首页 > 最新文献

Nature genetics最新文献

英文 中文
Protein–protein interactions shape trans-regulatory impact of genetic variation on protein expression and complex traits 蛋白质-蛋白质相互作用形成基因变异对蛋白质表达和复杂性状的反调控影响
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-07 DOI: 10.1038/s41588-025-02449-y
Jinghui Li, Yang I. Li, Xuanyao Liu
Most genetic variants influence complex traits by affecting gene regulation. Yet, despite comprehensive catalogs of molecular quantitative trait loci (QTLs), linking trait-associated variants to biological functions remains difficult. By re-analyzing large maps of protein QTLs (pQTLs), we found that genes with trans-pQTLs but no cis-pQTLs are under strong selective constraints and are particularly informative in interpreting genome-wide association study (GWAS) loci. We observed that trans-pQTLs and their target proteins are frequently involved in protein–protein interactions (PPIs). Notably, trans-pQTLs are enriched in missense variants and at PPI interfaces, suggesting a key role of PPIs in the trans-regulation of proteome. Using PPI annotations to guide trans-pQTL mapping, we identified 17,662 trans-pQTLs affecting 961 PPI clusters after accounting for blood cell composition effects. These trans-pQTLs colocalized with 36% GWAS loci per trait on average for 27 complex traits, helping in many cases to link GWAS loci to cellular function. Finally, we identified trans-pQTL effects at multiple autoimmune GWAS loci that converge to the same PPIs, pinpointing protein complexes and signaling pathways that show promising therapeutic target potential. Protein quantitative trait loci show enrichment of trans effects among proteins in the same interaction networks and among missense variants at interaction interfaces, highlighting pathways impacted by trait-associated variants.
大多数遗传变异通过影响基因调控来影响复杂性状。然而,尽管分子数量性状位点(qtl)的目录很全面,但将性状相关变异与生物学功能联系起来仍然很困难。通过重新分析蛋白质qtl (pQTLs)的大图谱,我们发现具有反式pQTLs而不具有顺式pQTLs的基因受到强烈的选择约束,并且在解释全基因组关联研究(GWAS)位点方面具有特别的信息。我们观察到反式pqtl及其靶蛋白经常参与蛋白-蛋白相互作用(PPIs)。值得注意的是,反式pqtl在错义变体和PPI界面上富集,这表明PPI在蛋白质组的反式调节中发挥了关键作用。使用PPI注释来指导trans-pQTL定位,在考虑血细胞组成效应后,我们确定了17,662个trans-pQTL,影响961个PPI集群。这些反式pqtl在27个复杂性状中平均与每个性状36%的GWAS位点共定位,有助于在许多情况下将GWAS位点与细胞功能联系起来。最后,我们在多个自身免疫GWAS基因座上发现了反式pqtl效应,这些基因座会聚到相同的PPIs上,精确定位了显示出有希望的治疗靶点潜力的蛋白质复合物和信号通路。蛋白质数量性状位点在相同相互作用网络中的蛋白质之间和相互作用界面的错义变异之间显示出反效应的富集,突出了受性状相关变异影响的途径。
{"title":"Protein–protein interactions shape trans-regulatory impact of genetic variation on protein expression and complex traits","authors":"Jinghui Li, Yang I. Li, Xuanyao Liu","doi":"10.1038/s41588-025-02449-y","DOIUrl":"10.1038/s41588-025-02449-y","url":null,"abstract":"Most genetic variants influence complex traits by affecting gene regulation. Yet, despite comprehensive catalogs of molecular quantitative trait loci (QTLs), linking trait-associated variants to biological functions remains difficult. By re-analyzing large maps of protein QTLs (pQTLs), we found that genes with trans-pQTLs but no cis-pQTLs are under strong selective constraints and are particularly informative in interpreting genome-wide association study (GWAS) loci. We observed that trans-pQTLs and their target proteins are frequently involved in protein–protein interactions (PPIs). Notably, trans-pQTLs are enriched in missense variants and at PPI interfaces, suggesting a key role of PPIs in the trans-regulation of proteome. Using PPI annotations to guide trans-pQTL mapping, we identified 17,662 trans-pQTLs affecting 961 PPI clusters after accounting for blood cell composition effects. These trans-pQTLs colocalized with 36% GWAS loci per trait on average for 27 complex traits, helping in many cases to link GWAS loci to cellular function. Finally, we identified trans-pQTL effects at multiple autoimmune GWAS loci that converge to the same PPIs, pinpointing protein complexes and signaling pathways that show promising therapeutic target potential. Protein quantitative trait loci show enrichment of trans effects among proteins in the same interaction networks and among missense variants at interaction interfaces, highlighting pathways impacted by trait-associated variants.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"77-87"},"PeriodicalIF":29.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02449-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: The Solve-RD Solvathons as a pan-European interdisciplinary collaboration to diagnose patients with rare disease 作者更正:Solve-RD Solvathons是泛欧跨学科合作诊断罕见疾病患者。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-06 DOI: 10.1038/s41588-025-02500-y
