Dean N Thomas, John W Wills, Mark Burman, Abbie N Williams, Danielle S G Harte, Ruby A Buckley, Mike W Urquhart, Anne-Sophie Bretonnet, Benjamin Jeffries, Angela T White, James S Harvey, Jonathan R Howe, Anthony M Lynch
The in vitro Bacterial Reverse Mutation (Ames) Test is crucial for evaluating the mutagenicity of pharmaceutical impurities. For N-nitrosamines (NAs) historical data indicated that for certain members of this chemical class the outcomes of the Ames Test did not correlate with their associated rodent carcinogenicity outcomes. This has resulted in negative outcomes in an OECD aligned Ames Test alone (standard or enhanced) no longer being considered sufficient by regulatory authorities to assess potential carcinogenic risk of NAs if present as impurities in drug products. Consequently, extensive follow-up in vivo testing can be required to characterise the potential mutagenicity and genotoxic carcinogenicity of NA impurities (i.e., beyond that defined in the ICH M7 guideline for non-NA impurities). We previously demonstrated that the mutagenicity of alkyl-nitrosamines can be detected by the appropriately designed, OECD aligned Ames Test and identified those conditions that contributed most to assay sensitivity. This OECD aligned Ames Test design was used to assess seven NAs, i.e. (methyl(neopentyl)nitrosamine, N-methyl-N-nitroso-2-propanamine, N-nitrosodiisopropylamine, bis(2-methoxyethyl)nitrosoamine, N-nitroso-N-methyl-4-fluoroaniline, dinitrosoethambutol, (R,R)- and mononitrosocaffeidine) that were reported to be negative in historical Ames Tests but positive in rodent carcinogenicity studies. All seven of the NAs were demonstrated to be mutagenic in the OECD aligned Ames test and therefore these compounds should no longer be considered as discordant (false negatives) with respect to the correlation of the Ames Test and rodent carcinogenicity. These results confirm the sensitivity of the OECD aligned Ames Test for the detection of NA mutagenicity and provides further support of its pivotal placement within the ICH M7 framework for the assessment of mutagenic impurities in pharmaceuticals to limit potential carcinogenic risk. In addition, we present data for 1-cyclopentyl-4-nitrosopiperazine, that indicates it could serve as a suitable positive control to provide further confidence in the sensitivity of the Ames Test for the NA chemical class.
体外细菌逆向突变(Ames)试验对于评估药物杂质的诱变性至关重要。对于 N-亚硝胺(NAs),历史数据表明,对于该化学类别的某些成员,阿姆斯试验的结果与其相关的啮齿动物致癌性结果并不相关。这导致监管机构不再认为仅通过经合组织(OECD)认可的阿姆斯试验(标准或增强)得出的阴性结果足以评估药物产品中作为杂质存在的 NAs 的潜在致癌风险。因此,需要进行大量的后续体内试验,以确定NA杂质的潜在致突变性和遗传毒性致癌性(即超出ICH M7指南对非NA杂质的规定)。我们之前已经证明,烷基亚硝胺的诱变性可以通过适当设计的、与 OECD 一致的埃姆斯试验进行检测,并确定了对检测灵敏度贡献最大的条件。这种经合组织调整的埃姆斯试验设计用于评估七种亚硝胺,即(甲基(新戊基)亚硝胺、N-甲基-N-亚硝基-2-丙胺、N-亚硝基二异丙基胺、双(2-甲氧基乙基)亚硝基胺、N-亚硝基-N-甲基-4-氟苯胺、二亚硝基乙胺丁醇、(R,R)-和一亚硝基咖啡碱),这些物质在以往的阿姆斯试验中呈阴性,但在啮齿动物致癌性研究中呈阳性。在经合组织(OECD)统一的阿姆斯试验中,所有七种 NA 都被证明具有诱变性,因此在阿姆斯试验与啮齿动物致癌性的相关性方面,这些化合物不应再被视为不一致(假阴性)。这些结果证实了 OECD 阿姆斯试验在检测 NA 诱变性方面的灵敏度,并进一步证明了它在 ICH M7 框架中的重要地位,该框架用于评估药品中的诱变杂质,以限制潜在的致癌风险。此外,我们还提供了 1-环戊基-4-亚硝基哌嗪的数据,表明它可以作为合适的阳性对照,进一步提高阿姆斯检测法对 NA 类化学物质灵敏度的信心。
