首页 > 最新文献

Journal of Computational Chemistry最新文献

英文 中文
A Computational Model in Excel (With ScienSolar) for Simulating Classical Electric Fields of Periodic Table Elements 用Excel (With ScienSolar)模拟元素周期表经典电场的计算模型。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-19 DOI: 10.1002/jcc.70316
Ariel Becerra Becerra, Alvaro Herrera Carrillo, Martha L. Molina Prado

This work introduces an interactive computational model built in Microsoft Excel using the ScienSolar platform to simulate classical electric fields for all periodic table elements. The approach uniquely integrates quantum-inspired concepts—including Slater's rules for electron shielding and Bohr-model orbital distributions—within an accessible spreadsheet environment that requires no programming expertise. Users can dynamically assemble multi-atomic systems, visualize 3D electric fields in real time, and directly modify physical equations to explore custom scenarios. Designed for both education and research, the tool enables rapid conceptual validation and hands-on exploration of electrostatic phenomena in atomic and molecular systems. By bridging theoretical models with practical computation, this framework offers an intuitive and flexible platform for teaching and prototyping in chemistry, materials science, and physics.

本工作介绍了一个使用ScienSolar平台在Microsoft Excel中构建的交互式计算模型,以模拟所有元素周期表元素的经典电场。这种方法独特地集成了量子启发的概念——包括斯莱特的电子屏蔽规则和玻尔模型轨道分布——在一个可访问的电子表格环境中,不需要编程专业知识。用户可以动态组装多原子系统,实时可视化三维电场,直接修改物理方程,探索自定义场景。该工具专为教育和研究而设计,可实现原子和分子系统中静电现象的快速概念验证和动手探索。通过将理论模型与实际计算相结合,该框架为化学、材料科学和物理的教学和原型设计提供了一个直观而灵活的平台。
{"title":"A Computational Model in Excel (With ScienSolar) for Simulating Classical Electric Fields of Periodic Table Elements","authors":"Ariel Becerra Becerra,&nbsp;Alvaro Herrera Carrillo,&nbsp;Martha L. Molina Prado","doi":"10.1002/jcc.70316","DOIUrl":"10.1002/jcc.70316","url":null,"abstract":"<div>\u0000 \u0000 <p>This work introduces an interactive computational model built in Microsoft Excel using the ScienSolar platform to simulate classical electric fields for all periodic table elements. The approach uniquely integrates quantum-inspired concepts—including Slater's rules for electron shielding and Bohr-model orbital distributions—within an accessible spreadsheet environment that requires no programming expertise. Users can dynamically assemble multi-atomic systems, visualize 3D electric fields in real time, and directly modify physical equations to explore custom scenarios. Designed for both education and research, the tool enables rapid conceptual validation and hands-on exploration of electrostatic phenomena in atomic and molecular systems. By bridging theoretical models with practical computation, this framework offers an intuitive and flexible platform for teaching and prototyping in chemistry, materials science, and physics.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 3","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pyHRMC: Hybrid Reverse Monte Carlo for Electron Total Scattering 电子总散射的混合反向蒙特卡罗。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-19 DOI: 10.1002/jcc.70306
Karen M. Ehrhardt, Jack D. Sundberg, Scott C. Warren

Amorphous materials exhibit certain advantageous properties compared to their crystalline counterparts, yet structural characterization is challenging due to their lack of long-range order. This issue is further compounded with amorphous nanomaterials, where strong probe-sample interactions are required. Although electron scattering measurements can address these challenges, extracting detailed structural insights remains difficult. To address this issue, we introduce pyHRMC, a Python package for Hybrid Reverse Monte Carlo (HRMC) analysis of electron total scattering. pyHRMC iteratively refines atomic positions to match experimental electron scattering, generating experimentally-derived atomistic structures. In contrast to previous HRMC software, which uses x-ray and neutron scattering, pyHRMC uses total electron scattering to facilitate investigations of amorphous nanomaterials. We demonstrate that pyHRMC outperforms conventional Reverse Monte Carlo when modeling Al2O3 by more closely replicating a target structure from the electron total scattering. The pyHRMC package provides researchers with a powerful tool for gaining structural insights into nanoscale amorphous materials.