Vicente A. Yépez, German Demidov, Kornelia Ellwanger, Steven Laurie, Rebeka Luknárová, Midhuna Immaculate Joseph Maran, Thomas Hentrich, Lydia Sagath, Bart van der Sanden, Galuh Astuti, Kornelia Neveling, Laura Batlle-Masó, Danique Beijer, Felix Brechtmann, Andrés Caballero-Oteyza, Marc Dabad, Anne-Sophie Denommé-Pichon, Cenna Doornbos, Zakaria Eddafir, Berta Estévez-Arias, Ozge Aksel Kilicarslan, Ingrid H. M. Kolen, Leon Kraß, Katja Lohmann, Shubhankar Londhe, Estrella López-Martín, Kars Maassen, William Macken, Beatriz Martínez-Delgado, Davide Mei, Christian Mertes, Raffaella Minardi, Heba Morsy, Juliane S. Mueller, Daniel Natera-de Benito, Isabelle Nelson, Machteld M. Oud, Ida Paramonov, Daniel Picó, Davide Piscia, Kiran Polavarapu, Emanuele Raineri, Marco Savarese, Noor Smal, Marloes Steehouwer, Wouter Steyaert, Morris A. Swertz, Mirja Thomsen, Ana Töpf, Liedewei Van de Vondel, Gerben van der Vries, Antonio Vitobello, Carlo Wilke, Birte Zurek, Solve-RD DITF-EPICARE, Solve-RD DITF-ITHACA, Solve-RD DITF-EURO-NMD, Solve-RD DITF-RITA, Solve-RD DITF-RND, Solve-RD consortium, Peter-Bram t’ Hoen, Leslie Matalonga, Lisenka E. L. M. Vissers, Christian Gilissen, Julia Schulze-Hentrich, Sergi Beltran, Anna Esteve-Codina, Alexander Hoischen, Julien Gagneur, Holm Graessner
{"title":"Author Correction: The Solve-RD Solvathons as a pan-European interdisciplinary collaboration to diagnose patients with rare disease","authors":"Vicente A. Yépez, German Demidov, Kornelia Ellwanger, Steven Laurie, Rebeka Luknárová, Midhuna Immaculate Joseph Maran, Thomas Hentrich, Lydia Sagath, Bart van der Sanden, Galuh Astuti, Kornelia Neveling, Laura Batlle-Masó, Danique Beijer, Felix Brechtmann, Andrés Caballero-Oteyza, Marc Dabad, Anne-Sophie Denommé-Pichon, Cenna Doornbos, Zakaria Eddafir, Berta Estévez-Arias, Ozge Aksel Kilicarslan, Ingrid H. M. Kolen, Leon Kraß, Katja Lohmann, Shubhankar Londhe, Estrella López-Martín, Kars Maassen, William Macken, Beatriz Martínez-Delgado, Davide Mei, Christian Mertes, Raffaella Minardi, Heba Morsy, Juliane S. Mueller, Daniel Natera-de Benito, Isabelle Nelson, Machteld M. Oud, Ida Paramonov, Daniel Picó, Davide Piscia, Kiran Polavarapu, Emanuele Raineri, Marco Savarese, Noor Smal, Marloes Steehouwer, Wouter Steyaert, Morris A. Swertz, Mirja Thomsen, Ana Töpf, Liedewei Van de Vondel, Gerben van der Vries, Antonio Vitobello, Carlo Wilke, Birte Zurek, Solve-RD DITF-EPICARE, Solve-RD DITF-ITHACA, Solve-RD DITF-EURO-NMD, Solve-RD DITF-RITA, Solve-RD DITF-RND, Solve-RD consortium, Peter-Bram t’ Hoen, Leslie Matalonga, Lisenka E. L. M. Vissers, Christian Gilissen, Julia Schulze-Hentrich, Sergi Beltran, Anna Esteve-Codina, Alexander Hoischen, Julien Gagneur, Holm Graessner","doi":"10.1038/s41588-025-02500-y","DOIUrl":"10.1038/s41588-025-02500-y","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"231-231"},"PeriodicalIF":29.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02500-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145912445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights from three decades of BRCA1/2 modeling in mice 三十年来小鼠BRCA1/2模型的见解
IF 30.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-06 DOI: 10.1038/s41588-025-02448-z
Julia-Star Darnold, Jos Jonkers
{"title":"Insights from three decades of BRCA1/2 modeling in mice","authors":"Julia-Star Darnold, Jos Jonkers","doi":"10.1038/s41588-025-02448-z","DOIUrl":"https://doi.org/10.1038/s41588-025-02448-z","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"41 1","pages":""},"PeriodicalIF":30.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data MultiSuSiE改进了我们所有人全基因组测序数据中的多祖先精细定位
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-05 DOI: 10.1038/s41588-025-02450-5
Jordan Rossen, Huwenbo Shi, Benjamin J. Strober, Martin Jinye Zhang, Masahiro Kanai, Zachary R. McCaw, Liming Liang, Omer Weissbrod, Alkes L. Price
Leveraging multi-ancestry data can improve fine-mapping power. We propose MultiSuSiE, an extension of Sum of Single Effects (SuSiE), to multiple ancestries that allows causal effect sizes to vary across ancestries. We evaluated MultiSuSiE using whole-genome sequencing data from 47,000 African-ancestry, 36,000 Latino-ancestry and 116,000 European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr36k + Lat36k + Eur36k was well-calibrated and attained higher power than SuSiE applied to Eur109k; compared to recent multi-ancestry methods (SuSiEx and MESuSiE), MultiSuSiE attained higher power and lower computational cost. In analyses of 14 quantitative traits, MultiSuSiE applied to Afr47k + Lat36k + Eur116k identified 348 fine-mapped variants with posterior inclusion probability (PIP) > 0.9, and MultiSuSiE applied to Afr36k + Lat36k + Eur36k identified 59% more PIP > 0.9 variants than SuSiE applied to Eur109k; MultiSuSiE identified 29% more PIP > 0.9 variants than SuSiEx, and MESuSiE was not included due to its high computational cost. We validated these findings through functional enrichment of fine-mapped variants and highlighted examples implicating biologically plausible fine-mapped variants. MultiSuSiE is an extension of the Sum of Single Effects fine-mapping model that allows causal effect sizes to vary across ancestries. Applying MultiSuSiE to quantitative traits in All of Us identifies fine-mapped variants not implicated by other methods.
