Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1956730
Gregory E Chester, A. Skinner, Anthony Villa-Garcia, Kirk J. Ziegler, J. J. Hill
Abstract A simple, scalable, and reproducible method is used to decorate carbon nanotubes (CNTs) with metal nanoparticles (NPs). Decorating CNTs with iron NPs prior to forming steel-based metal matrix composites (MMCs) improves the high-cycle fatigue (HCF) strength of the MMC by more than 350% vs. plain 1084 steel and more than 100% vs. an MMC with untreated CNTs. An inverse correlation between CNT loading and tensile strength was observed. The CNT surface treatment uses an organic microenvironment surrounding suspended CNTs and emulsion chemistry to treat individual CNTs or small bundles. This process can be adapted to work with other metal NPs or CNT types. This work demonstrates the potential for metal-treated CNTs to further improve the HCF strength of MMCs and paves a pathway toward additional CNT-reinforced composites. Graphical Abstract
{"title":"Iron nanoparticle surface treatment of carbon nanotubes to increase fatigue strength of steel composites","authors":"Gregory E Chester, A. Skinner, Anthony Villa-Garcia, Kirk J. Ziegler, J. J. Hill","doi":"10.1080/20550324.2021.1956730","DOIUrl":"https://doi.org/10.1080/20550324.2021.1956730","url":null,"abstract":"Abstract A simple, scalable, and reproducible method is used to decorate carbon nanotubes (CNTs) with metal nanoparticles (NPs). Decorating CNTs with iron NPs prior to forming steel-based metal matrix composites (MMCs) improves the high-cycle fatigue (HCF) strength of the MMC by more than 350% vs. plain 1084 steel and more than 100% vs. an MMC with untreated CNTs. An inverse correlation between CNT loading and tensile strength was observed. The CNT surface treatment uses an organic microenvironment surrounding suspended CNTs and emulsion chemistry to treat individual CNTs or small bundles. This process can be adapted to work with other metal NPs or CNT types. This work demonstrates the potential for metal-treated CNTs to further improve the HCF strength of MMCs and paves a pathway toward additional CNT-reinforced composites. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"101 1","pages":"132 - 140"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77104889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.2004702
T. Genco, Max Linke, R. Lammering
Abstract A new class of single walled carbon nanotubes (SWCNT)/epoxy resin ink in dimethylacetamide is successfully printed using a piezo-driven jet valve dispensing system for the fabrication of flexible nanocomposites. The optimised ink prepared by solution mixing method with a viscosity (28.54 mPa⋅s), surface tension (31.3 mN/m), density (0.964 g/cm3), and 0.25 wt% SWCNT is obtained through design-of-experiments. The optimisation process is carried out focusing on the ink ejectability and the electrical properties of the resulting nanocomposites. An investigation of the electrical properties of the printed structures on glass and paper substrates is performed by analysing their sheet resistances. The resulting nanocomposite exhibits sheet resistances of 15 × 102 kΩ/sq and 0.11 kΩ/sq printed on glass and paper, respectively. Finally, the interlaminar fracture properties of the nanocomposites when integrated into glass fiber reinforced polymers are investigated. The median change of the energy release ratio GII,c is about 3%, with almost constant standard deviation. Graphical Abstract
{"title":"Piezo-driven jet valve dispensing of carbon nanotube-loaded composites: optimisation and characterisation","authors":"T. Genco, Max Linke, R. Lammering","doi":"10.1080/20550324.2021.2004702","DOIUrl":"https://doi.org/10.1080/20550324.2021.2004702","url":null,"abstract":"Abstract A new class of single walled carbon nanotubes (SWCNT)/epoxy resin ink in dimethylacetamide is successfully printed using a piezo-driven jet valve dispensing system for the fabrication of flexible nanocomposites. The optimised ink prepared by solution mixing method with a viscosity (28.54 mPa⋅s), surface tension (31.3 mN/m), density (0.964 g/cm3), and 0.25 wt% SWCNT is obtained through design-of-experiments. The optimisation process is carried out focusing on the ink ejectability and the electrical properties of the resulting nanocomposites. An investigation of the electrical properties of the printed structures on glass and paper substrates is performed by analysing their sheet resistances. The resulting nanocomposite exhibits sheet resistances of 15 × 102 kΩ/sq and 0.11 kΩ/sq printed on glass and paper, respectively. Finally, the interlaminar fracture properties of the nanocomposites when integrated into glass fiber reinforced polymers are investigated. The median change of the energy release ratio GII,c is about 3%, with almost constant standard deviation. