首页 > 最新文献

ACS Materials Letters最新文献

英文 中文
A Safe Electrolyte Enriched with Flame-Retardant Solvents for High-Voltage LiCoO2||Graphite Pouch Cells 用于高压钴酸锂电池的富含阻燃溶剂的安全电解液||石墨袋电池
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1021/acsenergylett.4c0246610.1021/acsenergylett.4c02466
Chao Yang, Xing Zhou, Ruitao Sun, Wenxi Hu, Meilong Wang, Xiaoli Dong, Nan Piao, Jin Han*, Wen Chen and Ya You*, 

Employing a flame-retardant solvent (FRS) in the electrolyte has shown great potential for improving the safety of lithium-ion batteries (LIBs). Nevertheless, their poor compatibility with salts and commonly used solvents leads to the formation of a heterogeneous system, which drastically limits their concentration in the electrolyte and consequently deteriorates the safety performance. In this work, we employ a bridging solvent diethyl carbonate to raise the solubility of a highly effective FRS, ethoxy pentafluorocyclotriphosphonitrile (PFPN), to a concentration as high as 75 vol % in the electrolyte. The target electrolyte forms a stable N/P-rich cathode–electrolyte interface to protect the electrode from oxygen evolution and transition-metal ion dissolution, thereby enabling the LiCoO2 cathode to preserve 72% capacity retention over 500 cycles at 4.62 V. Moreover, this electrolyte can effectively delay occurrence time and improve the critical temperature of thermal runaway of 1 Ah LiCoO2||graphite pouch cells. Our work proposes a new direction for nonflammable electrolytes toward safe and high-energy LIBs.

在电解液中使用阻燃溶剂(FRS)在提高锂离子电池(LIB)的安全性方面具有巨大潜力。然而,它们与盐类和常用溶剂的相容性较差,会形成一个异构体系,从而极大地限制了它们在电解液中的浓度,进而降低了安全性能。在这项工作中,我们采用桥接溶剂碳酸二乙酯来提高高效 FRS(乙氧基五氟环三膦腈(PFPN))在电解液中的溶解度,使其浓度高达 75 vol%。目标电解质形成了稳定的富含 N/P 的阴极-电解质界面,保护电极免受氧演化和过渡金属离子溶解的影响,从而使钴酸锂阴极在 4.62 V 下循环 500 次后仍能保持 72% 的容量。我们的工作为不可燃电解质走向安全高能 LIB 提出了一个新方向。
{"title":"A Safe Electrolyte Enriched with Flame-Retardant Solvents for High-Voltage LiCoO2||Graphite Pouch Cells","authors":"Chao Yang,&nbsp;Xing Zhou,&nbsp;Ruitao Sun,&nbsp;Wenxi Hu,&nbsp;Meilong Wang,&nbsp;Xiaoli Dong,&nbsp;Nan Piao,&nbsp;Jin Han*,&nbsp;Wen Chen and Ya You*,&nbsp;","doi":"10.1021/acsenergylett.4c0246610.1021/acsenergylett.4c02466","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02466https://doi.org/10.1021/acsenergylett.4c02466","url":null,"abstract":"<p >Employing a flame-retardant solvent (FRS) in the electrolyte has shown great potential for improving the safety of lithium-ion batteries (LIBs). Nevertheless, their poor compatibility with salts and commonly used solvents leads to the formation of a heterogeneous system, which drastically limits their concentration in the electrolyte and consequently deteriorates the safety performance. In this work, we employ a bridging solvent diethyl carbonate to raise the solubility of a highly effective FRS, ethoxy pentafluorocyclotriphosphonitrile (PFPN), to a concentration as high as 75 vol % in the electrolyte. The target electrolyte forms a stable N/P-rich cathode–electrolyte interface to protect the electrode from oxygen evolution and transition-metal ion dissolution, thereby enabling the LiCoO<sub>2</sub> cathode to preserve 72% capacity retention over 500 cycles at 4.62 V. Moreover, this electrolyte can effectively delay occurrence time and improve the critical temperature of thermal runaway of 1 Ah LiCoO<sub>2</sub>||graphite pouch cells. Our work proposes a new direction for nonflammable electrolytes toward safe and high-energy LIBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5364–5372 5364–5372"},"PeriodicalIF":19.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Vibrationally Assisted Delayed Fluorescence for Enhanced Energy Transfer in Mn-Doped CsPbBr3 Nanocrystals 利用振荡辅助延迟荧光增强掺锰 CsPbBr3 纳米晶体中的能量传递
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1021/acsenergylett.4c0259210.1021/acsenergylett.4c02592
Subham Das, Sudipa Aich, Aswathy M and Ranjani Viswanatha*, 