利用多祖先数据可以提高精细映射的能力。我们提出MultiSuSiE,这是单一效应总和(Sum of Single Effects, SuSiE)的扩展,它允许多个祖先的因果效应大小在不同祖先之间变化。我们使用来自我们所有人的47,000名非洲血统,36,000名拉丁血统和116,000名欧洲血统的全基因组测序数据来评估MultiSuSiE。在模拟中,应用于Afr36k + Lat36k + Eur36k的MultiSuSiE得到了良好的校准,并且比应用于Eur109k的SuSiE获得了更高的功率;与最近的多祖先方法(SuSiEx和MESuSiE)相比,MultiSuSiE具有更高的功率和更低的计算成本。在对14个数量性状的分析中,应用于Afr47k + Lat36k + Eur116k的MultiSuSiE鉴定出348个精细映射变异,后验包含概率(PIP) > 0.9,应用于Afr36k + Lat36k + Eur36k的MultiSuSiE鉴定出的PIP >; 0.9变异比应用于Eur109k的多59%;MultiSuSiE比SuSiEx多识别出29%的PIP >; 0.9变体,MESuSiE由于计算成本高而未被纳入。我们通过精细映射变异的功能富集验证了这些发现,并强调了生物学上合理的精细映射变异的例子。MultiSuSiE是单一效应精细映射模型的扩展,该模型允许因果效应大小在不同祖先之间变化。将MultiSuSiE应用于《All of Us》的数量性状,可以识别出其他方法无法识别的精细映射变异。
{"title":"MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data","authors":"Jordan Rossen, Huwenbo Shi, Benjamin J. Strober, Martin Jinye Zhang, Masahiro Kanai, Zachary R. McCaw, Liming Liang, Omer Weissbrod, Alkes L. Price","doi":"10.1038/s41588-025-02450-5","DOIUrl":"10.1038/s41588-025-02450-5","url":null,"abstract":"Leveraging multi-ancestry data can improve fine-mapping power. We propose MultiSuSiE, an extension of Sum of Single Effects (SuSiE), to multiple ancestries that allows causal effect sizes to vary across ancestries. We evaluated MultiSuSiE using whole-genome sequencing data from 47,000 African-ancestry, 36,000 Latino-ancestry and 116,000 European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr36k + Lat36k + Eur36k was well-calibrated and attained higher power than SuSiE applied to Eur109k; compared to recent multi-ancestry methods (SuSiEx and MESuSiE), MultiSuSiE attained higher power and lower computational cost. In analyses of 14 quantitative traits, MultiSuSiE applied to Afr47k + Lat36k + Eur116k identified 348 fine-mapped variants with posterior inclusion probability (PIP) > 0.9, and MultiSuSiE applied to Afr36k + Lat36k + Eur36k identified 59% more PIP > 0.9 variants than SuSiE applied to Eur109k; MultiSuSiE identified 29% more PIP > 0.9 variants than SuSiEx, and MESuSiE was not included due to its high computational cost. We validated these findings through functional enrichment of fine-mapped variants and highlighted examples implicating biologically plausible fine-mapped variants. MultiSuSiE is an extension of the Sum of Single Effects fine-mapping model that allows causal effect sizes to vary across ancestries. Applying MultiSuSiE to quantitative traits in All of Us identifies fine-mapped variants not implicated by other methods.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"67-76"},"PeriodicalIF":29.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A breakage–replication/fusion process explains complex rearrangements and segmental DNA amplification 断裂复制/融合过程解释了复杂的重排和DNA片段扩增。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-02 DOI: 10.1038/s41588-025-02434-5
Cheng-Zhong Zhang, Carlos Mendez-Dorantes, Kathleen H. Burns, David Pellman
Segmental copy-number gains are major contributors to human genetic variation and disease, but how these alterations arise remains incompletely understood. Here, based on the analyses of both experimental evolution and human disease genomes, we describe a general mechanism of segmental copy-number gain from a rearrangement process termed ‘breakage–replication/fusion’. The hallmark genomic feature of breakage–replication/fusion is adjacent parallel breakpoints: two or more rearrangement breakpoints derived from replication of a single ancestral DNA end. We show that adjacent parallel breakpoints are a widespread feature of DNA duplications in human disease genomes and experimental models of chromothripsis. In addition to adjacent parallel breakpoints, breakage–replication/fusion also explains two other patterns of complex rearrangements with unclear provenance: chains of short (≤1 kb) insertions and high-level amplification consisting of inverted segments. Together, these findings revise the mechanistic model for chromothripsis and provide a new conceptual framework for understanding the origin of segmental DNA duplication during genome evolution. This paper introduces breakage–replication/fusion, a genomic rearrangement process underpinning three patterns of copy-number gains found in cancer and other diseases.