{"title":"Resolution of Historically Discordant Ames Test Negative / Rodent Carcinogenicity Positive N-nitrosamines using a Sensitive, OECD-aligned Design.","authors":"Dean N Thomas, John W Wills, Mark Burman, Abbie N Williams, Danielle S G Harte, Ruby A Buckley, Mike W Urquhart, Anne-Sophie Bretonnet, Benjamin Jeffries, Angela T White, James S Harvey, Jonathan R Howe, Anthony M Lynch","doi":"10.1093/mutage/geae027","DOIUrl":"https://doi.org/10.1093/mutage/geae027","url":null,"abstract":"<p><p>The in vitro Bacterial Reverse Mutation (Ames) Test is crucial for evaluating the mutagenicity of pharmaceutical impurities. For N-nitrosamines (NAs) historical data indicated that for certain members of this chemical class the outcomes of the Ames Test did not correlate with their associated rodent carcinogenicity outcomes. This has resulted in negative outcomes in an OECD aligned Ames Test alone (standard or enhanced) no longer being considered sufficient by regulatory authorities to assess potential carcinogenic risk of NAs if present as impurities in drug products. Consequently, extensive follow-up in vivo testing can be required to characterise the potential mutagenicity and genotoxic carcinogenicity of NA impurities (i.e., beyond that defined in the ICH M7 guideline for non-NA impurities). We previously demonstrated that the mutagenicity of alkyl-nitrosamines can be detected by the appropriately designed, OECD aligned Ames Test and identified those conditions that contributed most to assay sensitivity. This OECD aligned Ames Test design was used to assess seven NAs, i.e. (methyl(neopentyl)nitrosamine, N-methyl-N-nitroso-2-propanamine, N-nitrosodiisopropylamine, bis(2-methoxyethyl)nitrosoamine, N-nitroso-N-methyl-4-fluoroaniline, dinitrosoethambutol, (R,R)- and mononitrosocaffeidine) that were reported to be negative in historical Ames Tests but positive in rodent carcinogenicity studies. All seven of the NAs were demonstrated to be mutagenic in the OECD aligned Ames test and therefore these compounds should no longer be considered as discordant (false negatives) with respect to the correlation of the Ames Test and rodent carcinogenicity. These results confirm the sensitivity of the OECD aligned Ames Test for the detection of NA mutagenicity and provides further support of its pivotal placement within the ICH M7 framework for the assessment of mutagenic impurities in pharmaceuticals to limit potential carcinogenic risk. In addition, we present data for 1-cyclopentyl-4-nitrosopiperazine, that indicates it could serve as a suitable positive control to provide further confidence in the sensitivity of the Ames Test for the NA chemical class.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darren Kidd, Ian Crooks, Angela Saccardo, David J Ponting, Grace Kocks, Raj Gandhi, Dean Thomas, Emily Pass, Anthony Lynch, George Johnson, Paul Fowler, Amy Wilson
The proceedings of the 36th annual meeting of the Industrial Genotoxicology Group (IGG) are shared here. The meeting held at Lhasa Limited, Leeds, UK on 28th November 2023, focussed two aspects; New Approach Methodologies (NAM's), including those for the assessment of non-standard modalities such as gas-vapour assessments and nanomaterials, and addressing the regulatory challenges associated with understanding the genotoxic and carcinogenic potential of N-nitrosamines and N-nitrosamine impurities. New approach methodologies, such as error-corrected sequencing and enhanced Ames tests that may help address these challenges were also discussed.