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"218 1","pages":"200 - 214"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75761454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1952371
Pornsawan Kum-onsa, N. Chanlek, P. Thongbai
Abstract In this work, nanocomposites consisting of TiO2-nanorods (TiO2-NRs) with less than 100 nm in size and poly(vinylidene fluoride) (PVDF) were prepared using a liquid-phase assisted dispersion and hot-pressing methods. At 1 kHz and 25 °C, the high dielectric permittivity of ∼66 and loss tangent of ∼0.03 can be obtained in the nanocomposite with a filler volume fraction of 0.5, which was higher than that of a neat PVDF matrix by a factor of 6. Dielectric permittivity of TiO2-NRs/PVDF nanocomposites not only highly increased with TiO2-NRs, but also almost independent of the frequency range of 102–106 Hz. The significant enhancement in dielectric permittivity is mainly attributed to the interfacial polarization at the interfaces of TiO2-NRs and PVDF, and semiconducting properties of TiO2-NRs. Among the various models used for rationalizing the dielectric behavior, the experimental dielectric data is in close agreement with EMT (n = 0.11) and Yamada models (n = 8). Graphical Abstract
{"title":"Largely enhanced dielectric properties of TiO2-nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas","authors":"Pornsawan Kum-onsa, N. Chanlek, P. Thongbai","doi":"10.1080/20550324.2021.1952371","DOIUrl":"https://doi.org/10.1080/20550324.2021.1952371","url":null,"abstract":"Abstract In this work, nanocomposites consisting of TiO2-nanorods (TiO2-NRs) with less than 100 nm in size and poly(vinylidene fluoride) (PVDF) were prepared using a liquid-phase assisted dispersion and hot-pressing methods. At 1 kHz and 25 °C, the high dielectric permittivity of ∼66 and loss tangent of ∼0.03 can be obtained in the nanocomposite with a filler volume fraction of 0.5, which was higher than that of a neat PVDF matrix by a factor of 6. Dielectric permittivity of TiO2-NRs/PVDF nanocomposites not only highly increased with TiO2-NRs, but also almost independent of the frequency range of 102–106 Hz. The significant enhancement in dielectric permittivity is mainly attributed to the interfacial polarization at the interfaces of TiO2-NRs and PVDF, and semiconducting properties of TiO2-NRs. Among the various models used for rationalizing the dielectric behavior, the experimental dielectric data is in close agreement with EMT (n = 0.11) and Yamada models (n = 8). Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"42 1","pages":"123 - 131"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76354451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.2000231
N. Vidakis, M. Petousis, M. Kourinou, E. Velidakis, N. Mountakis, P. Fischer-Griffiths, S. Grammatikos, L. Tzounis
Abstract In this work, an industrially scalable method was developed for the preparation of multifunctional nanocomposite filaments. Polylactic Acid (PLA) polymer matrix was enriched with Multi Wall Carbon Nanotubes (MWCNT) at various concentrations, to fabricate 3D-printed parts by the Fused Filament Fabrication (FFF) technology. The effect of the nanofiller loading at the mechanical, thermal, electrical, thermomechanical, and antibacterial performance of the novel nanocomposites fabricated in this work was investigated. The filler loading of 5 wt.% was also tested to reveal its electrothermal Joule heating performance. The antibacterial properties of the nanocomposites were examined through a screening process, against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For loadings of 1 wt.% and higher the mechanical properties were significantly improved. The 5 wt.% loaning showed measurable antibacterial performance. The nanocomposites prepared herein can be characterized as multifunctional materials, suitable for various industrial applications, such as sensors fabrication, health monitoring devices, etc. Graphical Abstract