片段拷贝数的增加是人类遗传变异和疾病的主要原因,但这些改变是如何产生的仍不完全清楚。在此,基于对实验进化和人类疾病基因组的分析,我们描述了一种被称为“断裂-复制/融合”的重排过程中片段拷贝数获得的一般机制。断裂-复制/融合的标志性基因组特征是相邻的平行断点:两个或多个重排断点源于单个祖先DNA末端的复制。我们表明,相邻的平行断点是人类疾病基因组和染色体分裂实验模型中DNA复制的普遍特征。除了相邻的平行断点外,断裂复制/融合还解释了另外两种来源不明的复杂重排模式:短链(≤1kb)插入和由倒置片段组成的高水平扩增。总之,这些发现修正了染色体分裂的机制模型,并为理解基因组进化过程中片段DNA复制的起源提供了一个新的概念框架。
{"title":"A breakage–replication/fusion process explains complex rearrangements and segmental DNA amplification","authors":"Cheng-Zhong Zhang, Carlos Mendez-Dorantes, Kathleen H. Burns, David Pellman","doi":"10.1038/s41588-025-02434-5","DOIUrl":"10.1038/s41588-025-02434-5","url":null,"abstract":"Segmental copy-number gains are major contributors to human genetic variation and disease, but how these alterations arise remains incompletely understood. Here, based on the analyses of both experimental evolution and human disease genomes, we describe a general mechanism of segmental copy-number gain from a rearrangement process termed ‘breakage–replication/fusion’. The hallmark genomic feature of breakage–replication/fusion is adjacent parallel breakpoints: two or more rearrangement breakpoints derived from replication of a single ancestral DNA end. We show that adjacent parallel breakpoints are a widespread feature of DNA duplications in human disease genomes and experimental models of chromothripsis. In addition to adjacent parallel breakpoints, breakage–replication/fusion also explains two other patterns of complex rearrangements with unclear provenance: chains of short (≤1 kb) insertions and high-level amplification consisting of inverted segments. Together, these findings revise the mechanistic model for chromothripsis and provide a new conceptual framework for understanding the origin of segmental DNA duplication during genome evolution. This paper introduces breakage–replication/fusion, a genomic rearrangement process underpinning three patterns of copy-number gains found in cancer and other diseases.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"88-99"},"PeriodicalIF":29.0,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02434-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph pan-genome illuminates evolutionary trajectories and agronomic trait architecture in allotetraploid cotton 泛基因组图谱揭示了异源四倍体棉花的进化轨迹和农艺性状结构。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-02 DOI: 10.1038/s41588-025-02462-1
Zhaoen Yang, Zuoren Yang, Chenxu Gao, Mingjun Zhang, Guanjing Hu, Lan Yang, Yihao Zhang, Meng Ma, Renju Liu, Zhi Wang, Baibai Gao, Zhibin Zhang, Hang Zhao, Xuan Liu, Xiongfeng Ma, Jonathan F. Wendel, Xiaoyang Ge, Fuguang Li
Upland cotton (Gossypium hirsutum), one of the world’s major fiber crops, faces challenges from the genetic homogeneity of modern varieties. Here we present 107 gold-standard genome assemblies spanning the wild-to-domesticated continuum, revealing six large-scale structural variations, including a chromosomal reciprocal translocation and five inversions tracing the evolutionary history of cultivated cotton in the Americas. This history also involved continuous introgression from Gossypium barbadense, shaping the genetic diversity of G. hirsutum landraces and cultivars. Leveraging the graph pan-genome, we capture the sequence and structural diversity of nucleotide-binding site–leucine-rich repeat genes, uncovering pathogen-driven selection signatures and loci associated with disease resistance. A presence–absence variation genome-wide association study (GWAS) identified previously overlooked loci for key fiber traits, complementing single-nucleotide polymorphism–GWAS findings. Additionally, we construct a detailed map of large inversions, offering insights into hybridization dynamics and strategies to mitigate linkage drag. This study enhances our understanding of cotton evolution and domestication while delivering a valuable resource to enhance breeding. Genome assemblies of 100 cultivated and seven semi-wild Gossypium hirsutum accessions provide insights into the evolutionary history of upland cotton and the genetic basis of fiber trait variation.
