首页 > 最新文献

Monatshefte für Mathematik最新文献

英文 中文
Uniqueness and stability of nonnegative solutions for a class of nonpositone problems in a ball 球内一类非正交问题的非负解的唯一性和稳定性
Pub Date : 2024-04-11 DOI: 10.1007/s00605-024-01977-9
Hajar Chahi, Said Hakimi

In this article, we study the uniqueness and stability of nonnegative solutions for a class of semilinear elliptic problems in a ball, when the nonlinearity has more than one zero, negative at the origin and concave.

本文研究了一类球内半线性椭圆问题的非负解的唯一性和稳定性,该问题的非线性有一个以上的零点,在原点处为负,且呈凹形。
{"title":"Uniqueness and stability of nonnegative solutions for a class of nonpositone problems in a ball","authors":"Hajar Chahi, Said Hakimi","doi":"10.1007/s00605-024-01977-9","DOIUrl":"https://doi.org/10.1007/s00605-024-01977-9","url":null,"abstract":"<p>In this article, we study the uniqueness and stability of nonnegative solutions for a class of semilinear elliptic problems in a ball, when the nonlinearity has more than one zero, negative at the origin and concave.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted periodic and discrete pseudo-differential Operators 加权周期和离散伪微分算子
Pub Date : 2024-04-11 DOI: 10.1007/s00605-024-01976-w
Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal

In this paper, we study elements of symbolic calculus for pseudo-differential operators associated with the weighted symbol class (M_{rho , Lambda }^m({mathbb {T}}times {mathbb {Z}})) (associated to a suitable weight function (Lambda ) on ({mathbb {Z}})) by deriving formulae for the asymptotic sums, composition, adjoint, transpose. We also construct the parametrix of M-elliptic pseudo-differential operators on ({mathbb {T}}). Further, we prove a version of Gohberg’s lemma for pseudo-differetial operators with weighted symbol class (M_{rho , Lambda }^0({mathbb {T}}times {mathbb {Z}})) and as an application, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is compact on (L^2({mathbb {T}})). Finally, we provide Gårding’s and Sharp Gårding’s inequality for M-elliptic operators on ({mathbb {Z}}) and ({mathbb {T}}), respectively, and present an application in the context of strong solution of the pseudo-differential equation (T_{sigma } u=f) in (L^{2}left( {mathbb {T}}right) ).

在本文中,我们通过推导渐近和、组合、邻接、转置的公式,研究与加权符号类 (M_{rho , Lambda }^m({mathbb {T}}times {mathbb {Z}}))(与({mathbb {Z}})上合适的权函数 (Lambda )相关联)相关的伪微分算子的符号微积分要素。我们还构建了 M-elliptic 伪微分算子在 ({mathbb {T}}) 上的参数矩阵。此外,我们证明了加权符号类 (M_{rho , Lambda }^0({mathbb {T}}times {mathbb {Z}})的伪微分算子的高伯格(Gohberg)定理的一个版本,并且作为应用,我们提供了一个充分必要条件来确保相应的伪微分算子在 (L^2({mathbb {T}})) 上是紧凑的。最后,我们分别提供了M-椭圆算子在({mathbb {Z}}) 和({mathbb {T}})上的高定不等式(Gårding's)和夏普高定不等式(Sharp Gårding's),并介绍了在(L^{2}left( {mathbb {T}}right) )中伪微分方程(T_{sigma } u=f)的强解中的应用。
{"title":"Weighted periodic and discrete pseudo-differential Operators","authors":"Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal","doi":"10.1007/s00605-024-01976-w","DOIUrl":"https://doi.org/10.1007/s00605-024-01976-w","url":null,"abstract":"<p>In this paper, we study elements of symbolic calculus for pseudo-differential operators associated with the weighted symbol class <span>(M_{rho , Lambda }^m({mathbb {T}}times {mathbb {Z}}))</span> (associated to a suitable weight function <span>(Lambda )</span> on <span>({mathbb {Z}})</span>) by deriving formulae for the asymptotic sums, composition, adjoint, transpose. We also construct the parametrix of <i>M</i>-elliptic pseudo-differential operators on <span>({mathbb {T}})</span>. Further, we prove a version of Gohberg’s lemma for pseudo-differetial operators with weighted symbol class <span>(M_{rho , Lambda }^0({mathbb {T}}times {mathbb {Z}}))</span> and as an application, we provide a sufficient and necessary condition to ensure that the corresponding pseudo-differential operator is compact on <span>(L^2({mathbb {T}}))</span>. Finally, we provide Gårding’s and Sharp Gårding’s inequality for <i>M</i>-elliptic operators on <span>({mathbb {Z}})</span> and <span>({mathbb {T}})</span>, respectively, and present an application in the context of strong solution of the pseudo-differential equation <span>(T_{sigma } u=f)</span> in <span>(L^{2}left( {mathbb {T}}right) )</span>.\u0000</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Gauss-Kuzmin-Lévy problem for nearest integer continued fractions 关于最近整数续分数的高斯-库兹明-列维问题
Pub Date : 2024-04-09 DOI: 10.1007/s00605-024-01968-w
Florin P. Boca, Maria Siskaki