{"title":"Additive manufacturing of multifunctional polylactic acid (PLA)—multiwalled carbon nanotubes (MWCNTs) nanocomposites","authors":"N. Vidakis, M. Petousis, M. Kourinou, E. Velidakis, N. Mountakis, P. Fischer-Griffiths, S. Grammatikos, L. Tzounis","doi":"10.1080/20550324.2021.2000231","DOIUrl":"https://doi.org/10.1080/20550324.2021.2000231","url":null,"abstract":"Abstract In this work, an industrially scalable method was developed for the preparation of multifunctional nanocomposite filaments. Polylactic Acid (PLA) polymer matrix was enriched with Multi Wall Carbon Nanotubes (MWCNT) at various concentrations, to fabricate 3D-printed parts by the Fused Filament Fabrication (FFF) technology. The effect of the nanofiller loading at the mechanical, thermal, electrical, thermomechanical, and antibacterial performance of the novel nanocomposites fabricated in this work was investigated. The filler loading of 5 wt.% was also tested to reveal its electrothermal Joule heating performance. The antibacterial properties of the nanocomposites were examined through a screening process, against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). For loadings of 1 wt.% and higher the mechanical properties were significantly improved. The 5 wt.% loaning showed measurable antibacterial performance. The nanocomposites prepared herein can be characterized as multifunctional materials, suitable for various industrial applications, such as sensors fabrication, health monitoring devices, etc. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"29 1","pages":"184 - 199"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74658809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.2008207
Estananto, N. L. W. Septiani, M. Iqbal, Suyatman, A. Nuruddin, B. Yuliarto
Abstract Due to its harmful nature, carbon monoxide (CO) should be detected at low temperature and in a wide range of CO concentration. A sensor based on WO3–graphene nanocomposite synthesized by the solvothermal method has been developed. Based on material characterizations, the synthesized monoclinical WO3 has a nanowire shape. The presence of graphene interestingly promoted the formation of the WO3 hexagonal structure as a minor phase in the composite. The gas sensor measurements were carried out at three different temperatures, 300 °C, 150 °C, and room temperature. It was found that at 300 °C, the composite with ratio WO3:graphene 2:1 or WG21 produces a 21.5 response value to 10 ppm of CO, which is higher than the other composites. The response and recovery times of WG21 are 16 and ∼4.4 min, respectively. The WG21 nanocomposite was also found to show a good sensitivity in the range concentration of 10–300 ppm. Graphical Abstract
{"title":"Nanocomposite of graphene and WO3 nanowires for carbon monoxide sensors","authors":"Estananto, N. L. W. Septiani, M. Iqbal, Suyatman, A. Nuruddin, B. Yuliarto","doi":"10.1080/20550324.2021.2008207","DOIUrl":"https://doi.org/10.1080/20550324.2021.2008207","url":null,"abstract":"Abstract Due to its harmful nature, carbon monoxide (CO) should be detected at low temperature and in a wide range of CO concentration. A sensor based on WO3–graphene nanocomposite synthesized by the solvothermal method has been developed. Based on material characterizations, the synthesized monoclinical WO3 has a nanowire shape. The presence of graphene interestingly promoted the formation of the WO3 hexagonal structure as a minor phase in the composite. The gas sensor measurements were carried out at three different temperatures, 300 °C, 150 °C, and room temperature. It was found that at 300 °C, the composite with ratio WO3:graphene 2:1 or WG21 produces a 21.5 response value to 10 ppm of CO, which is higher than the other composites. The response and recovery times of WG21 are 16 and ∼4.4 min, respectively. The WG21 nanocomposite was also found to show a good sensitivity in the range concentration of 10–300 ppm. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"28 1","pages":"225 - 236"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75756041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1917836
Nabeel Z. Al-Hazeem, N. M. Ahmed, M. Z. Mat Jafri, A. Ramizy
