Pub Date : 2024-11-01Epub Date: 2024-09-25DOI: 10.1080/17435390.2024.2407352
Nour Kahil, Noura S Abouzeinab, Mohamed A A Hussein, Mahmoud I Khalil
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
{"title":"Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review.","authors":"Nour Kahil, Noura S Abouzeinab, Mohamed A A Hussein, Mahmoud I Khalil","doi":"10.1080/17435390.2024.2407352","DOIUrl":"10.1080/17435390.2024.2407352","url":null,"abstract":"<p><p>Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"583-598"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-26DOI: 10.1080/17435390.2024.2418088
Jason William Grunberger, Hannah S Newton, Duncan Donohue, Marina A Dobrovolskaia, Hamidreza Ghandehari
Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an in vitro study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce de novo and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.
纳米粒子引起的免疫刺激可能是有益的,也可能是有害的,这取决于其预期应用。对于以免疫系统为治疗目标的适应症,如肿瘤微环境重编程、免疫疗法和疫苗,激活免疫细胞是有益的。但如果不希望出现这种情况,免疫刺激可能会导致过度炎症、细胞因子风暴和超敏反应。越来越多的二氧化硅纳米颗粒(SiNPs)被用于递送药物、成像剂和抗原,这就需要进行临床前研究,以了解载体介导的对免疫细胞亚群的数量、活化状态和功能的影响。在此,我们利用原代人类外周血单核细胞(PBMC)进行了一项体外研究,以调查四种不同大小和孔隙率的 SiNPs 的促炎特性。在静息和 LPS 激发的 PBMC 培养物中进行了细胞因子分析,以了解二氧化硅纳米粒子分别诱导新生炎症和加剧原有炎症的能力。流式细胞术研究了淋巴细胞和骨髓细胞数量和活化状态的变化,以进一步了解 SiNP 介导的免疫刺激。研究发现,无孔 SiNPs 比介孔 SiNPs 更能促进炎症反应,而较大尺寸的 SiNPs 能诱导更大的细胞因子反应。以 LPS 为诱饵的 PBMC 对 SiNPs 的敏感性增加。对经 SiNP 处理的 PBMC 进行免疫分型分析,结果发现 T 和 B 淋巴细胞、自然杀伤细胞和树突状细胞被激活。此外,在所有颗粒中都观察到调节性 T 细胞的减少和 γδ TCR T 细胞群的增加。这些研究结果对 SiNPs 在药物输送和成像剂方面的应用具有重要意义。
{"title":"Role of physicochemical properties in silica nanoparticle-mediated immunostimulation.","authors":"Jason William Grunberger, Hannah S Newton, Duncan Donohue, Marina A Dobrovolskaia, Hamidreza Ghandehari","doi":"10.1080/17435390.2024.2418088","DOIUrl":"10.1080/17435390.2024.2418088","url":null,"abstract":"<p><p>Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an <i>in vitro</i> study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce <i>de novo</i> and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"599-617"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.
{"title":"HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts.","authors":"Jiali Yuan,Yiqun Mo,Yue Zhang,Yuanbao Zhang,Qunwei Zhang","doi":"10.1080/17435390.2024.2404074","DOIUrl":"https://doi.org/10.1080/17435390.2024.2404074","url":null,"abstract":"We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"26 1","pages":"1-17"},"PeriodicalIF":5.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.