This note provides an effective bound in the Gauss-Kuzmin-Lévy problem for some Gauss type shifts associated with nearest integer continued fractions, acting on the interval (I_0=left[ 0,frac{1}{2}right] ) or (I_0=left[ -frac{1}{2},frac{1}{2}right] ). We prove asymptotic formulas (lambda (T^{-n}I) =mu (I)(lambda ( I_0) +O(q^n))) for such transformations T, where (lambda ) is the Lebesgue measure on ({mathbb {R}}), (mu ) the normalized T-invariant Lebesgue absolutely continuous measure, I subinterval in (I_0), and (q=0.288) is smaller than the Wirsing constant (q_Wapprox 0.3036).

本注解在高斯-库兹明-莱维(Gauss-Kuzmin-Lévy)问题中为一些与最近整数续分数相关的高斯型移动提供了有效的约束,这些移动作用于区间 (I_0=left[ 0,frac{1}{2}right] ) 或 (I_0=left[ -frac{1}{2},frac{1}{2}right] )。对于这样的变换 T,我们证明了渐近公式 (lambda (T^{-n}I) =mu (I)(lambda ( I_0) +O(q^n))) ,其中 (lambda ) 是 Lebesgue measure on ({mathbb {R}})、(mu)是归一化的T不变的Lebesgue绝对连续度量,I子区间在(I_0)中,并且(q=0.288)小于维尔兴常数(q_W大约0.3036)。
{"title":"On the Gauss-Kuzmin-Lévy problem for nearest integer continued fractions","authors":"Florin P. Boca, Maria Siskaki","doi":"10.1007/s00605-024-01968-w","DOIUrl":"https://doi.org/10.1007/s00605-024-01968-w","url":null,"abstract":"<p>This note provides an effective bound in the Gauss-Kuzmin-Lévy problem for some Gauss type shifts associated with nearest integer continued fractions, acting on the interval <span>(I_0=left[ 0,frac{1}{2}right] )</span> or <span>(I_0=left[ -frac{1}{2},frac{1}{2}right] )</span>. We prove asymptotic formulas <span>(lambda (T^{-n}I) =mu (I)(lambda ( I_0) +O(q^n)))</span> for such transformations <i>T</i>, where <span>(lambda )</span> is the Lebesgue measure on <span>({mathbb {R}})</span>, <span>(mu )</span> the normalized <i>T</i>-invariant Lebesgue absolutely continuous measure, <i>I</i> subinterval in <span>(I_0)</span>, and <span>(q=0.288)</span> is smaller than the Wirsing constant <span>(q_Wapprox 0.3036)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-posedness and non-uniform dependence on initial data for the Fornberg–Whitham-type equation in Besov spaces 贝索夫空间中福恩贝格-惠瑟姆型方程的良好拟合性和对初始数据的非均匀依赖性
Pub Date : 2024-04-09 DOI: 10.1007/s00605-024-01974-y
Xueyuan Qi

In this paper, we first establish the local well-posedness for the Fornberg–Whitham-type equation in the Besov spaces (B^{s}_{p,r}({mathbb {R}})) with ( 1le p,rle infty ) and (s> max{1+frac{1}{p},frac{3}{2}}), which improve the previous work in Sobolev spaces ( H^{s}({mathbb {R}})= B^{s}_{2,2}({mathbb {R}})) with ( s>frac{3}{2}) (Lai and Luo in J Differ Equ 344:509–521, 2023). Furthermore, we prove the solution is not uniformly continuous dependence on the initial data in the Besov spaces (B^{s}_{p,r}({mathbb {R}})) with ( 1le ple infty ),( 1le r< infty ) and (s> max{1+frac{1}{p},frac{3}{2}}).