{"title":"Industrial Genotoxicology Group (IGG): 36th Annual Meeting Report.","authors":"Darren Kidd, Ian Crooks, Angela Saccardo, David J Ponting, Grace Kocks, Raj Gandhi, Dean Thomas, Emily Pass, Anthony Lynch, George Johnson, Paul Fowler, Amy Wilson","doi":"10.1093/mutage/geae025","DOIUrl":"https://doi.org/10.1093/mutage/geae025","url":null,"abstract":"<p><p>The proceedings of the 36th annual meeting of the Industrial Genotoxicology Group (IGG) are shared here. The meeting held at Lhasa Limited, Leeds, UK on 28th November 2023, focussed two aspects; New Approach Methodologies (NAM's), including those for the assessment of non-standard modalities such as gas-vapour assessments and nanomaterials, and addressing the regulatory challenges associated with understanding the genotoxic and carcinogenic potential of N-nitrosamines and N-nitrosamine impurities. New approach methodologies, such as error-corrected sequencing and enhanced Ames tests that may help address these challenges were also discussed.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliu Moomin, Rachel M Knott, Wendy R Russell, Mary P Moyer, Susan J Duthie
Colorectal cancer is a global killer that causes approximately 940 thousand deaths annually. Terminalia ivorensis (TI) is a tropical tree, the bark of which is used in African traditional medicine for the treatment of diabetes, malaria and ulcer. This study investigated TI as a potential anticancer agent in human colon cells in vitro. TI was extracted sequentially with petroleum ether, chloroform, ethyl acetate and ethanol. Antioxidant activity was assessed by DPPH and FRAP, and differential effects on cell viability, growth, DNA damage, DNA repair, and migration were measured in human colon cancer cells (CaCo-2) and/or non-cancerous human colonocytes (NCM460). The TI phytochemicals most strongly associated with these effects were identified by partial least-squares discriminant analysis. DPPH and FRAP activity were highest in TI ethyl acetate and ethanol extracts (p=0.001). All TI extracts significantly inhibited cell viability and growth and induced DNA damage and inhibited DNA repair in both cell models. The majority of TI extracts were significantly (p=0.01) more toxic to cancer cells than non-cancerous colonocytes. DNA repair was significantly (p=0.001) inhibited in CaCo-2 cells by ethyl acetate extract compared with NCM460 cells. Migration was also significantly inhibited (p<0.001) in CaCo-2 by ethyl acetate (80%) and ethanol extracts (75%). Specific benzoic acids, flavonoids and phenols were identified to be strongly associated with these effects. TI displayed strong antioxidant activity and specific anticancer effects by inducing cell death and DNA damage, and by inhibiting DNA repair, cell proliferation and migration.
大肠癌是全球杀手,每年导致约 940 000 人死亡。象牙枞(TI)是一种热带树木,其树皮在非洲传统医学中被用于治疗糖尿病、疟疾和溃疡。本研究将 TI 作为一种潜在的抗癌剂对人类结肠细胞进行体外研究。TI 依次用石油醚、氯仿、乙酸乙酯和乙醇提取。在人类结肠癌细胞(CaCo-2)和/或非癌人类结肠细胞(NCM460)中,用 DPPH 和 FRAP 评估了抗氧化活性,并测量了对细胞活力、生长、DNA 损伤、DNA 修复和迁移的不同影响。通过偏最小二乘法判别分析,确定了与这些效应最密切相关的 TI 植物化学物质。TI 乙酸乙酯和乙醇提取物的 DPPH 和 FRAP 活性最高(p=0.001)。在两种细胞模型中,所有 TI 提取物都能明显抑制细胞活力和生长,诱导 DNA 损伤并抑制 DNA 修复。大多数 TI 提取物对癌细胞的毒性(p=0.01)明显高于非癌结肠细胞。与 NCM460 细胞相比,乙酸乙酯提取物对 CaCo-2 细胞的 DNA 修复有明显的抑制作用(p=0.001)。乙酸乙酯提取物对迁移也有明显的抑制作用(p