陆地棉作为世界主要的纤维作物之一,面临着现代品种遗传同质性的挑战。在这里,我们展示了跨越野生到驯化连续体的107个金标准基因组组合,揭示了6个大规模的结构变异,包括染色体互反易位和追踪美洲栽培棉花进化史的5个倒置。这段历史还包括来自巴贝登棉的持续渗入,形成了陆地棉地方品种和栽培品种的遗传多样性。利用泛基因组图,我们捕获了核苷酸结合位点-富含亮氨酸的重复基因的序列和结构多样性,揭示了病原体驱动的选择特征和与抗病相关的位点。一项存在-缺失变异全基因组关联研究(GWAS)发现了以前被忽视的关键纤维性状位点,补充了单核苷酸多态性GWAS的发现。此外,我们还构建了大型反转的详细地图,为杂交动力学和减轻联动阻力的策略提供了见解。本研究提高了我们对棉花进化和驯化的认识,同时也为棉花育种提供了宝贵的资源。
{"title":"Graph pan-genome illuminates evolutionary trajectories and agronomic trait architecture in allotetraploid cotton","authors":"Zhaoen Yang, Zuoren Yang, Chenxu Gao, Mingjun Zhang, Guanjing Hu, Lan Yang, Yihao Zhang, Meng Ma, Renju Liu, Zhi Wang, Baibai Gao, Zhibin Zhang, Hang Zhao, Xuan Liu, Xiongfeng Ma, Jonathan F. Wendel, Xiaoyang Ge, Fuguang Li","doi":"10.1038/s41588-025-02462-1","DOIUrl":"10.1038/s41588-025-02462-1","url":null,"abstract":"Upland cotton (Gossypium hirsutum), one of the world’s major fiber crops, faces challenges from the genetic homogeneity of modern varieties. Here we present 107 gold-standard genome assemblies spanning the wild-to-domesticated continuum, revealing six large-scale structural variations, including a chromosomal reciprocal translocation and five inversions tracing the evolutionary history of cultivated cotton in the Americas. This history also involved continuous introgression from Gossypium barbadense, shaping the genetic diversity of G. hirsutum landraces and cultivars. Leveraging the graph pan-genome, we capture the sequence and structural diversity of nucleotide-binding site–leucine-rich repeat genes, uncovering pathogen-driven selection signatures and loci associated with disease resistance. A presence–absence variation genome-wide association study (GWAS) identified previously overlooked loci for key fiber traits, complementing single-nucleotide polymorphism–GWAS findings. Additionally, we construct a detailed map of large inversions, offering insights into hybridization dynamics and strategies to mitigate linkage drag. This study enhances our understanding of cotton evolution and domestication while delivering a valuable resource to enhance breeding. Genome assemblies of 100 cultivated and seven semi-wild Gossypium hirsutum accessions provide insights into the evolutionary history of upland cotton and the genetic basis of fiber trait variation.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"218-229"},"PeriodicalIF":29.0,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An accidental scientist’s journey from an uncertain beginning to advancing neurogenetics research in Africa 一个偶然的科学家的旅程,从一个不确定的开始推进神经遗传学研究在非洲。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-12-30 DOI: 10.1038/s41588-025-02453-2
Guida Landouré
Being an African scientist, I had to overcome several challenges to generate substantial data that shed light on the complexity of genomic medicine in African populations and abroad.
作为一名非洲科学家,我必须克服几个挑战,生成大量数据,揭示非洲人口和国外基因组医学的复杂性。
{"title":"An accidental scientist’s journey from an uncertain beginning to advancing neurogenetics research in Africa","authors":"Guida Landouré","doi":"10.1038/s41588-025-02453-2","DOIUrl":"10.1038/s41588-025-02453-2","url":null,"abstract":"Being an African scientist, I had to overcome several challenges to generate substantial data that shed light on the complexity of genomic medicine in African populations and abroad.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"2-2"},"PeriodicalIF":29.0,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145863840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aneuploidy-driven vulnerabilities in breast cancer metastasis 非整倍体驱动的乳腺癌转移脆弱性。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-12-29 DOI: 10.1038/s41588-025-02444-3
Samuel F. Bakhoum
A study reveals how chromosomal instability and resultant TP53 loss enhance fatty acid metabolism to drive breast cancer brain metastasis. This metabolic dependency provides new insights into therapeutic vulnerabilities of aneuploid tumors.