本文首先在贝索夫空间 (B^{s}_{p,r}({mathbb {R}})) with ( 1le p,rle infty ) and(s>;max{1+frac{1}{p},frac{3}{2}}), which improve the previous work in Sobolev spaces ( H^{s}({mathbb {R}})= B^{s}_{2,2}({mathbb {R}})) with( s>frac{3}{2}) (Lai and Luo in J Differ Equ 344:509-521, 2023).此外,我们还证明了在贝索夫空间 (B^{s}_{p,r}({mathbb {R}})) with ( 1le ple infty ),( 1le r< infty ) and(s> max{1+frac{1}{p},frac{3}{2}}) 中,解并非均匀连续地依赖于初始数据。
{"title":"Well-posedness and non-uniform dependence on initial data for the Fornberg–Whitham-type equation in Besov spaces","authors":"Xueyuan Qi","doi":"10.1007/s00605-024-01974-y","DOIUrl":"https://doi.org/10.1007/s00605-024-01974-y","url":null,"abstract":"<p>In this paper, we first establish the local well-posedness for the Fornberg–Whitham-type equation in the Besov spaces <span>(B^{s}_{p,r}({mathbb {R}}))</span> with <span>( 1le p,rle infty )</span> and <span>(s&gt; max{1+frac{1}{p},frac{3}{2}})</span>, which improve the previous work in Sobolev spaces <span>( H^{s}({mathbb {R}})= B^{s}_{2,2}({mathbb {R}}))</span> with <span>( s&gt;frac{3}{2})</span> (Lai and Luo in J Differ Equ 344:509–521, 2023). Furthermore, we prove the solution is not uniformly continuous dependence on the initial data in the Besov spaces <span>(B^{s}_{p,r}({mathbb {R}}))</span> with <span>( 1le ple infty )</span>,<span>( 1le r&lt; infty )</span> and <span>(s&gt; max{1+frac{1}{p},frac{3}{2}})</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the notion of the parabolic and the cuspidal support of smooth-automorphic forms and smooth-automorphic representations 论平滑同构形式和平滑同构表示的抛物面和尖顶支持的概念
Pub Date : 2024-04-08 DOI: 10.1007/s00605-024-01965-z
Harald Grobner, Sonja Žunar

In this paper we describe several new aspects of the foundations of the representation theory of the space of smooth-automorphic forms (i.e., not necessarily (K_infty )-finite automorphic forms) for general connected reductive groups over number fields. Our role model for this space of smooth-automorphic forms is a “smooth version” of the space of automorphic forms, whose internal structure was the topic of Franke’s famous paper (Ann Sci de l’ENS 2:181–279, 1998). We prove that the important decomposition along the parabolic support, and the even finer—and structurally more important—decomposition along the cuspidal support of automorphic forms transfer in a topologized version to the larger setting of smooth-automorphic forms. In this way, we establish smooth-automorphic versions of the main results of Franke and Schwermer (Math Ann 311:765–790, 1998) and of Mœglin and Waldspurger (Spectral Decomposition and Eisenstein Series, Cambridge University Press, 1995), III.2.6.