Abstract Electrospinning has become a robust technique for the cost-effective production of fibrous materials. In a conventional electrospinning process, the produced fibers are fabricated by either vertical or horizontal setups, resulting in isotropic non-woven fibers mats. Many researchers have focused on the influence of various electrospinning parameters, solution parameters and ambient parameters. However, until now less attention has been paid on the impact of gravity on fiber and mat morphologies. This article presents a novel approach for altering the morphology of electrospun TiO2/PVP nanofiber mats using a simple concept based on different deposition angles. The electrospinning setups used involved five deposition angles (0°, 45°, 90°, 135°, and 180°), which revealed an effect of gravity on fiber mat morphology and fiber diameter. This work provides new prospects toward the design of electrospun fiber mats and provides us with additional options to achieve optimal results. Graphical Abstract
{"title":"The effect of deposition angle on morphology and diameter of electrospun TiO2/PVP nanofibers","authors":"Nabeel Z. Al-Hazeem, N. M. Ahmed, M. Z. Mat Jafri, A. Ramizy","doi":"10.1080/20550324.2021.1917836","DOIUrl":"https://doi.org/10.1080/20550324.2021.1917836","url":null,"abstract":"Abstract Electrospinning has become a robust technique for the cost-effective production of fibrous materials. In a conventional electrospinning process, the produced fibers are fabricated by either vertical or horizontal setups, resulting in isotropic non-woven fibers mats. Many researchers have focused on the influence of various electrospinning parameters, solution parameters and ambient parameters. However, until now less attention has been paid on the impact of gravity on fiber and mat morphologies. This article presents a novel approach for altering the morphology of electrospun TiO2/PVP nanofiber mats using a simple concept based on different deposition angles. The electrospinning setups used involved five deposition angles (0°, 45°, 90°, 135°, and 180°), which revealed an effect of gravity on fiber mat morphology and fiber diameter. This work provides new prospects toward the design of electrospun fiber mats and provides us with additional options to achieve optimal results. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"25 18","pages":"70 - 78"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20550324.2021.1917836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72421060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1967602
B. Darinskiĭ, A. Sidorkin, A. Sigov
Abstract The mechanisms of increasing the dielectric response of the BaTiO3/BaZrO3 ferroelectric superlattices in comparison with the characteristics of the bulk materials of the lattice are discussed. It is assumed that changes in the dielectric response in superlattices are caused by mechanical stresses arising in layers of the superlattice due to the mismatch of the sizes of the unit cells that make up the lattice of single-crystal layers. These stresses lead to the formation of longitudinal polarization in the layers of barium titanate and to the related contribution of the transverse component of the dielectric tensor to the effective permeability of the superlattice in the direction normal to the plane of the layers. The misfit stresses cause the appearance of a ferroelectric phase transition in the barium zirconate the lattice layers with an increase in the dielectric constant of these layers in the direction normal to the plane of the lattice layers. Highlights: Mismatch stresses in ferroelectric superlattices Graphical Abstract
{"title":"Influence of misfit stresses on the dielectric permeability of ferroelectric superlattices BaTiO3/BaZrO3","authors":"B. Darinskiĭ, A. Sidorkin, A. Sigov","doi":"10.1080/20550324.2021.1967602","DOIUrl":"https://doi.org/10.1080/20550324.2021.1967602","url":null,"abstract":"Abstract The mechanisms of increasing the dielectric response of the BaTiO3/BaZrO3 ferroelectric superlattices in comparison with the characteristics of the bulk materials of the lattice are discussed. It is assumed that changes in the dielectric response in superlattices are caused by mechanical stresses arising in layers of the superlattice due to the mismatch of the sizes of the unit cells that make up the lattice of single-crystal layers. These stresses lead to the formation of longitudinal polarization in the layers of barium