与晶体材料相比,非晶材料表现出某些有利的特性,但由于缺乏长程有序,结构表征具有挑战性。这个问题与非晶纳米材料进一步复杂化,其中需要强探针-样品相互作用。尽管电子散射测量可以解决这些挑战,但提取详细的结构信息仍然很困难。为了解决这个问题,我们引入了pyHRMC,一个用于混合反向蒙特卡罗(HRMC)电子总散射分析的Python包。pyHRMC迭代细化原子位置,以匹配实验电子散射,产生实验衍生的原子结构。与之前使用x射线和中子散射的HRMC软件不同,pyHRMC使用全电子散射来促进非晶纳米材料的研究。我们证明pyHRMC在模拟Al2O3时,通过更接近地复制电子总散射的目标结构,优于传统的反向蒙特卡罗。pyHRMC包为研究人员提供了一个强大的工具,以获得纳米级非晶材料的结构见解。
{"title":"pyHRMC: Hybrid Reverse Monte Carlo for Electron Total Scattering","authors":"Karen M. Ehrhardt,&nbsp;Jack D. Sundberg,&nbsp;Scott C. Warren","doi":"10.1002/jcc.70306","DOIUrl":"10.1002/jcc.70306","url":null,"abstract":"<div>\u0000 \u0000 <p>Amorphous materials exhibit certain advantageous properties compared to their crystalline counterparts, yet structural characterization is challenging due to their lack of long-range order. This issue is further compounded with amorphous nanomaterials, where strong probe-sample interactions are required. Although electron scattering measurements can address these challenges, extracting detailed structural insights remains difficult. To address this issue, we introduce pyHRMC, a Python package for Hybrid Reverse Monte Carlo (HRMC) analysis of electron total scattering. pyHRMC iteratively refines atomic positions to match experimental electron scattering, generating experimentally-derived atomistic structures. In contrast to previous HRMC software, which uses x-ray and neutron scattering, pyHRMC uses total electron scattering to facilitate investigations of amorphous nanomaterials. We demonstrate that pyHRMC outperforms conventional Reverse Monte Carlo when modeling Al<sub>2</sub>O<sub>3</sub> by more closely replicating a target structure from the electron total scattering. The pyHRMC package provides researchers with a powerful tool for gaining structural insights into nanoscale amorphous materials.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 3","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating In-Context Learning in Large Language Models for Molecular Property Regression 在分子性质回归的大语言模型中评估上下文学习。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1002/jcc.70308
Chan Young Joe, Kyungwoo Song, Rakwoo Chang

Large language models (LLMs) demonstrate strong performance in natural language tasks, but their capacity for genuine in-context learning (ICL) in scientific regression remains unclear. We systematically assessed seven LLMs on molecular property prediction using a controlled framework of 56 transformed tasks that isolate shortcut learning and are designed to induce functional out-of-distribution (OOD) behavior. LLMs performed nearly perfectly on raw molecular weight prediction via shortcut cues but deteriorated under nonlinear transformations, whereas machine learning (ML) baselines showed greater robustness, yielding a performance crossover. Meta-analysis revealed that distributional descriptors and structure–activity landscape indices (SALI) predict task favorability, providing a framework for selecting between LLM- and ML-based approaches in chemistry.

大型语言模型(llm)在自然语言任务中表现出色,但它们在科学回归中真正的上下文学习(ICL)的能力尚不清楚。我们使用56个转化任务的控制框架系统地评估了7个llm的分子性质预测,这些转换任务分离了捷径学习并设计为诱导功能分布外(OOD)行为。llm在通过快捷线索进行原始分子量预测时表现近乎完美,但在非线性变换下表现恶化,而机器学习(ML)基线表现出更强的鲁棒性,从而产生了性能交叉。荟萃分析显示,分布描述符和结构-活动景观指数(SALI)预测任务偏好,为选择基于LLM和基于ml的化学方法提供了一个框架。
{"title":"Evaluating In-Context Learning in Large Language Models for Molecular Property Regression","authors":"Chan Young Joe,&nbsp;Kyungwoo Song,&nbsp;Rakwoo Chang","doi":"10.1002/jcc.70308","DOIUrl":"10.1002/jcc.70308","url":null,"abstract":"<div>\u0000 \u0000 <p>Large language models (LLMs) demonstrate strong performance in natural language tasks, but their capacity for genuine in-context learning (ICL) in scientific regression remains unclear. We systematically assessed seven LLMs on molecular property prediction using a controlled framework of 56 transformed tasks that isolate shortcut learning and are designed to induce functional out-of-distribution (OOD) behavior. LLMs performed nearly perfectly on raw molecular weight prediction via shortcut cues but deteriorated under nonlinear transformations, whereas machine learning (ML) baselines showed greater robustness, yielding a performance crossover. Meta-analysis revealed that distributional descriptors and structure–activity landscape indices (SALI) predict task favorability, providing a framework for selecting between LLM- and ML-based approaches in chemistry.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145971785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Charges via Gradient Boosting: Development and Application for Solvation Energies in Organic Solvents 梯度增强原子电荷:有机溶剂中溶剂化能的发展与应用
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1002/jcc.70310
Sergei F. Vyboishchikov

A gradient-boosting based atomic-charge scheme, BoostCha, is introduced. The BoostCha model operates in three steps: it first predicts pseudo-charges for individual atoms based on their local environments, represented by three-dimensional descriptors of Kocer–Mason–Erturk type, then refines these values using global molecular information, and finally restores the charge conservation. The BoostCha charges are employed as input features in two independent machine-learning models for predicting solvation free energies in organic solvents: ESE-Boost, a gradient-boosting model, and ESE-ANN, a dense artificial neural network. Both approaches yield strong predictive performance, with average root-mean-square errors of 0.49 and 0.52 kcal/mol, respectively. The methods demonstrate consistent performance across diverse solvent classes and are particularly accurate for alkanes, alcohols, ethers, esters, ketones, and aromatic and haloaromatic solvents.