This study explores vibrationally assisted delayed fluorescence (VADF) in Mn-doped CsPbBr3 nanocrystals using Förster resonance energy transfer (FRET). Mn doping enhances the FRET efficiency significantly due to an increase in host fluorescence efficiency, indicating an increase in the radiative pathways due to VADF. We observed that Mn facilitates efficient back-transfer of charge carriers, improving energy transfer to acceptor molecules such as Rhodamine 6G (R6G). The simplicity of tuning optical properties through Mn doping presents a promising method to enhance the energy efficiency in donor–acceptor systems for optoelectronic applications. However, further research on halide concentrations, acceptor molecules, and electron transfer mechanisms is necessary to optimize these systems for effective light energy harvesting.

本研究利用佛斯特共振能量转移(FRET)技术探讨了掺锰 CsPbBr3 纳米晶体中的振动辅助延迟荧光(VADF)。由于宿主荧光效率的提高,锰掺杂显著增强了 FRET 效率,这表明 VADF 增加了辐射途径。我们观察到,锰促进了电荷载流子的高效反向转移,改善了向罗丹明 6G(R6G)等受体分子的能量转移。通过掺杂锰来调整光学特性的简易性,为提高光电应用中供体-受体系统的能量效率提供了一种很有前景的方法。然而,有必要对卤化物浓度、受体分子和电子传递机制进行进一步研究,以优化这些系统,实现有效的光能收集。
{"title":"Harnessing Vibrationally Assisted Delayed Fluorescence for Enhanced Energy Transfer in Mn-Doped CsPbBr3 Nanocrystals","authors":"Subham Das,&nbsp;Sudipa Aich,&nbsp;Aswathy M and Ranjani Viswanatha*,&nbsp;","doi":"10.1021/acsenergylett.4c0259210.1021/acsenergylett.4c02592","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02592https://doi.org/10.1021/acsenergylett.4c02592","url":null,"abstract":"<p >This study explores vibrationally assisted delayed fluorescence (VADF) in Mn-doped CsPbBr<sub>3</sub> nanocrystals using Förster resonance energy transfer (FRET). Mn doping enhances the FRET efficiency significantly due to an increase in host fluorescence efficiency, indicating an increase in the radiative pathways due to VADF. We observed that Mn facilitates efficient back-transfer of charge carriers, improving energy transfer to acceptor molecules such as Rhodamine 6G (R6G). The simplicity of tuning optical properties through Mn doping presents a promising method to enhance the energy efficiency in donor–acceptor systems for optoelectronic applications. However, further research on halide concentrations, acceptor molecules, and electron transfer mechanisms is necessary to optimize these systems for effective light energy harvesting.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5461–5463 5461–5463"},"PeriodicalIF":19.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the Critical Oxygenated Functional Groups on Graphene Oxide for Efficient Water Dissociation in Bipolar Membranes 识别氧化石墨烯上的关键氧官能团,实现双极膜中的高效水解离
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1021/acsenergylett.4c0267710.1021/acsenergylett.4c02677
Fanxu Meng, Jiangzhou Qin, Qinghao Wu, Huiwang Dai, Pan Zhu, Tian Tang, Lixia Zhang, Zishuai Bill Zhang* and Kuichang Zuo*, 

Bipolar membranes (BPMs) are emerging options for kinetically accelerating water dissociation (WD) in electrochemical applications. Graphene oxide (GO) with abundant oxygenated functional groups is an efficient catalyst within BPMs to decrease the transmembrane potential. However, the dominant catalytic sites on GO for WD in BPMs have not been experimentally identified, and the reported simulative calculation results are controversial. Herein, we prepared carboxylated and partially hydroxylated GO-based BPMs, and for the first time quantitatively unraveled the correlativity between WD performance and carboxyl group content with tailor-designed experiments. By using a simple mechanical ball milling method, we further improved the bulk density of carboxyl on the GO catalyst, which achieved excellent WD performance during an operation of over 130 h operation. This study provides a subtle and facile strategy for catalyst design to advance BPM technologies.