titanate and to the related contribution of the transverse component of the dielectric tensor to the effective permeability of the superlattice in the direction normal to the plane of the layers. The misfit stresses cause the appearance of a ferroelectric phase transition in the barium zirconate the lattice layers with an increase in the dielectric constant of these layers in the direction normal to the plane of the lattice layers. Highlights: Mismatch stresses in ferroelectric superlattices Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"9 1","pages":"154 - 159"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73250363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1936972
O. Gbadeyan, S. Adali, G. Bright, B. Sithole
Abstract The current study investigates the reinforcement properties of novel nano-calcium carbonate (nano-CaCO3) synthesized from Achatina fulica snail shell. The shell was wet-milled to nanoparticle sizes using mechanochemical procedures. Epoxy nanocomposites prepared with nanofiller content ranges of 1–7 wt.% were fabricated using a conventional resin casting method. Thermal stability and degradation with mechanical properties such as tensile strength, impact strength, and the hardness properties of prepared nanocomposites were determined. It was observed that the reinforcement by the synthesized nano-CaCO3 improved the thermal stability and mechanical properties of neat epoxy irrespective of the filler content. Significantly, the inclusion of 1 w.% Achatina fulica snail shell nanoparticles increased the neat epoxy tensile strength by 75%, stiffness by over 25%, impact strength by 25%, and hardness 35%. These improved properties indicate that nano-CaCO3 synthesized from A. fulica snail shell possesses suitable reinforcement properties that can be used for nanocomposite fabrication.
{"title":"The investigation of reinforcement properties of nano-CaCO3 synthesized from Achatina fulica snail shell through mechanochemical methods on epoxy nanocomposites","authors":"O. Gbadeyan, S. Adali, G. Bright, B. Sithole","doi":"10.1080/20550324.2021.1936972","DOIUrl":"https://doi.org/10.1080/20550324.2021.1936972","url":null,"abstract":"Abstract The current study investigates the reinforcement properties of novel nano-calcium carbonate (nano-CaCO3) synthesized from Achatina fulica snail shell. The shell was wet-milled to nanoparticle sizes using mechanochemical procedures. Epoxy nanocomposites prepared with nanofiller content ranges of 1–7 wt.% were fabricated using a conventional resin casting method. Thermal stability and degradation with mechanical properties such as tensile strength, impact strength, and the hardness properties of prepared nanocomposites were determined. It was observed that the reinforcement by the synthesized nano-CaCO3 improved the thermal stability and mechanical properties of neat epoxy irrespective of the filler content. Significantly, the inclusion of 1 w.% Achatina fulica snail shell nanoparticles increased the neat epoxy tensile strength by 75%, stiffness by over 25%, impact strength by 25%, and hardness 35%. These improved properties indicate that nano-CaCO3 synthesized from A. fulica snail shell possesses suitable reinforcement properties that can be used for nanocomposite fabrication.","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"11 1","pages":"79 - 86"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84496018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.1917815
S. Goutianos, T. Peijs
Abstract Driven by the exceptionally high mechanical properties of carbon nanotubes (CNTs), over the years an extensive research effort has been devoted to the reinforcement of high-performance polymer fibres with CNTs. However, to date, improvements in the strength of these fibres have been rather modest even for relatively high CNT contents. After a brief review of CNT reinforced polymer fibres, here, analytical and numerical finite element models will be used to show that these experimental findings are to be expected based on the intrinsic mechanical properties of these polymer fibres and CNTs, their aspect ratio and interfacial characteristics. Results show that for realistic CNT contents and aspect ratios, the extraordinary strength of CNTs cannot be easily fully exploited in high-performance polymer fibres like Dyneema®or Kevlar®. Even if CNTs are perfectly aligned, bonded and dispersed, the low intrinsic shear strength of these highly anisotropic polymer fibres limits effective stress transfer and nanotube reinforcement. Graphical Abstract