介绍了一种基于梯度增强的原子电荷方案BoostCha。BoostCha模型分三步操作:首先根据局部环境(由Kocer-Mason-Erturk型三维描述符表示)预测单个原子的伪电荷,然后使用全局分子信息对这些值进行改进,最后恢复电荷守恒。BoostCha电荷被用作两个独立的机器学习模型的输入特征,用于预测有机溶剂中的溶剂化自由能:ESE-Boost(梯度增强模型)和ESE-ANN(密集人工神经网络)。两种方法都产生了很强的预测性能,平均均方根误差分别为0.49和0.52 kcal/mol。这些方法在不同的溶剂类别中表现出一致的性能,对烷烃、醇、醚、酯、酮、芳香族和卤代芳香族溶剂尤其准确。
{"title":"Atomic Charges via Gradient Boosting: Development and Application for Solvation Energies in Organic Solvents","authors":"Sergei F. Vyboishchikov","doi":"10.1002/jcc.70310","DOIUrl":"10.1002/jcc.70310","url":null,"abstract":"<div>\u0000 \u0000 <p>A gradient-boosting based atomic-charge scheme, <i>BoostCha,</i> is introduced. The <i>BoostCha</i> model operates in three steps: it first predicts pseudo-charges for individual atoms based on their local environments, represented by three-dimensional descriptors of Kocer–Mason–Erturk type, then refines these values using global molecular information, and finally restores the charge conservation. The <i>BoostCha</i> charges are employed as input features in two independent machine-learning models for predicting solvation free energies in organic solvents: <i>ESE-Boost</i>, a gradient-boosting model, and <i>ESE-ANN</i>, a dense artificial neural network. Both approaches yield strong predictive performance, with average root-mean-square errors of 0.49 and 0.52 kcal/mol, respectively. The methods demonstrate consistent performance across diverse solvent classes and are particularly accurate for alkanes, alcohols, ethers, esters, ketones, and aromatic and haloaromatic solvents.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Palette of Molecular Fragments for Small Molecule De Novo Design Through Isosteric Swapping 通过等位交换扩展小分子从头设计的分子片段调色板。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/jcc.70312
Steven Pak, Robert C. Rizzo

Outcomes from fragment-based assembly of small organic molecules are highly dependent on the number and type of fragments available for growth. Here, we present a new chemical searching strategy for the DOCK6 de novo design (DOCK_DN) engine which logically expands the palette of available fragments compared to the current method. Termed DOCK_SWAP, the new routine employs principles of isosteric swapping and a customized library infrastructure (iso-libraries) in which topologically related sidechains, linkers, and scaffolds have been pre-aligned and rank ordered relative to a parent fragment (iso-tables). The primary objectives of the current work are: (I) introduce the DOCK_SWAP infrastructure and algorithms, (II) characterize iso-library expansion outcomes and impact of different alignment and ranking protocols, (III) assess search performance, molecular scores, heterogeneity, and growth path coverage and (IV) evaluate lead refinement. Depending on the protocol, the new iso-libraries are roughly an order of magnitude larger (N = 2197 to 2708) than the existing library (N = 382). Large-scale simulations (N = 3420) across 57 protein–ligand systems, using three different iso-libraries each, confirm that the DOCK_SWAP code base and infrastructure is robust. Although the use of larger DOCK_SWAP iso-libraries come at an increased cost in terms of simulation time, the results highlight the many advantages over the existing DOCK_DN method for design of drug-like ligands with improved complementarity to the sites being targeted.