{"title":"Inflammation related to inhalation of nano and micron sized iron oxides: a systematic review.","authors":"Aurora Moen,Helge Johnsen,Danail Hristozov,Alex Zabeo,Lisa Pizzol,Oihane Ibarrola,Gary Hannon,Sarah Holmes,Fikirte Debebe Zegeye,Ulla Vogel,Adriele Prina Mello,Shan Zienolddiny-Narui,Håkan Wallin","doi":"10.1080/17435390.2024.2399039","DOIUrl":"https://doi.org/10.1080/17435390.2024.2399039","url":null,"abstract":"Inhalation exposure to iron oxide occurs in many workplaces and respirable aerosols occur during thermal processes (e.g. welding, casting) or during abrasion of iron and steel products (e.g. cutting, grinding, machining, polishing, sanding) or during handling of iron oxide pigments. There is limited evidence of adverse effects in humans specifically linked to inhalation of iron oxides. This contrasts to oxides of other metals used to alloy or for coating of steel and iron of which several have been classified as being hazardous by international and national agencies. Such metal oxides are often present in the air at workplaces. In general, iron oxides might therefore be regarded as low-toxicity, low-solubility (LTLS) particles, and are often considered to be nontoxic even if very high and prolonged inhalation exposures might result in diseases. In animal studies, such exposures lead to cancer, fibrosis and other diseases. Our hypothesis was that pulmonary-workplace exposure during manufacture and handling of SPION preparations might be harmful. We therefore conducted a systematic review of the relevant literature to understand how iron oxides deposited in the lung are related to acute and subchronic pulmonary inflammation. We included one human and several in vivo animal studies published up to February 2023. We found 25 relevant studies that were useful for deriving occupational exposure limits (OEL) for iron oxides based on an inflammatory reaction. Our review of the scientific literature indicates that lowering of health-based occupational exposure limits might be considered.","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"33 1","pages":"1-16"},"PeriodicalIF":5.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-16DOI: 10.1080/17435390.2024.2401448
Jason William Grunberger, Marina A Dobrovolskaia, Hamidreza Ghandehari
Silica nanoparticles are increasingly considered for drug delivery applications. These applications require an understanding of their biocompatibility, including their interactions with the immune system. However, systematic studies for silica nanoparticle immunological safety profiles are lacking. To fill this gap, we conducted an in vitro study investigating various aspects of silica nanoparticles' interactions with blood and immune cells. Four types of silica nanoparticles with variations in size and porosity were studied. These included nonporous Stöber silica nanoparticles with average diameters of approximately 50 and 100 nm (SNP50 and SNP100), mesoporous silica nanoparticles of approximately 100 nm (Meso100), and hollow mesoporous silica nanoparticles of approximately 100 nm (HMSNP100) in diameter, respectively. The hematological compatibility was assessed using hemolysis, complement activation, platelet aggregation, and plasma coagulation assays. The effects of nanoparticles on immune cell function were studied using in vitro phagocytosis, chemotaxis, natural killer cell cytotoxicity, leukocyte proliferation, human lymphocyte activation, colony-forming unit granulocyte-macrophage, and leukocyte procoagulant activity assays. The in vitro findings suggest that at high concentrations, corresponding to the in vivo human dose of 40 mg/kg, silica nanoparticles demonstrated an array of immunotoxic effects that depended on their physicochemical properties. However, all types of silica nanoparticles studied were not immunotoxic at concentrations corresponding to lower doses (≤ 8 mg/kg) comparable to that of nanocarriers in other nanomedicines currently used in the clinic. These findings are promising for using silica nanoparticles for the systemic delivery of bioactive and imaging agents.
{"title":"Immunological properties of silica nanoparticles: a structure-activity relationship study.","authors":"Jason William Grunberger, Marina A Dobrovolskaia, Hamidreza Ghandehari","doi":"10.1080/17435390.2024.2401448","DOIUrl":"10.1080/17435390.2024.2401448","url":null,"abstract":"<p><p>Silica nanoparticles are increasingly considered for drug delivery applications. These applications require an understanding of their biocompatibility, including their interactions with the immune system. However, systematic studies for silica nanoparticle immunological safety profiles are lacking. To fill this gap, we conducted an <i>in vitro</i> study investigating various aspects of silica nanoparticles' interactions with blood and immune cells. Four types of silica nanoparticles with variations in size and porosity were studied. These included nonporous Stöber silica nanoparticles with average diameters of approximately 50 and 100 nm (SNP50 and SNP100), mesoporous silica nanoparticles of approximately 100 nm (Meso100), and hollow mesoporous silica nanoparticles of approximately 100 nm (HMSNP100) in diameter, respectively. The hematological compatibility was assessed using hemolysis, complement activation, platelet aggregation, and plasma coagulation assays. The effects of nanoparticles on immune cell function were studied using <i>in vitro</i> phagocytosis, chemotaxis, natural killer cell cytotoxicity, leukocyte proliferation, human lymphocyte activation, colony-forming unit granulocyte-macrophage, and leukocyte procoagulant activity assays. The <i>in vitro</i> findings suggest that at high concentrations, corresponding to the <i>in vivo</i> human dose of 40 mg/kg, silica nanoparticles demonstrated an array of immunotoxic effects that depended on their physicochemical properties. However, all types of silica nanoparticles studied were not immunotoxic at concentrations corresponding to lower doses (≤ 8 mg/kg) comparable to that of nanocarriers in other nanomedicines currently used in the clinic. These findings are promising for using silica nanoparticles for the systemic delivery of bioactive and imaging agents.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"542-564"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-23DOI: 10.1080/17435390.2024.2401430