{"title":"Terminalia ivorensis demonstrates antioxidant properties and alters proliferation, genomic instability and migration of human colon cancer cells in vitro.","authors":"Aliu Moomin, Rachel M Knott, Wendy R Russell, Mary P Moyer, Susan J Duthie","doi":"10.1093/mutage/geae026","DOIUrl":"https://doi.org/10.1093/mutage/geae026","url":null,"abstract":"<p><p>Colorectal cancer is a global killer that causes approximately 940 thousand deaths annually. Terminalia ivorensis (TI) is a tropical tree, the bark of which is used in African traditional medicine for the treatment of diabetes, malaria and ulcer. This study investigated TI as a potential anticancer agent in human colon cells in vitro. TI was extracted sequentially with petroleum ether, chloroform, ethyl acetate and ethanol. Antioxidant activity was assessed by DPPH and FRAP, and differential effects on cell viability, growth, DNA damage, DNA repair, and migration were measured in human colon cancer cells (CaCo-2) and/or non-cancerous human colonocytes (NCM460). The TI phytochemicals most strongly associated with these effects were identified by partial least-squares discriminant analysis. DPPH and FRAP activity were highest in TI ethyl acetate and ethanol extracts (p=0.001). All TI extracts significantly inhibited cell viability and growth and induced DNA damage and inhibited DNA repair in both cell models. The majority of TI extracts were significantly (p=0.01) more toxic to cancer cells than non-cancerous colonocytes. DNA repair was significantly (p=0.001) inhibited in CaCo-2 cells by ethyl acetate extract compared with NCM460 cells. Migration was also significantly inhibited (p<0.001) in CaCo-2 by ethyl acetate (80%) and ethanol extracts (75%). Specific benzoic acids, flavonoids and phenols were identified to be strongly associated with these effects. TI displayed strong antioxidant activity and specific anticancer effects by inducing cell death and DNA damage, and by inhibiting DNA repair, cell proliferation and migration.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaghayegh Shrokrzadeh, Shahrzad Moghim, Mohammad Shokrzadeh, Shaghayegh Aghajanshakeri
Doxorubicin, a well-known and widely used antineoplastic agent with direct ROS-accumulating activity, has proven effective in treating various cancer types. However, its non-specific cytotoxicity towards non-cancerous cells prompts concerns regarding potential adverse effects. Azithromycin is an antibiotic for treating bacterial infections and an anti-inflammatory agent, particularly beneficial in managing respiratory conditions like bronchitis and sinusitis. Despite azithromycin's well-documented antibacterial properties, its potential cellular/genomic protective effects remain unexplored. As an in vitro model, BEAS-2B cells (normal human bronchial epithelium cells) were employed in the present study to assess whether azithromycin possesses any protective properties against doxorubicin-induced cellular toxicity. Cells in pre-treatment culture were treated to various amounts of azithromycin (3.125, 6.25, 12.5, 25, and 50 μg/mL) in combination with doxorubicin at IC50 (0.08 μg/mL). Doxorubicin at 0.08 μg/mL highlighted cytotoxicity, oxidative stress, and genotoxicity. Azithromycin at 25 and 50 μg/mL markedly modulated oxidative stress and genomic damage by decreasing the ROS and LPO amounts, and suppressing DNA fragmentation in the comet assay parameters. Consequently, azithromycin may be regarded as a cytomodulating, antigenotoxic, and antioxidant agent.