基于片段的有机小分子组装的结果高度依赖于可用于生长的片段的数量和类型。在这里,我们提出了一种新的DOCK6 de novo design (DOCK_DN)引擎的化学搜索策略,与目前的方法相比,它在逻辑上扩展了可用片段的选项板。新的例程称为DOCK_SWAP,它采用等构交换原则和定制的库基础设施(iso-libraries),在这种基础设施中,拓扑相关的侧链、连接器和支架已经预先对齐,并相对于父片段(iso-tables)进行排序。当前工作的主要目标是:(I)介绍DOCK_SWAP基础架构和算法,(II)表征不同比对和排序协议的iso-library扩展结果和影响,(III)评估搜索性能、分子评分、异质性和生长路径覆盖率,以及(IV)评估线索细化。根据协议的不同,新的iso-库大约比现有库(N = 382)大一个数量级(N = 2197到2708)。大规模模拟(N = 3420)跨越57个蛋白质配体系统,使用三个不同的iso- library,证实DOCK_SWAP代码库和基础设施是健壮的。虽然使用更大的DOCK_SWAP iso-libraries在模拟时间方面会增加成本,但结果突出了与现有的DOCK_DN方法相比,在设计药物样配体方面具有许多优势,并且与目标位点具有更好的互补性。
{"title":"Expanding the Palette of Molecular Fragments for Small Molecule De Novo Design Through Isosteric Swapping","authors":"Steven Pak,&nbsp;Robert C. Rizzo","doi":"10.1002/jcc.70312","DOIUrl":"10.1002/jcc.70312","url":null,"abstract":"<div>\u0000 \u0000 <p>Outcomes from fragment-based assembly of small organic molecules are highly dependent on the number and type of fragments available for growth. Here, we present a new chemical searching strategy for the DOCK6 de novo design (DOCK_DN) engine which logically expands the palette of available fragments compared to the current method. Termed DOCK_SWAP, the new routine employs principles of isosteric swapping and a customized library infrastructure (iso-libraries) in which topologically related sidechains, linkers, and scaffolds have been pre-aligned and rank ordered relative to a parent fragment (iso-tables). The primary objectives of the current work are: (I) introduce the DOCK_SWAP infrastructure and algorithms, (II) characterize iso-library expansion outcomes and impact of different alignment and ranking protocols, (III) assess search performance, molecular scores, heterogeneity, and growth path coverage and (IV) evaluate lead refinement. Depending on the protocol, the new iso-libraries are roughly an order of magnitude larger (<i>N</i> = 2197 to 2708) than the existing library (<i>N</i> = 382). Large-scale simulations (<i>N</i> = 3420) across 57 protein–ligand systems, using three different iso-libraries each, confirm that the DOCK_SWAP code base and infrastructure is robust. Although the use of larger DOCK_SWAP iso-libraries come at an increased cost in terms of simulation time, the results highlight the many advantages over the existing DOCK_DN method for design of drug-like ligands with improved complementarity to the sites being targeted.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GMSAC: A New Software for Searching the Global-Minimum Structures of Solids and Alloys by the Improved Genetic Algorithm and Embedded Atom Method GMSAC:一种基于改进遗传算法和嵌入原子法搜索固体和合金整体最小结构的新软件。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1002/jcc.70315
Yang-Yang Zhang

The global-minimum (GM) structure of alloys and compounds determines their physical, chemical, and mechanical properties, making its accurate identification critical for materials design and engineering. However, the exponential growth of possible atomic configurations with system size and the complexity of interatomic interactions pose major challenges to traditional structure-search methods. This work develops a new GMSAC package to address these challenges by integrating an improved genetic algorithm (GA) with the embedded atom method (EAM) for the structural prediction of alloys. GMSAC optimizes the GA workflow with symmetry-aware duplicate identification, adaptive operator probabilities and maximizing the fitness of population. The EAM potential is employed to rapidly calculate interatomic energies, balancing computational efficiency and prediction accuracy. Validation tests on eight binary alloy bulks (Al–Ag, Al–Cu, Au–Cu, Au–Pd, Pd–Al, Pd–Cu, Pt–Cu and Pt–Pd) demonstrate the good performance of GMSAC, which successfully maps convex hulls, identifies the stable structures per system, and locates GM structures with the lowest formation energies (e.g., Al20Cu12 for Al–Cu with −0.108 eV/atom). This work provides a new tool to accelerate the discovery of high-performance alloys and compounds.

