This Letter presents complex coacervation between the biopolymer diethylaminoethyl dextran hydrochloride (DEAE-Dex) and carbon dots. The formation of these coacervates was dependent on both DEAE-Dex concentration and solution ionic strength. Fluorescence spectroscopy revealed that the blue fluorescence of the carbon dots was unaffected by coacervation. Additionally, microrheological studies were conducted to determine the viscosity of these coacervates. These complex coacervates, formed through the interaction of nanoparticles and polyelectrolytes, hold a promising role for future applications where the combination of optical properties from the carbon dots and encapsulation via coacervation can be leveraged.
Nanobowls show promising potential in biomedical applications, such as bioimaging, cargo delivery, and disease theranostics, due to their unique concave structure and interior cavities. However, the lack of biodegradable nanobowls with manipulable size (especially the dent size) still exists as an obstacle for their in-depth exploration and application in biomedical fields. Herein, polypeptide-based nanobowls are successfully obtained by the self-assembly of a graft polypeptide [named TPE-P(GAAzo21-stat-GA29)] via a solvent-switch method. Through the synergistic effect between the hydrogen bonding and π–π stacking interactions, the size of nanobowls and the corresponding dents can be facilely controlled by altering either the initial polypeptide concentration or the cosolvents in self-assembly. Furthermore, such polypeptide-based nanobowls are demonstrated to be biocompatible and biodegradable in vitro, which may promote the development of biomedical nanobowls in the future.
Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments. To the best of our knowledge, the formation of BSPNPs through direct self-assembly in aqueous media has not yet been reported. In vitro cellular studies asserted the higher safety profile of the nanoparticles against noncancerous cells (HEK293T) than free DOX, whereas they displayed higher drug-induced cytotoxicity against cancer cells (MCF-7) in comparison to free DOX, establishing them as promising cancer drug delivery systems.
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Polyacrylonitrile (PAN) is a key industrial polymer for the production of carbon fiber for high-strength, lightweight composite material applications, with an estimated 90% of the carbon fiber market relying on PAN-based polymers. Traditionally, PAN synthesis is achieved by conventional radical polymerization, resulting in broad molecular weight distributions and the use of toxic organic solvents or surfactants during the synthesis. Additionally, attempts to improve polymer and processing properties by controlled radical polymerization methods suffer from low monomer conversions and struggle to achieve molecular weights suitable for producing high-performance carbon fiber. In this study, we present an aqueous photoiniferter (aqPI) polymerization of acrylonitrile, achieving high monomer conversion and high PAN molecular weights with significantly faster kinetics and dispersity control when compared to traditional methods. This approach allows for the unprecedented control of polymer properties that are integral for downstream processing for enhanced carbon fiber production.
Cross-linked polyethylenes (PEs) are widely employed, but the permanent links between the chains impede recycling. We show that via imine formation with diamines keto-functionalized polyethylenes from both free-radical (keto-low-density PE, keto-LDPE) and catalytic (keto-high-density PE, keto-HDPE) nonalternating ethylene-CO copolymerization can be cross-linked efficiently in the melt, resulting in gel fractions of the formed cross-linked PEs of up to 85% and improved tensile properties. The imine-based cross-links in the material can be hydrolyzed at 140 °C to recycle up to 97% of the initial thermoplastic keto-polyethylene. Low keto contents of ≤1.5 mol % are found ideal to retain PE-like thermal properties, achieve sufficient cross-link density, and maintain circular recyclability.
Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2-9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.