{"title":"An added value of Azithromycin: mitigation of Doxorubicin associated oxidative damage and genotoxicity in normal human bronchial epithelium cells.","authors":"Shaghayegh Shrokrzadeh, Shahrzad Moghim, Mohammad Shokrzadeh, Shaghayegh Aghajanshakeri","doi":"10.1093/mutage/geae024","DOIUrl":"https://doi.org/10.1093/mutage/geae024","url":null,"abstract":"<p><p>Doxorubicin, a well-known and widely used antineoplastic agent with direct ROS-accumulating activity, has proven effective in treating various cancer types. However, its non-specific cytotoxicity towards non-cancerous cells prompts concerns regarding potential adverse effects. Azithromycin is an antibiotic for treating bacterial infections and an anti-inflammatory agent, particularly beneficial in managing respiratory conditions like bronchitis and sinusitis. Despite azithromycin's well-documented antibacterial properties, its potential cellular/genomic protective effects remain unexplored. As an in vitro model, BEAS-2B cells (normal human bronchial epithelium cells) were employed in the present study to assess whether azithromycin possesses any protective properties against doxorubicin-induced cellular toxicity. Cells in pre-treatment culture were treated to various amounts of azithromycin (3.125, 6.25, 12.5, 25, and 50 μg/mL) in combination with doxorubicin at IC50 (0.08 μg/mL). Doxorubicin at 0.08 μg/mL highlighted cytotoxicity, oxidative stress, and genotoxicity. Azithromycin at 25 and 50 μg/mL markedly modulated oxidative stress and genomic damage by decreasing the ROS and LPO amounts, and suppressing DNA fragmentation in the comet assay parameters. Consequently, azithromycin may be regarded as a cytomodulating, antigenotoxic, and antioxidant agent.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purposes of this review were to investigate the application of the comet assay in Allium cepa root cells to assess the genotoxicity of environmental samples and to analyse the experimental procedures employed. A literature search was performed selecting articles published between January 2000 and October 2023 from online databases using the combined search terms 'comet assay' and 'A. cepa'. Only 18 papers met the inclusion criteria. None of these were published in the first eight years (2000-2007), highlighting the increasing interest in using the comet assay on A. cepa to analyse environmental samples over the last decade. The majority of the selected studies (15/18, 83%) were performed on samples belonging to the water compartment on onion bulbs. Half of the selected studies (9/18) were conducted to demonstrate the DNA damaging effect of the sample, while the other half of the studies not only recognized the presence of genotoxic agents but also addressed possible remediation measures. Detailed analysis of the experimental procedures revealed heterogeneity in many key steps, such as exposure time, test controls, nuclei isolation solutions, duration of electrophoresis, and number of nuclei scored. This literature review has shown that the comet assay on A. cepa, although recognized as an appropriate tool, is underutilized in environmental toxicology. Greater standardization could lead to its more widespread use, providing valuable information on the genotoxicity of environmental samples and the ability of different processes to mitigate their negative effects on plants.
{"title":"The Allium cepa comet assay for environmental sample assessment: a scoping review.","authors":"Carlotta Alias, Ilaria Zerbini, Claudia Zani, Donatella Feretti","doi":"10.1093/mutage/geae020","DOIUrl":"10.1093/mutage/geae020","url":null,"abstract":"<p><p>The purposes of this review were to investigate the application of the comet assay in Allium cepa root cells to assess the genotoxicity of environmental samples and to analyse the experimental procedures employed. A literature search was performed selecting articles published between January 2000 and October 2023 from online databases using the combined search terms 'comet assay' and 'A. cepa'. Only 18 papers met the inclusion criteria. None of these were published in the first eight years (2000-2007), highlighting the increasing interest in using the comet assay on A. cepa to analyse environmental samples over the last decade. The majority of the selected studies (15/18, 83%) were performed on samples belonging to the water compartment on onion bulbs. Half of the selected studies (9/18) were conducted to demonstrate the DNA damaging effect of the sample, while the other half of the studies not only recognized the presence of genotoxic agents but also addressed possible remediation measures. Detailed analysis of the experimental procedures revealed heterogeneity in many key steps, such as exposure time, test controls, nuclei isolation solutions, duration of electrophoresis, and number of nuclei scored. This literature review has shown that the comet assay on A. cepa, although recognized as an appropriate tool, is underutilized in environmental toxicology. Greater standardization could lead to its more widespread use, providing valuable information on the genotoxicity of environmental samples and the ability of different processes to mitigate their negative effects on plants.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":"219-237"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klara Vokacova, Aneta Landecka, Saba Selvi, Josef Horak, Vendula Novosadova, Katerina Manakova, Miroslav Levy, Veronika Vymetalkova
Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of colon cancer (CC) patients. Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development. The expression analysis of both miRNAs was analysed in repeated whole plasma samplings (n=3, approximately every 6 months) of CC patients (n=49) by RT-qPCR. Expression levels of both miRNAs were determined in the 5-FU sensitive and resistant CC cell lines. From RNA-seq profiles of both sensitive and 5-FU resistant DLD-1 cell lines, the expression levels of miR-122-5p and miR-142-5p validated target genes were detected and compared. Significant differences in the expression levels of both miRNAs between T0 and T1 or T2 samplings were observed. Further, an association between the occurrence of relapse and miR-122-5p expression levels was noticed. Patients who did not relapse had higher expression of miR-122-5p at T1 (p=0.01; 3.16-fold change) and T2 (p=0.04; 2.79-fold change) samplings in comparison with T0 sampling. Out of all miR-122-5p validated targets (n=102), 25 genes were significantly differentially expressed between sensitive and 5-FU-resistant cell lines. Our data suggest that miR-122-5p may represent a predictive marker of tumour relapse in CC patients. In vitro data suggests that this aspect may be linked to the potential therapeutic targets of miR-122-5p related to 5-FU-based chemoresistance. However, deeper mechanistic studies are still needed for progress toward personalized medicine.