C R Kirman, B Kent, J Bigelow, R A Canady, Q Chen, W C Chou, D Li, Z Lin, V Kumar, A Paini, P Poulin, L M Sweeney, S M Hays
A critical review of the current state-of-the-science for the physiologically based pharmacokinetic (PBPK) modeling of metal nanoparticles and their application to human health risk assessment for inhalation exposures was conducted. A systematic literature search was used to identify four model groups (defined as a primary publication along with multiple supplementary publications) subject to review. Using a recent guideline document from the Organization for Economic Cooperation and Development (OECD) for PBPK model evaluation, these model groups were critically peer-reviewed by an independent panel of experts to identify those to be considered for modeling and simulation application. Based upon the expert panel input, model confidence scores for the four model groups ranged from 30 to 41 (out of a maximum score of 50). The three highest-scoring model groups were then applied to compare predictions to a different metal nanoparticle (i.e. not specifically used to parameterize the original models) using a recently published data set for tissue burdens in rats, as well as predicting human tissue burdens expected for corresponding occupational exposures. Overall, the rat models performed reasonably well in predicting the lung but tended to overestimate systemic tissue burdens. Data needs for improving the state-of-the-science, including quantitative particle characterization in tissues, nanoparticle-corona data, long-term exposure data, interspecies extrapolation methods, and human biomonitoring/toxicokinetic data are discussed.
{"title":"Physiologically based pharmacokinetic modeling of metal nanoparticles for risk assessment of inhalation exposures: a state-of-the-science expert panel review.","authors":"C R Kirman, B Kent, J Bigelow, R A Canady, Q Chen, W C Chou, D Li, Z Lin, V Kumar, A Paini, P Poulin, L M Sweeney, S M Hays","doi":"10.1080/17435390.2024.2401430","DOIUrl":"10.1080/17435390.2024.2401430","url":null,"abstract":"<p><p>A critical review of the current state-of-the-science for the physiologically based pharmacokinetic (PBPK) modeling of metal nanoparticles and their application to human health risk assessment for inhalation exposures was conducted. A systematic literature search was used to identify four model groups (defined as a primary publication along with multiple supplementary publications) subject to review. Using a recent guideline document from the Organization for Economic Cooperation and Development (OECD) for PBPK model evaluation, these model groups were critically peer-reviewed by an independent panel of experts to identify those to be considered for modeling and simulation application. Based upon the expert panel input, model confidence scores for the four model groups ranged from 30 to 41 (out of a maximum score of 50). The three highest-scoring model groups were then applied to compare predictions to a different metal nanoparticle (i.e. not specifically used to parameterize the original models) using a recently published data set for tissue burdens in rats, as well as predicting human tissue burdens expected for corresponding occupational exposures. Overall, the rat models performed reasonably well in predicting the lung but tended to overestimate systemic tissue burdens. Data needs for improving the state-of-the-science, including quantitative particle characterization in tissues, nanoparticle-corona data, long-term exposure data, interspecies extrapolation methods, and human biomonitoring/toxicokinetic data are discussed.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"527-541"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-08-05DOI: 10.1080/17435390.2024.2384408
Susann Wolf, Krishnan Sriram, Laura M A Camassa, Dhruba Pathak, Helene L Bing, Benedicte Mohr, Shan Zienolddiny-Narui, Johanna Samulin Erdem
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
{"title":"Systematic review of mechanistic evidence for TiO<sub>2</sub> nanoparticle-induced lung carcinogenicity.","authors":"Susann Wolf, Krishnan Sriram, Laura M A Camassa, Dhruba Pathak, Helene L Bing, Benedicte Mohr, Shan Zienolddiny-Narui, Johanna Samulin Erdem","doi":"10.1080/17435390.2024.2384408","DOIUrl":"10.1080/17435390.2024.2384408","url":null,"abstract":"<p><p>Nano-sized titanium dioxide particles (TiO<sub>2</sub> NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO<sub>2</sub> NPs in the lung are still unclear despite the vast number of <i>in vitro</i> and <i>in vivo</i> studies investigating TiO<sub>2</sub> NPs. Here, we systematically reviewed the existing <i>in vitro</i> and <i>in vivo</i> mechanistic evidence of TiO<sub>2</sub> NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO<sub>2</sub> NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO<sub>2</sub> NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO<sub>2</sub> NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO<sub>2</sub> NP-induced lung carcinogenicity.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"437-463"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-08-02DOI: 10.1080/17435390.2024.2386019
Dharti Bhadla, Kinnari Parekh, Neeraj Jain
The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.