双极性膜(BPM)是电化学应用中加速水解离(WD)的新兴选择。具有丰富含氧官能团的氧化石墨烯(GO)是双极膜中降低跨膜电位的高效催化剂。然而,GO 上用于 BPM 中 WD 的主要催化位点尚未通过实验确定,所报道的模拟计算结果也存在争议。在此,我们制备了羧基化和部分羟基化的基于 GO 的 BPM,并首次通过量身设计的实验定量地揭示了 WD 性能与羧基含量之间的相关性。通过使用简单的机械球磨方法,我们进一步提高了 GO 催化剂上羧基的体积密度,使其在超过 130 小时的操作过程中实现了优异的 WD 性能。这项研究为催化剂设计提供了一种微妙而简便的策略,从而推动了 BPM 技术的发展。
{"title":"Identifying the Critical Oxygenated Functional Groups on Graphene Oxide for Efficient Water Dissociation in Bipolar Membranes","authors":"Fanxu Meng,&nbsp;Jiangzhou Qin,&nbsp;Qinghao Wu,&nbsp;Huiwang Dai,&nbsp;Pan Zhu,&nbsp;Tian Tang,&nbsp;Lixia Zhang,&nbsp;Zishuai Bill Zhang* and Kuichang Zuo*,&nbsp;","doi":"10.1021/acsenergylett.4c0267710.1021/acsenergylett.4c02677","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02677https://doi.org/10.1021/acsenergylett.4c02677","url":null,"abstract":"<p >Bipolar membranes (BPMs) are emerging options for kinetically accelerating water dissociation (WD) in electrochemical applications. Graphene oxide (GO) with abundant oxygenated functional groups is an efficient catalyst within BPMs to decrease the transmembrane potential. However, the dominant catalytic sites on GO for WD in BPMs have not been experimentally identified, and the reported simulative calculation results are controversial. Herein, we prepared carboxylated and partially hydroxylated GO-based BPMs, and for the first time quantitatively unraveled the correlativity between WD performance and carboxyl group content with tailor-designed experiments. By using a simple mechanical ball milling method, we further improved the bulk density of carboxyl on the GO catalyst, which achieved excellent WD performance during an operation of over 130 h operation. This study provides a subtle and facile strategy for catalyst design to advance BPM technologies.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5444–5451 5444–5451"},"PeriodicalIF":19.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonflammable Sulfone-Based Electrolytes with Mechanically and Thermally Stable Interfaces Enabling LiNi0.5Mn1.5O4 to Operate at High Temperature 具有机械和热稳定性界面的不易燃砜基电解质使 LiNi0.5Mn1.5O4 可在高温下工作
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1021/acsenergylett.4c0245810.1021/acsenergylett.4c02458
Tian-Ling Chen, Mengting Liu*, Xin-Yu Fan, Yi-Hu Feng, Qiang Liu, Xue-Ru Liu, Hanshen Xin* and Peng-Fei Wang*, 

The development of high-energy 5 V-class LiNi0.5Mn1.5O4 batteries is severely limited by the instability of the cathode electrolyte interphase (CEI) at high temperature. Herein, we propose a nonflammable sulfone (SL)-based fluorinated hybrid electrolyte to form stable, uniform, and thin CEI layers, enabling Li||LiNi0.5Mn1.5O4 batteries to achieve elevated electrochemical performance at 60 °C. The formed highly stable inorganic-dominated CEI, comprising LixSOy, LixBOy, and LiF inorganic compositions, exhibits good thermal stability and mechanical strength. Moreover, the robust CEI layer effectively shields the LNMO particles from undesirable side-reactions and stabilizes the interface within the LiNi0.5Mn1.5O4 cathode during high-temperature cycling. In contrast to the conventional electrolyte, the Li||LiNi0.5Mn1.5O4 battery employing a nonflammable SL-based electrolyte exhibits a stable capacity retention of 88.5% after 100 cycles at 60 °C free from the risk of thermal runaway. This study reveals valuable insights into advanced electrolyte technology, paving the way for safer applications of Co-free high-energy batteries in the future.