{"title":"Plasma miR-122-5p and miR-142-5p and their role in chemoresistance of colon cancer patients","authors":"Klara Vokacova, Aneta Landecka, Saba Selvi, Josef Horak, Vendula Novosadova, Katerina Manakova, Miroslav Levy, Veronika Vymetalkova","doi":"10.1093/mutage/geae023","DOIUrl":"https://doi.org/10.1093/mutage/geae023","url":null,"abstract":"Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of colon cancer (CC) patients. Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development. The expression analysis of both miRNAs was analysed in repeated whole plasma samplings (n=3, approximately every 6 months) of CC patients (n=49) by RT-qPCR. Expression levels of both miRNAs were determined in the 5-FU sensitive and resistant CC cell lines. From RNA-seq profiles of both sensitive and 5-FU resistant DLD-1 cell lines, the expression levels of miR-122-5p and miR-142-5p validated target genes were detected and compared. Significant differences in the expression levels of both miRNAs between T0 and T1 or T2 samplings were observed. Further, an association between the occurrence of relapse and miR-122-5p expression levels was noticed. Patients who did not relapse had higher expression of miR-122-5p at T1 (p=0.01; 3.16-fold change) and T2 (p=0.04; 2.79-fold change) samplings in comparison with T0 sampling. Out of all miR-122-5p validated targets (n=102), 25 genes were significantly differentially expressed between sensitive and 5-FU-resistant cell lines. Our data suggest that miR-122-5p may represent a predictive marker of tumour relapse in CC patients. In vitro data suggests that this aspect may be linked to the potential therapeutic targets of miR-122-5p related to 5-FU-based chemoresistance. However, deeper mechanistic studies are still needed for progress toward personalized medicine.","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessio Naccarati, Mihnea P Dragomir, Sonia Tarallo, Amedeo Gagliardi, Virginia Alberini, Tomas Buchler, Vaclav Liska, Gaetano Gallo, Veronika Vymetalkova, Ludmila Vodickova, Pavel Vodicka, Barbara Pardini, Giulio Ferrero
Diagnostic performance of molecular markers in surrogate tissues like stool may be affected by colorectal cancer (CRC) morphological heterogeneity. The mucinous histotype represents a subgroup of CRC with a peculiar molecular program and unfavorable disease progression. However, the percentage of mucinous morphology necessary to define this subtype is still a matter of debate. In this study, we investigated whether stool miRNA profiles of CRC patients differ in patients with mucinous histopathological subtypes compared to non-mucinous cancers. In this respect, we also explored how the stool miRNA signature reported in our previous multicentric study (Pardini et al., Gastroenterology 2023) behave in this histotype. Small-RNA sequencing was performed in fecal and tissue samples of an Italian cohort (n=172), including 27 CRC with mucinous morphology (mucinous cancers with >50% mucinous morphology and those with mucinous component >5% but <50%), 58 non-mucinous CRC, and 87 colonoscopy-negative controls. Results were compared with fecal miRNA profiles of a cohort from the Czech Republic (n=98). Most of the differentially expressed (DE) stool miRNAs (n=324) were in common between CRC with mucinous morphology and non-mucinous histopathological subtypes in comparison with healthy controls. Interestingly, the altered levels of 25 fecal miRNAs previously identified distinguishing CRC cases from controls in both cohorts were also confirmed after stratification for mucinous morphology. Forty-nine miRNAs were DE exclusively in CRC with mucinous morphology and 61 in non-mucinous CRC. Mucinous cancers and those with mucinous component showed fairly similar profiles that were comparable in the Czech cohort. Among the stool DE miRNAs observed in CRC with mucinous morphology, 20 were also altered in the comparison between tumor and adjacent mucosa tissue. This study highlights miRNAs specifically altered in CRC with mucinous morphology. Nevertheless, the performance of our stool miRNA signature in accurately distinguishing CRC cases from controls was not significantly affected by this histological subtype. This aspect further supports the use of stool miRNAs for noninvasive diagnosis and screening strategies.
