首页 > 最新文献

Nature genetics最新文献

英文 中文
In vivo CRISPR–Cas9 genome editing in mice identifies genetic modifiers of somatic CAG repeat instability in Huntington’s disease 小鼠体内CRISPR-Cas9基因组编辑鉴定亨廷顿病体细胞CAG重复不稳定性的遗传修饰因子
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-22 DOI: 10.1038/s41588-024-02054-5
Ricardo Mouro Pinto, Ryan Murtha, António Azevedo, Cameron Douglas, Marina Kovalenko, Jessica Ulloa, Steven Crescenti, Zoe Burch, Esaria Oliver, Maheswaran Kesavan, Shota Shibata, Antonia Vitalo, Eduarda Mota-Silva, Marion J. Riggs, Kevin Correia, Emanuela Elezi, Brigitte Demelo, Jeffrey B. Carroll, Tammy Gillis, James F. Gusella, Marcy E. MacDonald, Vanessa C. Wheeler
Huntington’s disease, one of more than 50 inherited repeat expansion disorders1, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT2. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain3–9. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair pathway, modify somatic expansion in Huntington’s disease mouse models10. To identify novel modifiers of somatic expansion, we used CRISPR–Cas9 editing in Huntington’s disease knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This included testing of Huntington’s disease onset modifier genes emerging from human genome-wide association studies as well as interactions between modifier genes, providing insight into pathways underlying CAG expansion and potential therapeutic targets. A novel in vivo screening strategy identifies new modifiers of somatic CAG repeat expansion that contribute to age of onset in Huntington’s disease.
亨廷顿舞蹈病是50多种遗传性重复扩增疾病之一,是一种显性遗传性神经退行性疾病,由HTT2 CAG扩增引起。遗传性CAG重复序列长度是发病年龄的主要决定因素,人类遗传学研究强调,该疾病是由CAG重复序列在大脑中进一步扩展的CAG长度依赖倾向驱动的3,4,5,6,7,8,9。因此,减缓体细胞CAG扩张的途径有望用于改善疾病的治疗。几种DNA修复基因,特别是错配修复途径中的DNA修复基因,可以改变亨廷顿氏病小鼠模型的体细胞扩展。为了鉴定新的体细胞扩增修饰剂,我们在亨廷顿氏病敲入小鼠中使用CRISPR-Cas9编辑技术,在体内大规模筛选扩增修饰剂候选物。这包括对人类全基因组关联研究中出现的亨廷顿氏病发病修饰基因的测试,以及修饰基因之间的相互作用,从而深入了解CAG扩展的潜在途径和潜在的治疗靶点。
{"title":"In vivo CRISPR–Cas9 genome editing in mice identifies genetic modifiers of somatic CAG repeat instability in Huntington’s disease","authors":"Ricardo Mouro Pinto, Ryan Murtha, António Azevedo, Cameron Douglas, Marina Kovalenko, Jessica Ulloa, Steven Crescenti, Zoe Burch, Esaria Oliver, Maheswaran Kesavan, Shota Shibata, Antonia Vitalo, Eduarda Mota-Silva, Marion J. Riggs, Kevin Correia, Emanuela Elezi, Brigitte Demelo, Jeffrey B. Carroll, Tammy Gillis, James F. Gusella, Marcy E. MacDonald, Vanessa C. Wheeler","doi":"10.1038/s41588-024-02054-5","DOIUrl":"10.1038/s41588-024-02054-5","url":null,"abstract":"Huntington’s disease, one of more than 50 inherited repeat expansion disorders1, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT2. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain3–9. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair pathway, modify somatic expansion in Huntington’s disease mouse models10. To identify novel modifiers of somatic expansion, we used CRISPR–Cas9 editing in Huntington’s disease knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This included testing of Huntington’s disease onset modifier genes emerging from human genome-wide association studies as well as interactions between modifier genes, providing insight into pathways underlying CAG expansion and potential therapeutic targets. A novel in vivo screening strategy identifies new modifiers of somatic CAG repeat expansion that contribute to age of onset in Huntington’s disease.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"314-322"},"PeriodicalIF":31.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-02054-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining genes and pathways that modify huntingtin CAG repeat somatic instability in vivo 确定基因和途径修饰亨廷顿蛋白CAG重复体内体细胞不稳定性
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-22 DOI: 10.1038/s41588-024-02055-4
Suphinya Sathitloetsakun, Myriam Heiman
A novel in vivo CRISPR screening platform identifies genetic modifiers of huntingtin CAG repeat somatic instability. These modifiers include known and novel genes that are promising therapeutic targets for Huntington’s disease.