{"title":"On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres","authors":"S. Goutianos, T. Peijs","doi":"10.1080/20550324.2021.1917815","DOIUrl":"https://doi.org/10.1080/20550324.2021.1917815","url":null,"abstract":"Abstract Driven by the exceptionally high mechanical properties of carbon nanotubes (CNTs), over the years an extensive research effort has been devoted to the reinforcement of high-performance polymer fibres with CNTs. However, to date, improvements in the strength of these fibres have been rather modest even for relatively high CNT contents. After a brief review of CNT reinforced polymer fibres, here, analytical and numerical finite element models will be used to show that these experimental findings are to be expected based on the intrinsic mechanical properties of these polymer fibres and CNTs, their aspect ratio and interfacial characteristics. Results show that for realistic CNT contents and aspect ratios, the extraordinary strength of CNTs cannot be easily fully exploited in high-performance polymer fibres like Dyneema®or Kevlar®. Even if CNTs are perfectly aligned, bonded and dispersed, the low intrinsic shear strength of these highly anisotropic polymer fibres limits effective stress transfer and nanotube reinforcement. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"314 1","pages":"53 - 69"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80072953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-02DOI: 10.1080/20550324.2021.2008206
T. Kubo, Miwa Shimonaka, Y. Watabe, Kazunari Akiyoshi, J. Balachandran, K. Otsuka
Abstract We conceived a novel hybrid carrier of a thermal-responsive molecularly imprinted polymer (MIP) and a magnetic thermal seed (MTS) that showed a heat-generating ability under an alternate current (AC) magnetic field. Compared to our previous publications, we modify both the MIP and MTS to improve the feasibility for the hybrid carrier, briefly we have to achieve the accurate size control and narrower size distribution of MTS, and higher molecular recognition/release ability of MIP. Firstly, uniformly sized particles which are expected to show a large heat-generating ability under an AC magnetic field were successfully prepared by controlling the core creation. Then, an MIP targeted for selective adsorption of pemetrexed (PMX), a well-known anti-cancer drug, was prepared using N-carbobenzoxy-l-glutamic acid as a pseudo template. Finally, the preliminary hybridization of the MTS and the MIP-equivalent polymer coating was examined by introducing vinyl groups as methacrylic acid using a ligand exchanging method. Graphical Abstract
{"title":"Study on magnetic thermal seeds coated with thermal-responsive molecularly imprinted polymers","authors":"T. Kubo, Miwa Shimonaka, Y. Watabe, Kazunari Akiyoshi, J. Balachandran, K. Otsuka","doi":"10.1080/20550324.2021.2008206","DOIUrl":"https://doi.org/10.1080/20550324.2021.2008206","url":null,"abstract":"Abstract We conceived a novel hybrid carrier of a thermal-responsive molecularly imprinted polymer (MIP) and a magnetic thermal seed (MTS) that showed a heat-generating ability under an alternate current (AC) magnetic field. Compared to our previous publications, we modify both the MIP and MTS to improve the feasibility for the hybrid carrier, briefly we have to achieve the accurate size control and narrower size distribution of MTS, and higher molecular recognition/release ability of MIP. Firstly, uniformly sized particles which are expected to show a large heat-generating ability under an AC magnetic field were successfully prepared by controlling the core creation. Then, an MIP targeted for selective adsorption of pemetrexed (PMX), a well-known anti-cancer drug, was prepared using N-carbobenzoxy-l-glutamic acid as a pseudo template. Finally, the preliminary hybridization of the MTS and the MIP-equivalent polymer coating was examined by introducing vinyl groups as methacrylic acid using a ligand exchanging method. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"464 1","pages":"215 - 225"},"PeriodicalIF":4.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85558003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}