{"title":"Fecal miRNA profiles in colorectal cancers with mucinous morphology.","authors":"Alessio Naccarati, Mihnea P Dragomir, Sonia Tarallo, Amedeo Gagliardi, Virginia Alberini, Tomas Buchler, Vaclav Liska, Gaetano Gallo, Veronika Vymetalkova, Ludmila Vodickova, Pavel Vodicka, Barbara Pardini, Giulio Ferrero","doi":"10.1093/mutage/geae015","DOIUrl":"https://doi.org/10.1093/mutage/geae015","url":null,"abstract":"<p><p>Diagnostic performance of molecular markers in surrogate tissues like stool may be affected by colorectal cancer (CRC) morphological heterogeneity. The mucinous histotype represents a subgroup of CRC with a peculiar molecular program and unfavorable disease progression. However, the percentage of mucinous morphology necessary to define this subtype is still a matter of debate. In this study, we investigated whether stool miRNA profiles of CRC patients differ in patients with mucinous histopathological subtypes compared to non-mucinous cancers. In this respect, we also explored how the stool miRNA signature reported in our previous multicentric study (Pardini et al., Gastroenterology 2023) behave in this histotype. Small-RNA sequencing was performed in fecal and tissue samples of an Italian cohort (n=172), including 27 CRC with mucinous morphology (mucinous cancers with >50% mucinous morphology and those with mucinous component >5% but <50%), 58 non-mucinous CRC, and 87 colonoscopy-negative controls. Results were compared with fecal miRNA profiles of a cohort from the Czech Republic (n=98). Most of the differentially expressed (DE) stool miRNAs (n=324) were in common between CRC with mucinous morphology and non-mucinous histopathological subtypes in comparison with healthy controls. Interestingly, the altered levels of 25 fecal miRNAs previously identified distinguishing CRC cases from controls in both cohorts were also confirmed after stratification for mucinous morphology. Forty-nine miRNAs were DE exclusively in CRC with mucinous morphology and 61 in non-mucinous CRC. Mucinous cancers and those with mucinous component showed fairly similar profiles that were comparable in the Czech cohort. Among the stool DE miRNAs observed in CRC with mucinous morphology, 20 were also altered in the comparison between tumor and adjacent mucosa tissue. This study highlights miRNAs specifically altered in CRC with mucinous morphology. Nevertheless, the performance of our stool miRNA signature in accurately distinguishing CRC cases from controls was not significantly affected by this histological subtype. This aspect further supports the use of stool miRNAs for noninvasive diagnosis and screening strategies.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michal Eid, Jakub Trizuljak, Renata Taslerova, Martin Gryc, Jakub Vlazny, Sara Vilmanova, Martina Jelinkova, Alena Homolova, Stepan Tucek, Jan Hlavsa, Tomas Grolich, Zdenek Kala, Zdenek Kral, Ondrej Slaby
{"title":"Incidental Germline Findings During Comprehensive Genomic Profiling of Pancreatic and Colorectal Cancer: Single-center, Molecular Tumor Board Experience.","authors":"Michal Eid, Jakub Trizuljak, Renata Taslerova, Martin Gryc, Jakub Vlazny, Sara Vilmanova, Martina Jelinkova, Alena Homolova, Stepan Tucek, Jan Hlavsa, Tomas Grolich, Zdenek Kala, Zdenek Kral, Ondrej Slaby","doi":"10.1093/mutage/geae014","DOIUrl":"https://doi.org/10.1093/mutage/geae014","url":null,"abstract":"","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akhila Sankar, Ravi Kumar Y S, Anjali Singh, Riya Roy, Rashmi Shukla, Bhupendra Verma
The therapeutic potential of the human genome has been explored through the development of next-generation therapeutics, which have had a high impact on treating genetic disorders. Classical treatments have traditionally focused on common diseases that require repeated treatments. However, with the recent advancements in the development of nucleic acids, utilizing DNA and RNA to modify or correct gene expression in genetic disorders, there has been a paradigm shift in the treatment of rare diseases, offering more potential one-time cure options. Advanced technologies that use CRISPR-Cas 9, antisense oligonucleotides, siRNA, miRNA, and aptamers are promising tools that have achieved successful breakthroughs in the treatment of various genetic disorders. The advancement in the chemistry of these molecules has improved their efficacy, reduced toxicity, and expanded their clinical use across a wide range of tissues in various categories of human disorders. However, challenges persist regarding the safety and efficacy of these advanced technologies in translating into clinical practice. This review mainly focuses on the potential therapies for rare genetic diseases and considers how next-generation techniques enable drug development to achieve long-lasting curative effects through gene inhibition, replacement, and editing.