{"title":"Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective.","authors":"Dharti Bhadla, Kinnari Parekh, Neeraj Jain","doi":"10.1080/17435390.2024.2386019","DOIUrl":"10.1080/17435390.2024.2386019","url":null,"abstract":"<p><p>The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"464-478"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyethylene (PE) is one of the most widely used plastics in the world. Its degradation leads to the production of small particles including microplastics and nanoplastics (NPs). Plastic particles' presence poses a health risk. The aim of this work was to investigate the toxicity of two model surfactant-free PE NPs prepared by polymerization of ethylene from cationic and anionic water-soluble initiators on human cell lines Caco-2 and HT29-MTX. After physicochemical characterization, their acute and subacute toxicity profile, including cytotoxicity, oxidative stress, and genotoxicity, was evaluated on both cell lines. Results showed a size increase of PE NPs in culture medium. Zeta potential values close to -10 mV were no longer dependent on the initiator charge after adsorption of serum components in culture medium. However, the cellular toxicity of the cationic and anionic PE NPs was very different. A time-and-concentration dependent cytotoxic, oxidative, and genotoxic effects on Caco-2 cells were only observed for PE NPs prepared with cationic initiators. No toxicity was observed on HT29-MTX, likely due to the protective mucus layer. Genotoxicity correlated with oxidative stress of some PE NPs on Caco-2 cells was observed from a concentration of 0.1 mg.mL-1 after 48-h exposure.
{"title":"Impact of polyethylene nanoplastics on human intestinal cells.","authors":"Wassim El Basset, Raphaël Cornu, Taghrid Zaiter, Léa Jacquin, Yann Pellequer, Brice Moulari, Mona Diab-Assaf, Fabrice Brunel, Vincent Monteil, Arnaud Béduneau","doi":"10.1080/17435390.2024.2393643","DOIUrl":"10.1080/17435390.2024.2393643","url":null,"abstract":"<p><p>Polyethylene (PE) is one of the most widely used plastics in the world. Its degradation leads to the production of small particles including microplastics and nanoplastics (NPs). Plastic particles' presence poses a health risk. The aim of this work was to investigate the toxicity of two model surfactant-free PE NPs prepared by polymerization of ethylene from cationic and anionic water-soluble initiators on human cell lines Caco-2 and HT29-MTX. After physicochemical characterization, their acute and subacute toxicity profile, including cytotoxicity, oxidative stress, and genotoxicity, was evaluated on both cell lines. Results showed a size increase of PE NPs in culture medium. Zeta potential values close to -10 mV were no longer dependent on the initiator charge after adsorption of serum components in culture medium. However, the cellular toxicity of the cationic and anionic PE NPs was very different. A time-and-concentration dependent cytotoxic, oxidative, and genotoxic effects on Caco-2 cells were only observed for PE NPs prepared with cationic initiators. No toxicity was observed on HT29-MTX, likely due to the protective mucus layer. Genotoxicity correlated with oxidative stress of some PE NPs on Caco-2 cells was observed from a concentration of 0.1 mg.mL<sup>-1</sup> after 48-h exposure.