在本文中,我们描述了数域上一般连通还原群的光滑自形式空间(即,不一定是 (K_infty )-无限自形式)的表征理论基础的几个新方面。我们对这种光滑-自变形式空间的角色模型是自变形式空间的 "光滑版本",其内部结构是弗朗克著名论文(Ann Sci de l'ENS 2:181-279, 1998)的主题。我们证明,沿着抛物线支撑的重要分解,以及沿着自形的尖顶支撑的更精细--结构上更重要--的分解,都以拓扑版本转移到了更大的光滑自形空间中。这样,我们就建立了 Franke 和 Schwermer (Math Ann 311:765-790, 1998) 以及 Mœglin 和 Waldspurger (Spectral Decomposition and Eisenstein Series, Cambridge University Press, 1995) 第 III.2.6 节主要结果的平滑自变形式版本。
{"title":"On the notion of the parabolic and the cuspidal support of smooth-automorphic forms and smooth-automorphic representations","authors":"Harald Grobner, Sonja Žunar","doi":"10.1007/s00605-024-01965-z","DOIUrl":"https://doi.org/10.1007/s00605-024-01965-z","url":null,"abstract":"<p>In this paper we describe several new aspects of the foundations of the representation theory of the space of smooth-automorphic forms (i.e., not necessarily <span>(K_infty )</span>-finite automorphic forms) for general connected reductive groups over number fields. Our role model for this space of smooth-automorphic forms is a “smooth version” of the space of automorphic forms, whose internal structure was the topic of Franke’s famous paper (Ann Sci de l’ENS 2:181–279, 1998). We prove that the important decomposition along the parabolic support, and the even finer—and structurally more important—decomposition along the cuspidal support of automorphic forms transfer in a topologized version to the larger setting of smooth-automorphic forms. In this way, we establish smooth-automorphic versions of the main results of Franke and Schwermer (Math Ann 311:765–790, 1998) and of Mœglin and Waldspurger (Spectral Decomposition and Eisenstein Series, Cambridge University Press, 1995), III.2.6.\u0000</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardy’s uncertainty principle for Gabor transform on compact extensions of $$mathbb {R}^n$$ 在 $$mathbb {R}^n$ 的紧凑扩展上进行 Gabor 变换的哈代不确定性原理
Pub Date : 2024-04-08 DOI: 10.1007/s00605-024-01960-4
Kais Smaoui

We prove in this paper a generalization of Hardy’s theorem for Gabor transform in the setup of the semidirect product (mathbb {R}^nrtimes K), where K is a compact subgroup of automorphisms of (mathbb {R}^n). We also solve the sharpness problem and thus obtain a complete analogue of Hardy’s theorem for Gabor transform. The representation theory and Plancherel formula are fundamental tools in the proof of our results.

在本文中,我们证明了哈代定理在半间接积 (mathbb {R}^nrtimes K) 的设置中对 Gabor 变换的概括,其中 K 是 (mathbb {R}^n) 的一个紧凑的自动子群。我们还解决了尖锐性问题,从而得到了哈代定理关于 Gabor 变换的完整类比。表示理论和 Plancherel 公式是证明我们结果的基本工具。
{"title":"Hardy’s uncertainty principle for Gabor transform on compact extensions of $$mathbb {R}^n$$","authors":"Kais Smaoui","doi":"10.1007/s00605-024-01960-4","DOIUrl":"https://doi.org/10.1007/s00605-024-01960-4","url":null,"abstract":"<p>We prove in this paper a generalization of Hardy’s theorem for Gabor transform in the setup of the semidirect product <span>(mathbb {R}^nrtimes K)</span>, where <i>K</i> is a compact subgroup of automorphisms of <span>(mathbb {R}^n)</span>. We also solve the sharpness problem and thus obtain a complete analogue of Hardy’s theorem for Gabor transform. The representation theory and Plancherel formula are fundamental tools in the proof of our results.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some questions about complex harmonic functions 关于复调函数的几个问题
Pub Date : 2024-04-07 DOI: 10.1007/s00605-024-01956-0
Luis E. Benítez-Babilonia, Raúl Felipe

In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by (HH^{2}(mathbb {D})) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form (chi +overline{pi }) where (chi ,pi ) are analytic functions from (mathbb {D}) into (mathbb {D}). We also analyze the space of bounded linear operators on (HH^{2}(mathbb {D})).