合金和化合物的全局最小(GM)结构决定了它们的物理、化学和机械性能,使其准确识别对材料设计和工程至关重要。然而,随着系统大小和原子间相互作用的复杂性,可能的原子构型呈指数增长,这对传统的结构搜索方法提出了重大挑战。本工作开发了一个新的GMSAC包,通过集成改进的遗传算法(GA)和嵌入原子法(EAM)来解决这些挑战,用于合金的结构预测。GMSAC通过对称感知重复识别、自适应算子概率和种群适应度最大化来优化遗传算法工作流。利用EAM势来快速计算原子间能,平衡计算效率和预测精度。在8种二元合金块体(Al-Ag、Al-Cu、Au-Cu、Au-Pd、Pd-Al、Pd-Cu、Pt-Cu和Pt-Pd)上的验证试验表明,GMSAC具有良好的性能,它成功地映射了凸壳,识别了每个体系的稳定结构,并定位了形成能最低的GM结构(例如,Al-Cu的Al20Cu12为-0.108 eV/原子)。这项工作为加速高性能合金和化合物的发现提供了新的工具。
{"title":"GMSAC: A New Software for Searching the Global-Minimum Structures of Solids and Alloys by the Improved Genetic Algorithm and Embedded Atom Method","authors":"Yang-Yang Zhang","doi":"10.1002/jcc.70315","DOIUrl":"10.1002/jcc.70315","url":null,"abstract":"<div>\u0000 \u0000 <p>The global-minimum (GM) structure of alloys and compounds determines their physical, chemical, and mechanical properties, making its accurate identification critical for materials design and engineering. However, the exponential growth of possible atomic configurations with system size and the complexity of interatomic interactions pose major challenges to traditional structure-search methods. This work develops a new GMSAC package to address these challenges by integrating an improved genetic algorithm (GA) with the embedded atom method (EAM) for the structural prediction of alloys. GMSAC optimizes the GA workflow with symmetry-aware duplicate identification, adaptive operator probabilities and maximizing the fitness of population. The EAM potential is employed to rapidly calculate interatomic energies, balancing computational efficiency and prediction accuracy. Validation tests on eight binary alloy bulks (Al–Ag, Al–Cu, Au–Cu, Au–Pd, Pd–Al, Pd–Cu, Pt–Cu and Pt–Pd) demonstrate the good performance of GMSAC, which successfully maps convex hulls, identifies the stable structures per system, and locates GM structures with the lowest formation energies (e.g., Al<sub>20</sub>Cu<sub>12</sub> for Al–Cu with −0.108 eV/atom). This work provides a new tool to accelerate the discovery of high-performance alloys and compounds.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Long and Short Radii for Hydrogen in Hydrogen Bonded Complexes 氢键配合物中氢的长半径和短半径。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-09 DOI: 10.1002/jcc.70313
Abhishek Shahi, Elangannan Arunan

Hydrogen bonding was initially identified by comparing the distance between the heavy atoms D and A in a DH•••A hydrogen bond, to the sum of their van der Waals (vdW) radii as locating the H atom was not possible. In recent years, hydrogen bond radii (HBR) have been defined for typical hydrogen bond donors DH and acceptors, A. However, both these approaches make an unreasonable assumption of treating all the atoms as spheres. This study advances the understanding of hydrogen bond distances by estimating the shape of hydrogen atoms in HD molecules and in A•••HD complexes through electron density profiles. Results reveal that hydrogen exhibits an elliptical shape in both isolated HD molecules and A•••HD complexes, with the minor axis aligned along the HD bond. In non-linear hydrogen bonds, HBR exhibits angle dependence due to anisotropy in H atomic structure, validated through quantum chemical calculations and Atoms in Molecules (AIM) theory. This study underscores the necessity of adopting directional and environment-dependent HBR, short and long radii, over one spherical vdW or HBR for hydrogen bond identification. The proposed findings are also validated using the data for OH•••N and NH•••N hydrogen bonds identified in the CCDC database. We have demonstrated the utility of long and short radii using several illustrative examples.