一项研究揭示了染色体不稳定性和由此导致的TP53缺失如何增强脂肪酸代谢,从而驱动乳腺癌脑转移。这种代谢依赖性为非整倍体肿瘤的治疗脆弱性提供了新的见解。
{"title":"Aneuploidy-driven vulnerabilities in breast cancer metastasis","authors":"Samuel F. Bakhoum","doi":"10.1038/s41588-025-02444-3","DOIUrl":"10.1038/s41588-025-02444-3","url":null,"abstract":"A study reveals how chromosomal instability and resultant TP53 loss enhance fatty acid metabolism to drive breast cancer brain metastasis. This metabolic dependency provides new insights into therapeutic vulnerabilities of aneuploid tumors.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"14-15"},"PeriodicalIF":29.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145857391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unearthing soil biodiversity through collaborative genomic research and education 通过合作基因组研究和教育发掘土壤生物多样性。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-12-29 DOI: 10.1038/s41588-025-02442-5
The BioDIGS Consortium, Tristen Alberts, Claude F. Albritton, Rosa Alcazar, Zainab Aljabri, Maria Alvarez, Anish Aradhey, Mentewab Ayalew, Nareh Azizian, Yasmeen Balayah, Destiny D. Ball, Efren Barragan, Corey Beshoar, Lyle Best, Emily Biggane, Joseph Biggane, Jesse Blick, Myron Blosser, Alex Kenneth Brown, Michael C. Campbell, Zoe Canizares, Faith N. Chanhuhwa, Yu Chen, Daniel R. Chin, Kamal Chowdhury, Tyler Collins, Blair Compton, Jefferson Da Silva, Nia R. Davis, Natalie DeCaro, Frida Delgadillo, Youping Deng, Joceph Duncan, Arinzechukwu C. Egwu, Grace D. Ekalle, Noha Elnawam, Ray Enke, Naomi Ewhe, Marco A. Ferrel, Janna Fierst, Grace Freymiller, Karla Fuller, Lena Fulton-Wright, Valeriya Gaysinskaya, Torrence Gill, Ellie Gillespie, Perla Gonzalez Moreno, Sara Goodwin, Natajha Graham, Madeline E. Graham, Joseph L. Graves Jr., Emily Grob, Rachael Gutierrez, Aisha Hager, Shazia Tabassum Hakim, Aaliyah Harris, Ava M. Hoffman, Tobias Hoffmann, Alani M. Horton, Allison Hughes, Elizabeth M. Humphries, Josh-Samuel Ikechi-Konkwo, Aadil Ishtiaq, Ryan Jackson, Joshua Ronnie James, Kaitlan James, Sydney A. Jamison, Armando Jimenez, Rachel Johnson, Abigail Kauffman, Harkiran Kaur, Kritika Kc, Analyse Keeton, Olivia E. Kelly, Jennifer Kerr, Nataliya Kucher, Donna Lee Kuehu, Wendy A. Larson, Joslynn Lee, Andrew Lee, Jeffrey T. Leek, Danilo Lemaic, Lincoln E. Liburd II, Alan Fernando Lopez, Mohammadamin Mahmanzar, Karwitha Mamae, Raffi Manjikian, Michael Marone, Katerin Marquez, Amara Martinson, Senem Mavruk Eskipehlivan, Ashley Medrano, Melanie Melendrez-Vallard, Robert Meller, Loyda B. Méndez, Miguel P. Mendez Gonzalez, Nicolli Mesquita, Concepcion Martinez Miller, Isam Mohd-Ibrahim, Peter Mortensen, Stephen Mosher, Alketa Muja, Nadia Nasrin, Masaki Nasu, Matthew H. Nguyen, Ba Thong Nguyen, Michele Nishiguchi, Lance M. O’Connor, Disomi Okie, Tolulope Olowookorun, Alex Ostrovsky, Keyan Ozuna, Asmita Pandey, Shiv B. Patel, Gauri Paul, Shrikant Pawar, Andrea Pearson, Deborah Petrik, Jordan Platero, Carl Pontino, Arjun P. Pratap, Siddharth Pratap, Yujia Qin, Sudhir Kumar Rai, Nisttha Ray, Ethan Repesh, Kristen Rhinehardt, Brennan Roche, Ariana Rodriguez, Shriya Roy, Sourav Roy, Alexa Sawa, Michael C. Schatz, Shurjo K. Sen, Randon Serikawa, Tyler Smith, Loraye Smith, James Sniezek, Ryley D. Stewart, Edu B. Suarez-Martinez, Joelle Taganna, Frederick J. Tan, Nikolaos Tsotakos, Nwanneka Udolisa, Katherine Ulbricht, Tanner Veo, Jennifer Vessio, Lia Walker, Oscar Wang, Qingguo Wang, Robert Wappel, Kalynn Wesby, Malachi Whitford, Nicole Wild, Xianfa Xie, Hua Yang, Sayumi York, Lindsay Zirkle
The BioDIGS project is a nationwide initiative involving students, researchers and educators across more than 40 research and teaching institutions. Participants lead sample collection, computational analysis and results interpretation to understand the relationships between the soil microbiome, environment and health.