在本文中,我们提出了复调函数类中的组成积,从而使两个此类函数的组成再次成为复调函数。由此,我们开始研究该类函数的迭代,并简要展示了其作为未来研究课题的潜力。与此同时,我们定义并研究了复调函数的哈代类型空间上的组成算子,用 (HH^{2}(mathbb {D}) 表示。这些组成算子的符号具有 (chi +overline{pi }) 的形式,其中 (chi ,pi ) 是从 (mathbb {D}) 到 (mathbb {D}) 的解析函数。我们还分析了 (HH^{2}(mathbb {D})) 上有界线性算子的空间。
{"title":"Some questions about complex harmonic functions","authors":"Luis E. Benítez-Babilonia, Raúl Felipe","doi":"10.1007/s00605-024-01956-0","DOIUrl":"https://doi.org/10.1007/s00605-024-01956-0","url":null,"abstract":"<p>In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by <span>(HH^{2}(mathbb {D}))</span> of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form <span>(chi +overline{pi })</span> where <span>(chi ,pi )</span> are analytic functions from <span>(mathbb {D})</span> into <span>(mathbb {D})</span>. We also analyze the space of bounded linear operators on <span>(HH^{2}(mathbb {D}))</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit solution for a Sea-Breeze flow model with special viscosity functions 具有特殊粘度函数的海风流动模型的显式求解
Pub Date : 2024-04-07 DOI: 10.1007/s00605-024-01975-x
Zhuohao Li, JinRong Wang

In this paper, we are concerned with determining the explicit solution of a Sea-Breeze flow model by selecting a special viscosity function. Firstly, we examine the exact solution when the viscosity function is related to a nonnegative constant coefficient. Further, by employing suitable transformations and forcing terms, we transform the original second order differential equation corresponding to the Sea-Breeze flow model into the Bessel equation and derive the corresponding exact solution. Finally, we determine the exact solution when the viscosity function is related to a nonnegative quadratic function.

本文关注的是通过选择特殊的粘度函数来确定海风流模型的显式解。首先,我们研究了粘度函数与非负常数系数相关时的精确解。然后,通过采用适当的变换和强制项,我们将与海风流动模型相对应的原始二阶微分方程转换为贝塞尔方程,并推导出相应的精确解。最后,我们确定了粘度函数与非负二次函数相关时的精确解。
{"title":"Explicit solution for a Sea-Breeze flow model with special viscosity functions","authors":"Zhuohao Li, JinRong Wang","doi":"10.1007/s00605-024-01975-x","DOIUrl":"https://doi.org/10.1007/s00605-024-01975-x","url":null,"abstract":"<p>In this paper, we are concerned with determining the explicit solution of a Sea-Breeze flow model by selecting a special viscosity function. Firstly, we examine the exact solution when the viscosity function is related to a nonnegative constant coefficient. Further, by employing suitable transformations and forcing terms, we transform the original second order differential equation corresponding to the Sea-Breeze flow model into the Bessel equation and derive the corresponding exact solution. Finally, we determine the exact solution when the viscosity function is related to a nonnegative quadratic function.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"299 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity results for system of Pucci’s extremal operator 普奇极值算子系统的多重性结果
Pub Date : 2024-04-06 DOI: 10.1007/s00605-024-01972-0

Abstract

This article deals with the existence of multiple positive solutions to the following system of nonlinear equations involving Pucci’s extremal operators: $$begin{aligned} left{ begin{aligned} -mathcal {M}_{lambda _1,Lambda _1}^+(D^2u_1)&=f_1(u_1,u_2,dots ,u_n)~~~{} & {} textrm{in}~~Omega , -mathcal {M}_{lambda _2,Lambda _2}^+(D^2u_2)&=f_2(u_1,u_2,dots ,u_n)~~~{} & {} textrm{in}~~Omega , ~~~~~~~~vdots&=~~~~~~~~~~~~ vdots -mathcal {M}_{lambda _n,Lambda _n}^+(D^2u_n)&=f_n(u_1,u_2,dots ,u_n)~~~{} & {} textrm{in}~~Omega , u_1=u_2=dots =u_n&=0~~{} & {} textrm{on}~~partial Omega , end{aligned} right. end{aligned}$$ where (Omega ) is a smooth and bounded domain in (mathbb {R}^N) and (f_i:[0,infty )times [0,infty )dots times [0,infty )rightarrow [0,infty )) are (C^{alpha }) functions for (i=1,2,dots ,n) . The multiplicity result in this work is motivated by the work Amann (SIAM Rev 18(4):620–709, 1976), and Shivaji (Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987), where the three solutions theorem (multiplicity) has been proved for linear equations. Later on, it was extended for a system of equations involving the Laplace operator by Shivaji and Ali (Differ Integr Equ 19(6):669–680, 2006). Thus, the results here can be considered as a nonlinear analog of the results mentioned above. We also have applied the above results to show the existence of three positive solutions to a system of nonlinear elliptic equations having combined sublinear growth by explicitly constructing two ordered pairs of sub and supersolutions.