氢键最初是通过比较D - H•••A氢键中重原子D和A之间的距离与它们的范德华半径(vdW)的总和来确定的,因为定位氢原子是不可能的。近年来,氢键半径(HBR)已经被定义为典型的氢键供体D H和受体a。然而,这两种方法都做出了一个不合理的假设,即把所有的原子都视为球体。本研究通过电子密度谱估计H - D分子和A•••H - D配合物中氢原子的形状,提高了对氢键距离的理解。结果表明,氢在分离的HD分子和A•••H•D配合物中均呈椭圆形,其短轴沿H•D键排列。在非线性氢键中,由于氢原子结构的各向异性,HBR表现出角度依赖性,这一点通过量子化学计算和分子中原子(AIM)理论得到了验证。该研究强调了采用定向和环境相关的HBR,短半径和长半径,超过一个球形vdW或HBR进行氢键识别的必要性。使用CCDC数据库中识别的O - H•••N和N - H•••N氢键数据也验证了所提出的发现。我们使用几个说明性示例演示了长半径和短半径的效用。
{"title":"The Long and Short Radii for Hydrogen in Hydrogen Bonded Complexes","authors":"Abhishek Shahi,&nbsp;Elangannan Arunan","doi":"10.1002/jcc.70313","DOIUrl":"10.1002/jcc.70313","url":null,"abstract":"<div>\u0000 \u0000 <p>Hydrogen bonding was initially identified by comparing the distance between the heavy atoms D and A in a D<span></span>H•••A hydrogen bond, to the sum of their van der Waals (vdW) radii as locating the H atom was not possible. In recent years, hydrogen bond radii (HBR) have been defined for typical hydrogen bond donors D<span></span>H and acceptors, A. However, both these approaches make an unreasonable assumption of treating all the atoms as spheres. This study advances the understanding of hydrogen bond distances by estimating the shape of hydrogen atoms in H<span></span>D molecules and in A•••H<span></span>D complexes through electron density profiles. Results reveal that hydrogen exhibits an elliptical shape in both isolated HD molecules and A•••H<span></span>D complexes, with the minor axis aligned along the H<span></span>D bond. In non-linear hydrogen bonds, HBR exhibits angle dependence due to anisotropy in H atomic structure, validated through quantum chemical calculations and Atoms in Molecules (AIM) theory. This study underscores the necessity of adopting directional and environment-dependent HBR, short and long radii, over one spherical vdW or HBR for hydrogen bond identification. The proposed findings are also validated using the data for O<span></span>H•••N and N<span></span>H•••N hydrogen bonds identified in the CCDC database. We have demonstrated the utility of long and short radii using several illustrative examples.</p>\u0000 </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking Isomerization Energies for C 5 $$ {mathrm{C}}_5 $$ – C 7 $$ {mathrm{C}}_7 $$ Hydrocarbons: The ISOC7 Database c5 $$ {mathrm{C}}_5 $$ - c7 $$ {mathrm{C}}_7 $$碳氢化合物的基准异构化能:iso7数据库。
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-09 DOI: 10.1002/jcc.70296
Amir Karton, Emmanouil Semidalas
<div> <p>Highly accurate benchmark databases are critical for the development of robust and computationally efficient electronic structure methods. We introduce the ISOC7 database, a diverse collection of 1308 unique constitutional isomers of <span></span><math> <semantics> <mrow> <msub> <mrow> <mtext>C</mtext> </mrow> <mrow> <mn>5</mn> </mrow> </msub> </mrow> <annotation>$$ {mathrm{C}}_5 $$</annotation> </semantics></math>–<span></span><math> <semantics> <mrow> <msub> <mrow> <mtext>C</mtext> </mrow> <mrow> <mn>7</mn> </mrow> </msub> </mrow> <annotation>$$ {mathrm{C}}_7 $$</annotation> </semantics></math> saturated and unsaturated hydrocarbons with reference isomerization energies at the CCSD(T)/CBS level of theory, obtained via the W1-F12 thermochemical protocol. The isomerization energies in this dataset span over 146 <span></span><math> <semantics> <mrow> <mtext>kcal</mtext> <mspace></mspace> <msup> <mrow> <mtext>mol</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <annotation>$$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$</annotation> </semantics></math>. This database was used to conduct a rigorous benchmark assessment of a wide hierarchy of computational methods. The performance of 40 contemporary density functional theory (DFT) functionals reveals a general, albeit not monotonic, improvement along the rungs of Jacob's Ladder, with lower-rung GGA and MGGA functionals providing generally poor performance. The range-separated hybrid-meta-GGA functional <span></span><math> <semantics> <mrow> <mi>ω</mi> </mrow> <annotation>$$ omega $$</annotation> </semantics></math>B97M-D4 emerges as the top DFT performer with a root-mean-square deviation (RMSD) of 1.62 <span></span><math> <semantics> <mrow> <mtext>kcal</mtext> <mspace></mspace> <msup> <mrow> <mtext>mol</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup>
高度精确的基准数据库对于开发鲁棒性和计算效率高的电子结构方法至关重要。我们介绍了iso7数据库,该数据库收集了1308种c5 $$ {mathrm{C}}_5 $$ - c7 $$ {mathrm{C}}_7 $$饱和和不饱和烃的独特结构异构体,其参考异构能在理论的CCSD(T)/CBS水平上,通过W1-F12热化学协议获得。该数据集的异构化能超过146千卡摩尔- 1 $$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$。该数据库用于对广泛的计算方法层次进行严格的基准评估。40个当代密度泛函理论(DFT)泛函的性能揭示了一个普遍的,尽管不是单调的,沿着雅各布阶梯的阶梯的改进,较低的GGA和MGGA泛函提供了普遍较差的性能。距离分离的混合-meta- gga功能ω $$ omega $$ B97M-D4表现最佳,其均方根偏差(RMSD)为1.62 kcal mol - 1 $$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$。我们还评估了计算经济的半经验和紧密结合方法。虽然传统的半经验方法是不充分的,但现代g-xTB紧密结合方法的RMSD为4.14 kcal mol - 1 $$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$。值得注意的是,机器学习神经网络潜力AIMNet2提供了卓越的精度,实现了1.67 kcal mol - 1 $$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$的RMSD,以一小部分计算成本与最佳DFT函数的性能相媲美。iso7数据库为推进量子化学和机器学习方法的开发和验证提供了一个具有挑战性的基准。
{"title":"Benchmarking Isomerization Energies for \u0000 \u0000 \u0000 \u0000 \u0000 C\u0000 \u0000 \u0000 5\u0000 \u0000 \u0000 \u0000 $$ {mathrm{C}}_5 $$\u0000 –\u0000 \u0000 \u0000 \u0000 \u0000 C\u0000 \u0000 \u0000 7\u0000 \u0000 \u0000 \u0000 $$ {mathrm{C}}_7 $$\u0000 Hydrocarbons: The ISOC7 Database","authors":"Amir Karton,&nbsp;Emmanouil Semidalas","doi":"10.1002/jcc.70296","DOIUrl":"10.1002/jcc.70296","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Highly accurate benchmark databases are critical for the development of robust and computationally efficient electronic structure methods. We introduce the ISOC7 database, a diverse collection of 1308 unique constitutional isomers of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;C&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}_5 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;–&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;C&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;7&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}_7 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; saturated and unsaturated hydrocarbons with reference isomerization energies at the CCSD(T)/CBS level of theory, obtained via the W1-F12 thermochemical protocol. The isomerization energies in this dataset span over 146 &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;kcal&lt;/mtext&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;mol&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ mathrm{kcal}kern0.3em {mathrm{mol}}^{-1} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. This database was used to conduct a rigorous benchmark assessment of a wide hierarchy of computational methods. The performance of 40 contemporary density functional theory (DFT) functionals reveals a general, albeit not monotonic, improvement along the rungs of Jacob's Ladder, with lower-rung GGA and MGGA functionals providing generally poor performance. The range-separated hybrid-meta-GGA functional &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ omega $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;B97M-D4 emerges as the top DFT performer with a root-mean-square deviation (RMSD) of 1.62 &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;kcal&lt;/mtext&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;mol&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Energy and Molecular Properties by Convergence of the One-Particle Reduced Density Matrix in Variational Quantum Eigensolvers (VQE) 变分量子本征解(VQE)中单粒子简化密度矩阵的收敛改善能量和分子性质
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-05 DOI: 10.1002/jcc.70289
Amanda Marques de Lima, Erico Souza Teixeira, Eivson Darlivam Rodrigues de Aguiar Silva, Ricardo Luiz Longo