一种新的体内CRISPR筛选平台识别亨廷顿蛋白CAG重复体细胞不稳定性的遗传修饰因子。这些修饰因子包括已知的和新的基因,它们有望成为亨廷顿舞蹈病的治疗靶点。
{"title":"Defining genes and pathways that modify huntingtin CAG repeat somatic instability in vivo","authors":"Suphinya Sathitloetsakun, Myriam Heiman","doi":"10.1038/s41588-024-02055-4","DOIUrl":"10.1038/s41588-024-02055-4","url":null,"abstract":"A novel in vivo CRISPR screening platform identifies genetic modifiers of huntingtin CAG repeat somatic instability. These modifiers include known and novel genes that are promising therapeutic targets for Huntington’s disease.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"281-282"},"PeriodicalIF":31.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: The ZmCPK39–ZmDi19–ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize 作者更正:ZmCPK39-ZmDi19-ZmPR10 免疫模块调控玉米对多种叶面病害的定量抗性
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-21 DOI: 10.1038/s41588-025-02091-8
Mang Zhu, Tao Zhong, Ling Xu, Chenyu Guo, Xiaohui Zhang, Yulin Liu, Yan Zhang, Yancong Li, Zhijian Xie, Tingting Liu, Fuyan Jiang, Xingming Fan, Peter Balint-Kurti, Mingliang Xu
{"title":"Author Correction: The ZmCPK39–ZmDi19–ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize","authors":"Mang Zhu, Tao Zhong, Ling Xu, Chenyu Guo, Xiaohui Zhang, Yulin Liu, Yan Zhang, Yancong Li, Zhijian Xie, Tingting Liu, Fuyan Jiang, Xingming Fan, Peter Balint-Kurti, Mingliang Xu","doi":"10.1038/s41588-025-02091-8","DOIUrl":"10.1038/s41588-025-02091-8","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"480-480"},"PeriodicalIF":31.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-025-02091-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A multilineage screen identifies actionable synthetic lethal interactions in human cancers 作者更正:多谱系筛选确定了人类癌症中可操作的合成致死相互作用
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-20 DOI: 10.1038/s41588-025-02090-9
Samson H. Fong, Brent M. Kuenzi, Nicole M. Mattson, John Lee, Kyle Sanchez, Ana Bojorquez-Gomez, Kyle Ford, Brenton P. Munson, Katherine Licon, Sarah Bergendahl, John Paul Shen, Jason F. Kreisberg, Prashant Mali, Jeffrey H. Hager, Michael A. White, Trey Ideker
{"title":"Author Correction: A multilineage screen identifies actionable synthetic lethal interactions in human cancers","authors":"Samson H. Fong, Brent M. Kuenzi, Nicole M. Mattson, John Lee, Kyle Sanchez, Ana Bojorquez-Gomez, Kyle Ford, Brenton P. Munson, Katherine Licon, Sarah Bergendahl, John Paul Shen, Jason F. Kreisberg, Prashant Mali, Jeffrey H. Hager, Michael A. White, Trey Ideker","doi":"10.1038/s41588-025-02090-9","DOIUrl":"10.1038/s41588-025-02090-9","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"480-480"},"PeriodicalIF":31.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-025-02090-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleotide-resolution DNA foundation models of prokaryotic genomes 原核生物基因组的核苷酸分辨率DNA基础模型
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-15 DOI: 10.1038/s41588-024-02062-5
Michael Fletcher
{"title":"Nucleotide-resolution DNA foundation models of prokaryotic genomes","authors":"Michael Fletcher","doi":"10.1038/s41588-024-02062-5","DOIUrl":"10.1038/s41588-024-02062-5","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"2-2"},"PeriodicalIF":31.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain metastasis prediction 脑转移预测
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-15 DOI: 10.1038/s41588-024-02061-6
Tiago Faial