摘要 本文论述了下列涉及 Pucci 极值算子的非线性方程组的多正解的存在性: $$begin{aligned}left{ begin{aligned} -mathcal {M}_{lambda _1,Lambda _1}^+(D^2u_1)&=f_1(u_1,u_2,dots ,u_n)~~~{} & {}textrm{in}~~Omega , -mathcal {M}_{lambda _2,Lambda _2}^+(D^2u_2)&=f_2(u_1,u_2,dots ,u_n)~~~{} & {}textrm{in}~~Omega ,~~~~~~~~vdots&=~~~~~~~~~~~~ vdots -mathcal {M}_{lambda _n,Lambda _n}^+(D^2u_n)&=f_n(u_1,u_2,dots ,u_n)~~~{} & {}textrm{in}~~Omega , u_1=u_2=dots =u_n&=0~~{} & {}(textrm{on}~~partialOmega , (end{aligned})(right.end{aligned}$ 其中 (Omega ) 是在(mathbb {R}^N) 中的一个光滑的有界域,并且 (f_i:[都是(i=1,2,dots ,n)的(C^{α})函数。这项工作中的多重性结果受 Amann(SIAM Rev 18(4):620-709,1976 年)和 Shivaji(Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987 年)工作的启发,在这些工作中,三解定理(多重性)已被证明适用于线性方程。后来,Shivaji 和 Ali 对涉及拉普拉斯算子的方程组进行了扩展(Differ Integr Equ 19(6):669-680, 2006)。因此,这里的结果可视为上述结果的非线性类似物。我们还应用上述结果,通过明确地构造两对有序的子解和超解,证明了具有联合次线性增长的非线性椭圆方程系统存在三个正解。
{"title":"Multiplicity results for system of Pucci’s extremal operator","authors":"","doi":"10.1007/s00605-024-01972-0","DOIUrl":"https://doi.org/10.1007/s00605-024-01972-0","url":null,"abstract":"<h3>Abstract</h3> <p>This article deals with the existence of multiple positive solutions to the following system of nonlinear equations involving Pucci’s extremal operators: <span> <span>$$begin{aligned} left{ begin{aligned} -mathcal {M}_{lambda _1,Lambda _1}^+(D^2u_1)&amp;=f_1(u_1,u_2,dots ,u_n)~~~{} &amp; {} textrm{in}~~Omega , -mathcal {M}_{lambda _2,Lambda _2}^+(D^2u_2)&amp;=f_2(u_1,u_2,dots ,u_n)~~~{} &amp; {} textrm{in}~~Omega , ~~~~~~~~vdots&amp;=~~~~~~~~~~~~ vdots -mathcal {M}_{lambda _n,Lambda _n}^+(D^2u_n)&amp;=f_n(u_1,u_2,dots ,u_n)~~~{} &amp; {} textrm{in}~~Omega , u_1=u_2=dots =u_n&amp;=0~~{} &amp; {} textrm{on}~~partial Omega , end{aligned} right. end{aligned}$$</span> </span>where <span> <span>(Omega )</span> </span> is a smooth and bounded domain in <span> <span>(mathbb {R}^N)</span> </span> and <span> <span>(f_i:[0,infty )times [0,infty )dots times [0,infty )rightarrow [0,infty ))</span> </span> are <span> <span>(C^{alpha })</span> </span> functions for <span> <span>(i=1,2,dots ,n)</span> </span>. The multiplicity result in this work is motivated by the work Amann (SIAM Rev 18(4):620–709, 1976), and Shivaji (Nonlinear analysis and applications (Arlington, Tex., 1986), Dekker, New York, 1987), where the three solutions theorem (multiplicity) has been proved for linear equations. Later on, it was extended for a system of equations involving the Laplace operator by Shivaji and Ali (Differ Integr Equ 19(6):669–680, 2006). Thus, the results here can be considered as a nonlinear analog of the results mentioned above. We also have applied the above results to show the existence of three positive solutions to a system of nonlinear elliptic equations having combined sublinear growth by explicitly constructing two ordered pairs of sub and supersolutions.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique double base expansions 独特的双基地扩展
Pub Date : 2024-04-06 DOI: 10.1007/s00605-024-01973-z