The variational quantum eigensolver (VQE) is a relevant method for simulating molecular systems on near-term quantum computers. While its primary application is the estimation of ground-state energies, VQE also produces the one-particle reduced density matrix (1-RDM), from which other relevant molecular properties can be obtained. The accuracy of these properties depends on the reliability and convergence of the 1-RDM, which is not guaranteed by energy-only optimization. Thus, two new algorithms were introduced: VQE* that incorporates the RMSD of consecutive 1-RDM as a convergence criterion and VQE-LD that modifies the cost function by adding to the energy a term involving the RMSD of 1-RDM weighted by a proper factor. These algorithms were tested for protonated methane, CH5+$$ {}_5^{+} $$, at equilibrium and four dissociation geometries, with the k-UpCCGSD (4,4)- and GateFabric (2,2)-active space ansätze. For k-UpCCGSD, whose energies are already close to CASCI(4,4), improvements were mainly observed in density-dependent properties such as electron density, dipole moments, and Mulliken charges. For GateFabric, which initially displayed larger energy deviations, both approaches significantly improved the energy accuracy and the quality of the 1-RDM. Overall, our findings show that the convergence of the energy and of the 1-RDM provides a simple yet effective strategy to improve the accuracy of energies and molecular properties in variational quantum algorithms.

变分量子本征求解器(VQE)是在近期量子计算机上模拟分子系统的一种相关方法。虽然它的主要应用是基态能量的估计,但VQE也产生了一个粒子减少密度矩阵(1 - RDM),从中可以获得其他相关的分子性质。这些特性的准确性取决于1 - RDM的可靠性和收敛性,而仅靠能量优化并不能保证这一点。因此,引入了两种新的算法:VQE*,它将连续1‐RDM的RMSD作为收敛准则,VQE‐LD通过在能量中加入一个涉及1‐RDM的RMSD的项(由适当因子加权)来修改成本函数。在k‐UpCCGSD(4,4)‐和GateFabric(2,2)‐活性空间ansätze上,对平衡状态下的质子化甲烷(CH)和四种解离几何形状进行了测试。对于k - UpCCGSD,其能量已经接近CASCI(4,4),主要观察到密度相关性质的改善,如电子密度、偶极矩和Mulliken电荷。对于最初显示较大能量偏差的GateFabric,两种方法都显著提高了能量精度和1‐RDM的质量。总的来说,我们的研究结果表明,能量和1‐RDM的收敛提供了一种简单而有效的策略来提高变分量子算法中能量和分子性质的准确性。
{"title":"Improving Energy and Molecular Properties by Convergence of the One-Particle Reduced Density Matrix in Variational Quantum Eigensolvers (VQE)","authors":"Amanda Marques de Lima,&nbsp;Erico Souza Teixeira,&nbsp;Eivson Darlivam Rodrigues de Aguiar Silva,&nbsp;Ricardo Luiz Longo","doi":"10.1002/jcc.70289","DOIUrl":"10.1002/jcc.70289","url":null,"abstract":"<p>The variational quantum eigensolver (VQE) is a relevant method for simulating molecular systems on near-term quantum computers. While its primary application is the estimation of ground-state energies, VQE also produces the one-particle reduced density matrix (1-RDM), from which other relevant molecular properties can be obtained. The accuracy of these properties depends on the reliability and convergence of the 1-RDM, which is not guaranteed by energy-only optimization. Thus, two new algorithms were introduced: VQE* that incorporates the RMSD of consecutive 1-RDM as a convergence criterion and VQE-LD that modifies the cost function by adding to the energy a term involving the RMSD of 1-RDM weighted by a proper factor. These algorithms were tested for protonated methane, CH<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow></mrow>\u0000 <mrow>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>+</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {}_5^{+} $$</annotation>\u0000 </semantics></math>, at equilibrium and four dissociation geometries, with the k-UpCCGSD (4,4)- and GateFabric (2,2)-active space <i>ansätze</i>. For k-UpCCGSD, whose energies are already close to CASCI(4,4), improvements were mainly observed in density-dependent properties such as electron density, dipole moments, and Mulliken charges. For GateFabric, which initially displayed larger energy deviations, both approaches significantly improved the energy accuracy and the quality of the 1-RDM. Overall, our findings show that the convergence of the energy and of the 1-RDM provides a simple yet effective strategy to improve the accuracy of energies and molecular properties in variational quantum algorithms.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Integration of Slater Basis Functions Over Prolate Spheroidal Grids 长球面网格上Slater基函数的数值积分
IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-01-05 DOI: 10.1002/jcc.70291
Alexander Stark, Nathan Meier, Jeffrey Hatch, Joshua A. Kammeraad, Duy-Khoi Dang, Paul M. Zimmerman