{"title":"Brain metastasis prediction","authors":"Tiago Faial","doi":"10.1038/s41588-024-02061-6","DOIUrl":"10.1038/s41588-024-02061-6","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"2-2"},"PeriodicalIF":31.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutations in healthy breast tissue 健康乳腺组织的突变
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-15 DOI: 10.1038/s41588-024-02060-7
Safia Danovi
{"title":"Mutations in healthy breast tissue","authors":"Safia Danovi","doi":"10.1038/s41588-024-02060-7","DOIUrl":"10.1038/s41588-024-02060-7","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"2-2"},"PeriodicalIF":31.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavioral insights from single-nucleus neuronal transcriptomics 单核神经元转录组学的行为洞察
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-15 DOI: 10.1038/s41588-024-02063-4
Petra Gross
{"title":"Behavioral insights from single-nucleus neuronal transcriptomics","authors":"Petra Gross","doi":"10.1038/s41588-024-02063-4","DOIUrl":"10.1038/s41588-024-02063-4","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"2-2"},"PeriodicalIF":31.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain 多组学定量性状位点将串联重复大小变异与人脑基因调控联系起来
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-14 DOI: 10.1038/s41588-024-02057-2
Ya Cui, Frederick J. Arnold, Jason Sheng Li, Jie Wu, Dan Wang, Julien Philippe, Michael R. Colwin, Sebastian Michels, Chaorong Chen, Tamer Sallam, Leslie M. Thompson, Albert R. La Spada, Wei Li
Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.2 million TR molecular quantitative trait loci (TR-xQTLs), linking ~139,000 unique TRs to nearby molecular phenotypes, including many known disease-risk TRs, such as the G2C4 expansion in C9orf72 associated with amyotrophic lateral sclerosis. Fine-mapping revealed ~18,700 TRs as potential causal variants. Our in vitro experiments further confirmed the causal and independent regulatory effects of three TRs. Additional colocalization analysis indicated the potential causal role of TR variation in brain-related phenotypes, highlighted by a 3ʹ-UTR TR in NUDT14 linked to cortical surface area and a TG repeat in PLEKHA1, associated with Alzheimer’s disease. Mapping of multi-omic molecular quantitative trait loci associated with tandem repeat size variation in up to 4,412 human brain samples from 1,597 donors offers insights into how these variants affect gene regulation and mediate disease risk.
串联重复序列(TR)大小变异与约50种神经系统疾病有关,但其对人脑基因调控的影响在很大程度上仍然未知。在本研究中,我们基于来自1,597个供体的4,412个多组学样本,包括1,586个新测序的样本,量化了TR大小变化对不同分子表型的脑基因调控的影响。我们确定了约220万个TR分子数量性状位点(TR- xqtl),将约139,000个独特的TR与附近的分子表型联系起来,包括许多已知的疾病风险TR,例如与肌萎缩性侧索硬化症相关的C9orf72中的G2C4扩增。精细映射显示约18,700个tr是潜在的因果变异。我们的体外实验进一步证实了三种TRs的因果关系和独立的调节作用。另外的共定位分析表明,TR变异在脑相关表型中的潜在因果作用,突出表现为NUDT14中与皮质表面积相关的3′-UTR TR和与阿尔茨海默病相关的PLEKHA1中的TG重复。
{"title":"Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain","authors":"Ya Cui, Frederick J. Arnold, Jason Sheng Li, Jie Wu, Dan Wang, Julien Philippe, Michael R. Colwin, Sebastian Michels, Chaorong Chen, Tamer Sallam, Leslie M. Thompson, Albert R. La Spada, Wei Li","doi":"10.1038/s41588-024-02057-2","DOIUrl":"10.1038/s41588-024-02057-2","url":null,"abstract":"Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.2 million TR molecular quantitative trait loci (TR-xQTLs), linking ~139,000 unique TRs to nearby molecular phenotypes, including many known disease-risk TRs, such as the G2C4 expansion in C9orf72 associated with amyotrophic lateral sclerosis. Fine-mapping revealed ~18,700 TRs as potential causal variants. Our in vitro experiments further confirmed the causal and independent regulatory effects of three TRs. Additional colocalization analysis indicated the potential causal role of TR variation in brain-related phenotypes, highlighted by a 3ʹ-UTR TR in NUDT14 linked to cortical surface area and a TG repeat in PLEKHA1, associated with Alzheimer’s disease. Mapping of multi-omic molecular quantitative trait loci associated with tandem repeat size variation in up to 4,412 human brain samples from 1,597 donors offers insights into how these variants affect gene regulation and mediate disease risk.