composite developments. This work synthesised palm kernel shell nanoparticle and developed Al-Mg-Mn composites at different weight fractions of PKS particle additions. Structural and mechanical properties of the materials produced were studied. TEM result reveals an average size, 72.6 nm of PKS particle obtained after 74 hours of milling. Structural integrity of the nanocomposites was established by SEM. Tensile strength, hardness values and impact energy increase due to 10% by weight of PKS nanoparticle additions are 48.51%, 44.03% and 16.15%, respectively. The improvements in mechanical properties are attributed to firm structure containing Al and MnSi eutectic host harbouring well distributed intermetallic. Better properties of Al-Mg-Mn nanocomposites than micro composites are linked with the refinement of the PKS nanoparticles.
{"title":"Effect of Particle Sizes on some Mechanical Properties of Kernel Shell Reinforced Al-Mg-Mn Composites","authors":"J. Agunsoye, Joachin Eberechukwu Anyanwu, S. Bello, S. B. Hassan","doi":"10.4028/p-t85e9s","DOIUrl":"https://doi.org/10.4028/p-t85e9s","url":null,"abstract":"Palm kernel shells (PKS) are wastes and are rich in carbon making them potential sources of reinforcement for composite developments. This work synthesised palm kernel shell nanoparticle and developed Al-Mg-Mn composites at different weight fractions of PKS particle additions. Structural and mechanical properties of the materials produced were studied. TEM result reveals an average size, 72.6 nm of PKS particle obtained after 74 hours of milling. Structural integrity of the nanocomposites was established by SEM. Tensile strength, hardness values and impact energy increase due to 10% by weight of PKS nanoparticle additions are 48.51%, 44.03% and 16.15%, respectively. The improvements in mechanical properties are attributed to firm structure containing Al and MnSi eutectic host harbouring well distributed intermetallic. Better properties of Al-Mg-Mn nanocomposites than micro composites are linked with the refinement of the PKS nanoparticles.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"46 1","pages":"19 - 32"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89222699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. M. Ibrahim, W. R. Saleh, Abdulkareem M. A. Al-Sammarraie
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optical properties showed that the samples had good absorbance in the UV-Vis. region and wide band gap. The PL spectrum displayed that the intensity of ultraviolet (UV), band gap and defect bands depend on the growth temperature of the ZnO nanostructure. The largest band gap was 3.351 eV for ZnO nanostructure synthesized at 100 °C and growth time 8h.
{"title":"Structural and Optical Properties of ZnO Nanostructures Synthesized by Hydrothermal Method at Different Conditions","authors":"K. M. Ibrahim, W. R. Saleh, Abdulkareem M. A. Al-Sammarraie","doi":"10.4028/p-0w806z","DOIUrl":"https://doi.org/10.4028/p-0w806z","url":null,"abstract":"ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optical properties showed that the samples had good absorbance in the UV-Vis. region and wide band gap. The PL spectrum displayed that the intensity of ultraviolet (UV), band gap and defect bands depend on the growth temperature of the ZnO nanostructure. The largest band gap was 3.351 eV for ZnO nanostructure synthesized at 100 °C and growth time 8h.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"7 1","pages":"75 - 83"},"PeriodicalIF":0.4,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91156649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}