BioDIGS项目是一项全国性的倡议,涉及40多个研究和教学机构的学生、研究人员和教育工作者。参与者领导样本收集,计算分析和结果解释,以了解土壤微生物组,环境和健康之间的关系。
{"title":"Unearthing soil biodiversity through collaborative genomic research and education","authors":"The BioDIGS Consortium, Tristen Alberts, Claude F. Albritton, Rosa Alcazar, Zainab Aljabri, Maria Alvarez, Anish Aradhey, Mentewab Ayalew, Nareh Azizian, Yasmeen Balayah, Destiny D. Ball, Efren Barragan, Corey Beshoar, Lyle Best, Emily Biggane, Joseph Biggane, Jesse Blick, Myron Blosser, Alex Kenneth Brown, Michael C. Campbell, Zoe Canizares, Faith N. Chanhuhwa, Yu Chen, Daniel R. Chin, Kamal Chowdhury, Tyler Collins, Blair Compton, Jefferson Da Silva, Nia R. Davis, Natalie DeCaro, Frida Delgadillo, Youping Deng, Joceph Duncan, Arinzechukwu C. Egwu, Grace D. Ekalle, Noha Elnawam, Ray Enke, Naomi Ewhe, Marco A. Ferrel, Janna Fierst, Grace Freymiller, Karla Fuller, Lena Fulton-Wright, Valeriya Gaysinskaya, Torrence Gill, Ellie Gillespie, Perla Gonzalez Moreno, Sara Goodwin, Natajha Graham, Madeline E. Graham, Joseph L. Graves Jr., Emily Grob, Rachael Gutierrez, Aisha Hager, Shazia Tabassum Hakim, Aaliyah Harris, Ava M. Hoffman, Tobias Hoffmann, Alani M. Horton, Allison Hughes, Elizabeth M. Humphries, Josh-Samuel Ikechi-Konkwo, Aadil Ishtiaq, Ryan Jackson, Joshua Ronnie James, Kaitlan James, Sydney A. Jamison, Armando Jimenez, Rachel Johnson, Abigail Kauffman, Harkiran Kaur, Kritika Kc, Analyse Keeton, Olivia E. Kelly, Jennifer Kerr, Nataliya Kucher, Donna Lee Kuehu, Wendy A. Larson, Joslynn Lee, Andrew Lee, Jeffrey T. Leek, Danilo Lemaic, Lincoln E. Liburd II, Alan Fernando Lopez, Mohammadamin Mahmanzar, Karwitha Mamae, Raffi Manjikian, Michael Marone, Katerin Marquez, Amara Martinson, Senem Mavruk Eskipehlivan, Ashley Medrano, Melanie Melendrez-Vallard, Robert Meller, Loyda B. Méndez, Miguel P. Mendez Gonzalez, Nicolli Mesquita, Concepcion Martinez Miller, Isam Mohd-Ibrahim, Peter Mortensen, Stephen Mosher, Alketa Muja, Nadia Nasrin, Masaki Nasu, Matthew H. Nguyen, Ba Thong Nguyen, Michele Nishiguchi, Lance M. O’Connor, Disomi Okie, Tolulope Olowookorun, Alex Ostrovsky, Keyan Ozuna, Asmita Pandey, Shiv B. Patel, Gauri Paul, Shrikant Pawar, Andrea Pearson, Deborah Petrik, Jordan Platero, Carl Pontino, Arjun P. Pratap, Siddharth Pratap, Yujia Qin, Sudhir Kumar Rai, Nisttha Ray, Ethan Repesh, Kristen Rhinehardt, Brennan Roche, Ariana Rodriguez, Shriya Roy, Sourav Roy, Alexa Sawa, Michael C. Schatz, Shurjo K. Sen, Randon Serikawa, Tyler Smith, Loraye Smith, James Sniezek, Ryley D. Stewart, Edu B. Suarez-Martinez, Joelle Taganna, Frederick J. Tan, Nikolaos Tsotakos, Nwanneka Udolisa, Katherine Ulbricht, Tanner Veo, Jennifer Vessio, Lia Walker, Oscar Wang, Qingguo Wang, Robert Wappel, Kalynn Wesby, Malachi Whitford, Nicole Wild, Xianfa Xie, Hua Yang, Sayumi York, Lindsay Zirkle","doi":"10.1038/s41588-025-02442-5","DOIUrl":"10.1038/s41588-025-02442-5","url":null,"abstract":"The BioDIGS project is a nationwide initiative involving students, researchers and educators across more than 40 research and teaching institutions. Participants lead sample collection, computational analysis and results interpretation to understand the relationships between the soil microbiome, environment and health.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"3-8"},"PeriodicalIF":29.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145857431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p53 inactivation drives breast cancer metastasis to the brain through SCD1 upregulation and increased fatty acid metabolism p53失活通过SCD1上调和脂肪酸代谢增加驱动乳腺癌向脑部转移。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-12-29 DOI: 10.1038/s41588-025-02446-1
Kathrin Laue, Sabina Pozzi, Johanna Zerbib, Rebecca Bertolio, Yonatan Eliezer, Yael Cohen-Sharir, Tom Winkler, Manuel Caputo, Alessia A. Ricci, Lital Adler, Rami Khoury, Giuseppe Longobardi, Rachel Slutsky, Alicia I. Leikin-Frenkel, Shai Ovadia, Katharina Lange, Alessandra Rustighi, Silvano Piazza, Andrea Sacconi, Rayna Y. Magesh, Faith N. Keller, Jean Berthelet, Alexander Schäffer, Ron Saad, Sahar Israeli Dangoor, Karolina Szczepanowska, Iris Barshack, Yang Liao, Sergey Malitsky, Alexander Brandis, Thomas Broggini, Marcus Czabanka, Wei Shi, Delphine Merino, Emma V. Watson, Giovanni Blandino, Ayelet Erez, Ruth Ashery-Padan, Hind Medyouf, Luca Bertero, Giannino Del Sal, Ronit Satchi-Fainaro, Uri Ben-David
Brain metastasis (BM) carries a poor prognosis, yet the molecular basis of brain tropism remains unclear. Analysis of breast cancer BM (BCBM) revealed pervasive p53 inactivation through mutations and/or aneuploidy, with pathway disruption already present in primary tumors. Functionally, p53 inactivation markedly increased BCBM formation and growth in vivo, causally linking p53 perturbation to BM. Mechanistically, p53 inactivation upregulated SCD1 and fatty acid synthesis (FAS), essential for brain-metastasizing cells; SCD1 knockout abolished the p53-dependent growth advantage. Molecularly, p53 suppressed SCD1 directly through promoter binding and indirectly by downregulating its co-activator DEPDC1. Astrocytes further enhanced FAS by secreting factors that were metabolized in a p53-dependent manner, promoting tumor survival, proliferation and migration. Finally, p53-deficient tumors were sensitive to FAS inhibition ex vivo and in vivo. Thus, we identify p53 inactivation as a driver of BCBM, reveal p53-dependent and astrocyte-dependent FAS modulation and highlight FAS as a therapeutically targetable BCBM vulnerability. This study associates p53 loss and brain metastasis in breast cancer. Mechanistically, p53-null tumors recruit astrocytes that provide substrates for enhanced fatty acid synthesis via upregulated SCD1 expression, representing a targetable axis in the disease.