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"369-378"},"PeriodicalIF":31.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The NAT1–bHLH110–CER1/CER1L module regulates heat stress tolerance in rice NAT1-bHLH110-CER1 /CER1L模块调控水稻耐热性
IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-01-14 DOI: 10.1038/s41588-024-02065-2
Hai-Ping Lu, Xue-Huan Liu, Mei-Jing Wang, Qiao-Yun Zhu, Yu-Shu Lyu, Jian-Hang Xu, Jian-Xiang Liu
Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions. In situ hybridization revealed that both NAT1 and bHLH110 are predominantly expressed in epidermal layers. By using gene-editing technology, we successfully mutated NAT1 to eliminate its inhibitory effects on wax biosynthesis and improved thermotolerance without yield penalty under normal temperature conditions. Field trials further confirmed the potential of NAT1-edited rice to increase seed-setting rate and grain yield. Therefore, our findings shed light on the regulatory mechanisms governing wax biosynthesis under heat stress conditions in rice and provide a strategy to enhance heat resilience through the modification of NAT1. Negative regulator of thermotolerance 1 (NAT1) is identified as a negative regulator of thermotolerance in rice through the NAT1–bHLH110–CER1/CER1L module. Modifying NAT1 by targeted gene editing increases wax deposition and enhances thermotolerance in rice.
水稻生产正面临着与极端温度相关的全球变暖的重大威胁。本文报道了对热胁迫诱导的负调节因子——耐热性负调节因子NAT1 (negative regulator of thermotolerance 1, NAT1)进行修饰,可以增加水稻的蜡沉积,增强其耐热性。我们证明了C2H2家族转录因子NAT1直接抑制bHLH110的表达,bHLH110在热应激条件下直接促进蜡质生物合成基因CER1/CER1L的表达。原位杂交结果显示,NAT1和bHLH110主要表达于表皮层。通过基因编辑技术,我们成功突变了NAT1,消除了其对蜡生物合成的抑制作用,提高了常温条件下的耐热性,且产量不受影响。田间试验进一步证实了nat1编辑水稻在提高结实率和籽粒产量方面的潜力。因此,我们的研究结果揭示了水稻在热胁迫条件下蜡质生物合成的调控机制,并提供了通过修饰NAT1来增强耐热性的策略。
{"title":"The NAT1–bHLH110–CER1/CER1L module regulates heat stress tolerance in rice","authors":"Hai-Ping Lu, Xue-Huan Liu, Mei-Jing Wang, Qiao-Yun Zhu, Yu-Shu Lyu, Jian-Hang Xu, Jian-Xiang Liu","doi":"10.1038/s41588-024-02065-2","DOIUrl":"10.1038/s41588-024-02065-2","url":null,"abstract":"Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions. In situ hybridization revealed that both NAT1 and bHLH110 are predominantly expressed in epidermal layers. By using gene-editing technology, we successfully mutated NAT1 to eliminate its inhibitory effects on wax biosynthesis and improved thermotolerance without yield penalty under normal temperature conditions. Field trials further confirmed the potential of NAT1-edited rice to increase seed-setting rate and grain yield. Therefore, our findings shed light on the regulatory mechanisms governing wax biosynthesis under heat stress conditions in rice and provide a strategy to enhance heat resilience through the modification of NAT1. Negative regulator of thermotolerance 1 (NAT1) is identified as a negative regulator of thermotolerance in rice through the NAT1–bHLH110–CER1/CER1L module. Modifying NAT1 by targeted gene editing increases wax deposition and enhances thermotolerance in rice.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 2","pages":"427-440"},"PeriodicalIF":31.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1