正极电解质间相(CEI)在高温下的不稳定性严重限制了高能量 5 V 级 LiNi0.5Mn1.5O4 电池的发展。在此,我们提出了一种不易燃的基于砜(SL)的氟化混合电解质,以形成稳定、均匀和薄的 CEI 层,从而使锂离子电池在 60 °C下实现更高的电化学性能。由 LixSOy、LixBOy 和 LiF 等无机成分形成的高度稳定的无机主导 CEI 具有良好的热稳定性和机械强度。此外,在高温循环过程中,坚固的 CEI 层还能有效保护 LNMO 颗粒免受不良副反应的影响,并稳定 LiNi0.5Mn1.5O4 阴极内的界面。与传统电解液相比,采用不可燃 SL 型电解液的 Li||LiNi0.5Mn1.5O4 电池在 60 °C 下循环 100 次后,容量保持率稳定在 88.5%,而且没有热失控的风险。这项研究揭示了先进电解质技术的宝贵见解,为未来更安全地应用无钴高能电池铺平了道路。
{"title":"Nonflammable Sulfone-Based Electrolytes with Mechanically and Thermally Stable Interfaces Enabling LiNi0.5Mn1.5O4 to Operate at High Temperature","authors":"Tian-Ling Chen,&nbsp;Mengting Liu*,&nbsp;Xin-Yu Fan,&nbsp;Yi-Hu Feng,&nbsp;Qiang Liu,&nbsp;Xue-Ru Liu,&nbsp;Hanshen Xin* and Peng-Fei Wang*,&nbsp;","doi":"10.1021/acsenergylett.4c0245810.1021/acsenergylett.4c02458","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02458https://doi.org/10.1021/acsenergylett.4c02458","url":null,"abstract":"<p >The development of high-energy 5 V-class LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> batteries is severely limited by the instability of the cathode electrolyte interphase (CEI) at high temperature. Herein, we propose a nonflammable sulfone (SL)-based fluorinated hybrid electrolyte to form stable, uniform, and thin CEI layers, enabling Li||LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> batteries to achieve elevated electrochemical performance at 60 °C. The formed highly stable inorganic-dominated CEI, comprising Li<sub><i>x</i></sub>SO<sub><i>y</i></sub>, Li<sub><i>x</i></sub>BO<sub><i>y</i></sub>, and LiF inorganic compositions, exhibits good thermal stability and mechanical strength. Moreover, the robust CEI layer effectively shields the LNMO particles from undesirable side-reactions and stabilizes the interface within the LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> cathode during high-temperature cycling. In contrast to the conventional electrolyte, the Li||LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> battery employing a nonflammable SL-based electrolyte exhibits a stable capacity retention of 88.5% after 100 cycles at 60 °C free from the risk of thermal runaway. This study reveals valuable insights into advanced electrolyte technology, paving the way for safer applications of Co-free high-energy batteries in the future.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5452–5460 5452–5460"},"PeriodicalIF":19.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive-Free Synthesis of (Chiral) Gold Bipyramids from Pentatwinned Nanorods. 从五孪晶纳米棒无添加合成(手性)金双锥体。
IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-17 eCollection Date: 2024-11-04 DOI: 10.1021/acsmaterialslett.4c01605
Francisco Bevilacqua, Robin Girod, Victor F Martín, Manuel Obelleiro-Liz, Gail A Vinnacombe-Willson, Kyle Van Gordon, Johan Hofkens, Jose Manuel Taboada, Sara Bals, Luis M Liz-Marzán

The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g., in biology or catalysis. We report herein the preparation of gold bipyramids with no need for additives and shape yields up to 99%, using pentatwinned Au nanorods as seeds and cetyltrimethylammonium chloride as surfactant. For high-growth solution:seed ratios, the bipyramids exhibit an unusual "belted" structure. Three-dimensional electron microscopy revealed the presence of high-index {117}, {115}, and {113} side facets, with {113} and {112} facets at the belt. Belted bipyramids exhibit strong near-field enhancement and high extinction in the near-infrared, in agreement with electromagnetic simulations. These Ag-free bipyramids were used to seed chiral overgrowth using 1,1'-binaphthyl-2,2'-diamine as a chiral inducer, with g-factor up to 0.02, likely the highest reported for bipyramid seeds so far.