脑转移预后不佳,但脑向性的分子基础尚不清楚。对乳腺癌BM (BCBM)的分析显示,p53通过突变和/或非整倍体普遍失活,而在原发肿瘤中已经存在通路破坏。功能上,p53失活显著增加BCBM在体内的形成和生长,将p53的扰动与BM联系起来。机制上,p53失活上调SCD1和脂肪酸合成(FAS),这是脑转移细胞所必需的;SCD1敲除消除了p53依赖性生长优势。在分子上,p53通过启动子结合直接抑制SCD1,并通过下调其共激活子DEPDC1间接抑制SCD1。星形胶质细胞通过分泌以p53依赖方式代谢的因子进一步增强FAS,促进肿瘤存活、增殖和迁移。最后,p53缺陷肿瘤在体内和体外均对FAS抑制敏感。因此,我们确定p53失活是BCBM的驱动因素,揭示了p53依赖和星形胶质细胞依赖的FAS调节,并强调FAS是治疗上可靶向的BCBM脆弱性。
{"title":"p53 inactivation drives breast cancer metastasis to the brain through SCD1 upregulation and increased fatty acid metabolism","authors":"Kathrin Laue, Sabina Pozzi, Johanna Zerbib, Rebecca Bertolio, Yonatan Eliezer, Yael Cohen-Sharir, Tom Winkler, Manuel Caputo, Alessia A. Ricci, Lital Adler, Rami Khoury, Giuseppe Longobardi, Rachel Slutsky, Alicia I. Leikin-Frenkel, Shai Ovadia, Katharina Lange, Alessandra Rustighi, Silvano Piazza, Andrea Sacconi, Rayna Y. Magesh, Faith N. Keller, Jean Berthelet, Alexander Schäffer, Ron Saad, Sahar Israeli Dangoor, Karolina Szczepanowska, Iris Barshack, Yang Liao, Sergey Malitsky, Alexander Brandis, Thomas Broggini, Marcus Czabanka, Wei Shi, Delphine Merino, Emma V. Watson, Giovanni Blandino, Ayelet Erez, Ruth Ashery-Padan, Hind Medyouf, Luca Bertero, Giannino Del Sal, Ronit Satchi-Fainaro, Uri Ben-David","doi":"10.1038/s41588-025-02446-1","DOIUrl":"10.1038/s41588-025-02446-1","url":null,"abstract":"Brain metastasis (BM) carries a poor prognosis, yet the molecular basis of brain tropism remains unclear. Analysis of breast cancer BM (BCBM) revealed pervasive p53 inactivation through mutations and/or aneuploidy, with pathway disruption already present in primary tumors. Functionally, p53 inactivation markedly increased BCBM formation and growth in vivo, causally linking p53 perturbation to BM. Mechanistically, p53 inactivation upregulated SCD1 and fatty acid synthesis (FAS), essential for brain-metastasizing cells; SCD1 knockout abolished the p53-dependent growth advantage. Molecularly, p53 suppressed SCD1 directly through promoter binding and indirectly by downregulating its co-activator DEPDC1. Astrocytes further enhanced FAS by secreting factors that were metabolized in a p53-dependent manner, promoting tumor survival, proliferation and migration. Finally, p53-deficient tumors were sensitive to FAS inhibition ex vivo and in vivo. Thus, we identify p53 inactivation as a driver of BCBM, reveal p53-dependent and astrocyte-dependent FAS modulation and highlight FAS as a therapeutically targetable BCBM vulnerability. This study associates p53 loss and brain metastasis in breast cancer. Mechanistically, p53-null tumors recruit astrocytes that provide substrates for enhanced fatty acid synthesis via upregulated SCD1 expression, representing a targetable axis in the disease.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"116-131"},"PeriodicalIF":29.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145857415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1