人类基因组的治疗潜力已通过新一代疗法的开发得到挖掘,这对治疗遗传疾病产生了很大影响。传统的治疗方法主要针对需要反复治疗的常见疾病。然而,随着近年来核酸技术的发展,利用 DNA 和 RNA 来改变或纠正遗传疾病的基因表达,罕见疾病的治疗模式发生了转变,提供了更多潜在的一次性治愈方案。使用 CRISPR-Cas 9、反义寡核苷酸、siRNA、miRNA 和适配体的先进技术是很有前景的工具,在治疗各种遗传疾病方面取得了成功的突破。这些分子化学成分的进步提高了它们的疗效,降低了毒性,并将它们的临床应用扩大到各种组织,治疗各类人类疾病。然而,在将这些先进技术转化为临床实践时,其安全性和有效性仍面临挑战。本综述主要关注罕见遗传病的潜在疗法,并探讨新一代技术如何通过基因抑制、替换和编辑使药物开发达到持久的治疗效果。
{"title":"Next-generation therapeutics for rare genetic disorders.","authors":"Akhila Sankar, Ravi Kumar Y S, Anjali Singh, Riya Roy, Rashmi Shukla, Bhupendra Verma","doi":"10.1093/mutage/geae002","DOIUrl":"10.1093/mutage/geae002","url":null,"abstract":"<p><p>The therapeutic potential of the human genome has been explored through the development of next-generation therapeutics, which have had a high impact on treating genetic disorders. Classical treatments have traditionally focused on common diseases that require repeated treatments. However, with the recent advancements in the development of nucleic acids, utilizing DNA and RNA to modify or correct gene expression in genetic disorders, there has been a paradigm shift in the treatment of rare diseases, offering more potential one-time cure options. Advanced technologies that use CRISPR-Cas 9, antisense oligonucleotides, siRNA, miRNA, and aptamers are promising tools that have achieved successful breakthroughs in the treatment of various genetic disorders. The advancement in the chemistry of these molecules has improved their efficacy, reduced toxicity, and expanded their clinical use across a wide range of tissues in various categories of human disorders. However, challenges persist regarding the safety and efficacy of these advanced technologies in translating into clinical practice. This review mainly focuses on the potential therapies for rare genetic diseases and considers how next-generation techniques enable drug development to achieve long-lasting curative effects through gene inhibition, replacement, and editing.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":"157-171"},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J Burgum, Clarissa Ulrich, Natascha Partosa, Stephen J Evans, Caroline Gomes, Svenja Berit Seiffert, Robert Landsiedel, Naveed Honarvar, Shareen H Doak
The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.
{"title":"Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: recommendations for best practices.","authors":"Michael J Burgum, Clarissa Ulrich, Natascha Partosa, Stephen J Evans, Caroline Gomes, Svenja Berit Seiffert, Robert Landsiedel, Naveed Honarvar, Shareen H Doak","doi":"10.1093/mutage/geae010","DOIUrl":"10.1093/mutage/geae010","url":null,"abstract":"<p><p>The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":"205-217"},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}