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"499-510"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iron oxide nanoparticles (IONPs) have been extensively explored in biomedicine, bio-sensing, hyperthermia, and drug/gene delivery, attributed to their versatile and tunable properties. However, owing to its numerous applications, the functionalization of IONPs with appropriate materials is in demand. To achieve optimal functionalization of IONPs, polydopamine (PDA) was utilized due to its ability to provide a superior functionalized surface, near-infrared light absorption, and adhesive nature to customize desired functionalized IONPs. This notion of involving PDA led to the successful synthesis of magnetite-PDA nanoparticles, where PDA is surface-coated on magnetite (Fe3O4@PDA). The Fe3O4@PDA nanoparticles were characterized using techniques like TEM, FESEM, PXRD, XPS, VSM, and FTIR, suggesting PDA's successful attachment with magnetite crystal structure retention. Human serum albumin (HSA), the predominant protein in blood plasma, interacts with the delivered nanoparticles. Therefore, we have employed various spectroscopic techniques, along with cytotoxicity, to inspect the effect of Fe3O4@PDA NPs on the stability and structure of HSA. The structural alterations were examined using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS). It has been observed that there are no structural perturbations in the secondary structure of the HSA protein after interaction with Fe3O4@PDA. Studies using steady-state fluorescence revealed that the inherent fluorescence intensities of HSA were suppressed after interaction with Fe3O4@PDA. In addition, temperature-dependent fluorescence measurements suggested that the type of quenching consists of both static and dynamic quenching simultaneously. A cytotoxicity study in Drosophila melanogaster larvae revealed no cytotoxic effects but did show a minor genotoxic effect only at higher concentrations.
{"title":"Interaction between polydopamine-based IONPs and human serum albumin (HSA): a spectroscopic analysis with cytotoxicity impact.","authors":"Himanshu Shekhar, Priyatama Behera, Ashutosh Naik, Monalisa Mishra, Harekrushna Sahoo","doi":"10.1080/17435390.2024.2392579","DOIUrl":"10.1080/17435390.2024.2392579","url":null,"abstract":"<p><p>Iron oxide nanoparticles (IONPs) have been extensively explored in biomedicine, bio-sensing, hyperthermia, and drug/gene delivery, attributed to their versatile and tunable properties. However, owing to its numerous applications, the functionalization of IONPs with appropriate materials is in demand. To achieve optimal functionalization of IONPs, polydopamine (PDA) was utilized due to its ability to provide a superior functionalized surface, near-infrared light absorption, and adhesive nature to customize desired functionalized IONPs. This notion of involving PDA led to the successful synthesis of magnetite-PDA nanoparticles, where PDA is surface-coated on magnetite (Fe<sub>3</sub>O<sub>4</sub>@PDA). The Fe<sub>3</sub>O<sub>4</sub>@PDA nanoparticles were characterized using techniques like TEM, FESEM, PXRD, XPS, VSM, and FTIR, suggesting PDA's successful attachment with magnetite crystal structure retention. Human serum albumin (HSA), the predominant protein in blood plasma, interacts with the delivered nanoparticles. Therefore, we have employed various spectroscopic techniques, along with cytotoxicity, to inspect the effect of Fe<sub>3</sub>O<sub>4</sub>@PDA NPs on the stability and structure of HSA. The structural alterations were examined using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS). It has been observed that there are no structural perturbations in the secondary structure of the HSA protein after interaction with Fe<sub>3</sub>O<sub>4</sub>@PDA. Studies using steady-state fluorescence revealed that the inherent fluorescence intensities of HSA were suppressed after interaction with Fe<sub>3</sub>O<sub>4</sub>@PDA. In addition, temperature-dependent fluorescence measurements suggested that the type of quenching consists of both static and dynamic quenching simultaneously. A cytotoxicity study in <i>Drosophila melanogaster</i> larvae revealed no cytotoxic effects but did show a minor genotoxic effect only at higher concentrations.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"479-498"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}