Slater basis functions have desirable properties that can improve electronic structure simulations, but improved numerical integration methods are needed. This work builds upon the SlaterGPU library for the evaluation of Hamiltonian matrix elements in the resolution-of-the-identity approximation. In particular, a prolate spheroidal grid will provide sufficient integral accuracy to employ larger basis sets (quadruple-zeta and greater) in practical computations involving polyatomics. To integrate 3-center Coulomb and nuclear attraction terms, an improved grid representation around the third center is introduced. The RMSEs of the integral quantities are evaluated and compared to the previous numerical integration method used in SlaterGPU (Becke partitioning), resulting in a ~3 order of magnitude reduction in the error for 2-center integral quantities. The procedure is generally applicable to polyatomic systems, GPU accelerated for high performance computing, and tested on self-consistent field and full configuration interaction wavefunctions. Results for a number of 3-atom models as well as propanediyl (C3H6) demonstrate the reliability of the new integration scheme.

斯莱特基函数具有改善电子结构模拟的理想性质,但需要改进数值积分方法。这项工作建立在SlaterGPU库的基础上,用于在单位近似的分辨率中评估哈密顿矩阵元素。特别是,在涉及多原子的实际计算中,长球面网格将提供足够的积分精度,以使用更大的基集(四倍ζ或更大)。为了整合三中心库仑项和原子核吸引项,引入了一种改进的围绕第三中心的网格表示。对积分量的均方根误差进行了评估,并与SlaterGPU中使用的先前数值积分方法(Becke划分)进行了比较,结果表明,2中心积分量的误差降低了约3个数量级。该程序一般适用于多原子系统,GPU加速用于高性能计算,并在自洽场和全配置交互波函数上进行了测试。许多3原子模型以及丙二基(c3h6)的结果证明了新集成方案的可靠性。
{"title":"Numerical Integration of Slater Basis Functions Over Prolate Spheroidal Grids","authors":"Alexander Stark,&nbsp;Nathan Meier,&nbsp;Jeffrey Hatch,&nbsp;Joshua A. Kammeraad,&nbsp;Duy-Khoi Dang,&nbsp;Paul M. Zimmerman","doi":"10.1002/jcc.70291","DOIUrl":"10.1002/jcc.70291","url":null,"abstract":"<p>Slater basis functions have desirable properties that can improve electronic structure simulations, but improved numerical integration methods are needed. This work builds upon the SlaterGPU library for the evaluation of Hamiltonian matrix elements in the resolution-of-the-identity approximation. In particular, a prolate spheroidal grid will provide sufficient integral accuracy to employ larger basis sets (quadruple-zeta and greater) in practical computations involving polyatomics. To integrate 3-center Coulomb and nuclear attraction terms, an improved grid representation around the third center is introduced. The RMSEs of the integral quantities are evaluated and compared to the previous numerical integration method used in SlaterGPU (Becke partitioning), resulting in a ~3 order of magnitude reduction in the error for 2-center integral quantities. The procedure is generally applicable to polyatomic systems, GPU accelerated for high performance computing, and tested on self-consistent field and full configuration interaction wavefunctions. Results for a number of 3-atom models as well as propanediyl (C<sub>3</sub>H<sub>6</sub>) demonstrate the reliability of the new integration scheme.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"47 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1