Abstract

For two real bases (q_0, q_1 > 1) , we consider expansions of real numbers of the form (sum _{k=1}^{infty } i_k/(q_{i_1}q_{i_2}ldots q_{i_k})) with (i_k in {0,1}) , which we call ((q_0,q_1)) -expansions. A sequence ((i_k)) is called a unique ((q_0,q_1)) -expansion if all other sequences have different values as ((q_0,q_1)) -expansions, and the set of unique ((q_0,q_1)) -expansions is denoted by (U_{q_0,q_1}) . In the special case (q_0 = q_1 = q) , the set (U_{q,q}) is trivial if q is below the golden ratio and uncountable if q is above the Komornik–Loreti constant. The curve separating pairs of bases ((q_0, q_1)) with trivial (U_{q_0,q_1}) from those with non-trivial (U_{q_0,q_1}) is the graph of a function (mathcal {G}(q_0)) that we call generalized golden ratio. Similarly, the curve separating pairs ((q_0, q_1)) with countable (U_{q_0,q_1}) from those with uncountable (U_{q_0,q_1}) is the graph of a function (mathcal {K}(q_0)) that we call generalized Komornik–Loreti constant. We show that the two curves are symmetric in (q_0) and (q_1) , that (mathcal {G}) and (mathcal {K}) are continuous, strictly decreasing, hence almost everywhere differentiable on ((1,infty )) , and that the Hausdorff dimension of the set of (q_0) satisfying (mathcal {G}(q_0)=mathcal {K}(q_0)) is zero. We give formulas for (mathcal {G}(q_0)) and (mathcal {K}(q_0)) for all (q_0 > 1) , using characterizations of when a binary subshift avoiding a lexicographic interval is trivial, countable, uncountable with zero entropy and uncountable with positive entropy respectively. Our characterizations in terms of S-adic sequences including Sturmian and the Thue–Morse sequences are simpler than those of Labarca and Moreira (Ann Inst Henri Poincaré Anal Non Linéaire 23, 683–694, 2006) and Glendinning and Sidorov (Ergod Theory Dyn Syst 35, 1208–1228, 2015), and are relevant also for other open dynamical systems.

Abstract 对于两个实基 (q_0, q_1 > 1), 我们考虑实数的展开形式为 (sum _{k=1}^{infty } i_k/(q_{i_1}q_{i_2}ldots q_{i_k})) with (i_k in {0,1}), 我们称之为 ((q_0,q_1))-展开。一个序列 ((i_k)) 被称为一个唯一的 ((q_0,q_1))-扩展,如果所有其他序列都有不同的值((q_0,q_1))-展开式的集合表示为-展开的集合用 (U_{q_0,q_1}) 表示。在特殊情况下 (q_0 = q_1 = q) ,如果 q 低于黄金分割率,那么集合 (U_{q,q}) 是微不足道的;如果 q 高于科莫尼克-洛雷蒂常数,那么集合 (U_{q,q}) 是不可数的。将具有琐碎的(U_{q_0,q_1})和具有非琐碎的(U_{q_0,q_1})的基对分开的曲线是函数 (mathcal {G}(q_0)) 的图形,我们称之为广义黄金比率。同样,将可数(U_{q_0,q_1})和不可数(U_{q_0,q_1})的数对((q_0, q_1))分开的曲线是函数(mathcal {K}(q_0)) 的图,我们称之为广义科莫尼克-洛雷蒂常数。我们证明这两条曲线在 (q_0) 和 (q_1) 上是对称的,(mathcal {G}) 和 (mathcal {K}) 是连续的、严格递减的,因此在 ((1,infty )) 上几乎无处不可变。并且满足 (mathcal {G}(q_0)=mathcal {K}(q_0)) 的 (q_0) 的集合的豪斯多夫维度为零。对于所有的 (q_0 > 1) ,我们给出了 (mathcal {G}(q_0)) 和 (mathcal {K}(q_0)) 的公式,分别使用了避开词典区间的二元子移位是微不足道的、可数的、熵为零的不可数的和熵为正的不可数的时的特征。我们用 S-adic 序列(包括 Sturmian 序列和 Thue-Morse 序列)进行的描述比 Labarca 和 Moreira (Ann Inst Henri Poincaré Anal Non Linéaire 23, 683-694, 2006) 以及 Glendinning 和 Sidorov (Ergod Theory Dyn Syst 35, 1208-1228, 2015) 的描述更简单,而且也适用于其他开放动力学系统。
{"title":"Unique double base expansions","authors":"","doi":"10.1007/s00605-024-01973-z","DOIUrl":"https://doi.org/10.1007/s00605-024-01973-z","url":null,"abstract":"<h3>Abstract</h3> <p>For two real bases <span> <span>(q_0, q_1 &gt; 1)</span> </span>, we consider expansions of real numbers of the form <span> <span>(sum _{k=1}^{infty } i_k/(q_{i_1}q_{i_2}ldots q_{i_k}))</span> </span> with <span> <span>(i_k in {0,1})</span> </span>, which we call <span> <span>((q_0,q_1))</span> </span>-expansions. A sequence <span> <span>((i_k))</span> </span> is called a unique <span> <span>((q_0,q_1))</span> </span>-expansion if all other sequences have different values as <span> <span>((q_0,q_1))</span> </span>-expansions, and the set of unique <span> <span>((q_0,q_1))</span> </span>-expansions is denoted by <span> <span>(U_{q_0,q_1})</span> </span>. In the special case <span> <span>(q_0 = q_1 = q)</span> </span>, the set <span> <span>(U_{q,q})</span> </span> is trivial if <em>q</em> is below the golden ratio and uncountable if <em>q</em> is above the Komornik–Loreti constant. The curve separating pairs of bases <span> <span>((q_0, q_1))</span> </span> with trivial <span> <span>(U_{q_0,q_1})</span> </span> from those with non-trivial <span> <span>(U_{q_0,q_1})</span> </span> is the graph of a function <span> <span>(mathcal {G}(q_0))</span> </span> that we call generalized golden ratio. Similarly, the curve separating pairs <span> <span>((q_0, q_1))</span> </span> with countable <span> <span>(U_{q_0,q_1})</span> </span> from those with uncountable <span> <span>(U_{q_0,q_1})</span> </span> is the graph of a function <span> <span>(mathcal {K}(q_0))</span> </span> that we call generalized Komornik–Loreti constant. We show that the two curves are symmetric in <span> <span>(q_0)</span> </span> and <span> <span>(q_1)</span> </span>, that <span> <span>(mathcal {G})</span> </span> and <span> <span>(mathcal {K})</span> </span> are continuous, strictly decreasing, hence almost everywhere differentiable on <span> <span>((1,infty ))</span> </span>, and that the Hausdorff dimension of the set of <span> <span>(q_0)</span> </span> satisfying <span> <span>(mathcal {G}(q_0)=mathcal {K}(q_0))</span> </span> is zero. We give formulas for <span> <span>(mathcal {G}(q_0))</span> </span> and <span> <span>(mathcal {K}(q_0))</span> </span> for all <span> <span>(q_0 &gt; 1)</span> </span>, using characterizations of when a binary subshift avoiding a lexicographic interval is trivial, countable, uncountable with zero entropy and uncountable with positive entropy respectively. Our characterizations in terms of <em>S</em>-adic sequences including Sturmian and the Thue–Morse sequences are simpler than those of Labarca and Moreira (Ann Inst Henri Poincaré Anal Non Linéaire 23, 683–694, 2006) and Glendinning and Sidorov (Ergod Theory Dyn Syst 35, 1208–1228, 2015), and are relevant also for other open dynamical systems.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Monatshefte für Mathematik
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1