在生产具有复杂几何形状的胶体金属纳米结构时,通常需要使用金属离子或硫醇等形状定向添加剂来稳定高指数刻面。然而,这些添加剂可能会影响纳米粒子的表面化学性质,从而阻碍其在生物或催化等领域的应用。我们在本文中报告了无需添加剂的金双锥体制备方法,以五孪晶金纳米棒为种子,十六烷基三甲基氯化铵为表面活性剂,制备出的金双锥体形状良率高达 99%。在高生长溶液与种子比的情况下,双锥体呈现出一种不寻常的 "带状 "结构。三维电子显微镜显示存在高指数的{117}、{115}和{113}侧刻面,带状刻面为{113}和{112}。带状双锥体表现出很强的近场增强能力和很高的近红外消光能力,这与电磁模拟结果一致。使用 1,1'- 联萘-2,2'-二胺作为手性诱导剂,这些无银双锥体被用来作为手性过度生长的种子,其 g 因子高达 0.02,这可能是迄今为止报道的双锥体种子的最高值。
{"title":"Additive-Free Synthesis of (Chiral) Gold Bipyramids from Pentatwinned Nanorods.","authors":"Francisco Bevilacqua, Robin Girod, Victor F Martín, Manuel Obelleiro-Liz, Gail A Vinnacombe-Willson, Kyle Van Gordon, Johan Hofkens, Jose Manuel Taboada, Sara Bals, Luis M Liz-Marzán","doi":"10.1021/acsmaterialslett.4c01605","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c01605","url":null,"abstract":"<p><p>The production of colloidal metal nanostructures with complex geometries usually involves shape-directing additives, such as metal ions or thiols, which stabilize high-index facets. These additives may however affect the nanoparticles' surface chemistry, hindering applications, e.g., in biology or catalysis. We report herein the preparation of gold bipyramids with no need for additives and shape yields up to 99%, using pentatwinned Au nanorods as seeds and cetyltrimethylammonium chloride as surfactant. For high-growth solution:seed ratios, the bipyramids exhibit an unusual \"belted\" structure. Three-dimensional electron microscopy revealed the presence of high-index {117}, {115}, and {113} side facets, with {113} and {112} facets at the belt. Belted bipyramids exhibit strong near-field enhancement and high extinction in the near-infrared, in agreement with electromagnetic simulations. These Ag-free bipyramids were used to seed chiral overgrowth using 1,1'-binaphthyl-2,2'-diamine as a chiral inducer, with <i>g</i>-factor up to 0.02, likely the highest reported for bipyramid seeds so far.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5163-5169"},"PeriodicalIF":9.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Intermediate Phase Formation to Enhance Photovoltaic Performance of Inverted FA-Based Perovskite Solar Cells 控制中间相的形成以提高反相 FA 型过氧化物太阳能电池的光伏性能
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1021/acsenergylett.4c0258010.1021/acsenergylett.4c02580
Chaohui Li*, Hyoungwon Park, Shudi Qiu, Fabian Streller, Kaicheng Zhang, Zijian Peng, Jiwon Byun, Jingjing Tian, Santanu Maiti, Zhiqiang Xie, Lirong Dong, Chao Liu, Vincent M. Le Corre, Ying Shang, Jianchang Wu, Jiyun Zhang, Mingjie Feng, Andreas Späth, Karen Forberich, Andres Osvet, Thomas Heumueller, Silke H. Christiansen, Marcus Halik, Rainer H. Fink, Tobias Unruh, Ning Li, Larry Lüer* and Christoph J. Brabec*, 

Formamidinium (FA)-based perovskites exhibit significant potential for highly efficient photovoltaics due to their promising optoelectronic properties and optimal bandgap. However, the undesired inactive phase arises from multiple crystal nucleation pathways formed by various intermediate phases during the film formation process, persistently accompanying it. FA-based perovskites frequently struggle to form uniform, highly crystalline films. This challenge complicates the development of reliable and highly reproducible crystallization processes for perovskites and the establishment of guidelines for controlling the α-phase formation. In this work, we investigate the role of poly(acrylonitril-co-methyl acrylate) (PAM) to simultaneously control nucleation and subsequent α-phase crystallization. This successfully demonstrates the regulation of oriented crystal growth through the creation of a PAM-PbI2 intermediate. Ultimately, PAM-modified p–i–n architecture devices obtain a promising power conversion efficiency (PCE) of 25.30%, with VOC (1.211 V), achieving 95% of the detailed balance limit. Additionally, PAM-modified devices maintain ≥90% of the initial efficiency for 1000 h under 1 sun and 65 °C operation.

基于甲脒 (FA) 的过氧化物晶石具有良好的光电特性和最佳带隙,因此在高效光伏领域具有巨大潜力。然而,在薄膜形成过程中,各种中间相会形成多种晶体成核途径,从而导致不受欢迎的不活泼相,并一直伴随着这一过程。基于 FA 的过磷酸盐经常难以形成均匀的高结晶薄膜。这一挑战使得开发可靠、可重现性高的包晶石结晶过程以及建立控制α相形成的准则变得更加复杂。在这项工作中,我们研究了聚(丙烯腈-丙烯酸甲酯)(PAM)在同时控制成核和随后的 α 相结晶中的作用。这成功证明了通过建立 PAM-PbI2 中间体来调节定向晶体生长。最终,PAM 改性 pi-i-n 结构器件的功率转换效率 (PCE) 达到 25.30%,VOC (1.211 V) 达到详细平衡极限的 95%。此外,PAM 改进型器件在 65 °C、日照时间为 1000 小时的条件下仍能保持≥90%的初始效率。
{"title":"Controlling Intermediate Phase Formation to Enhance Photovoltaic Performance of Inverted FA-Based Perovskite Solar Cells","authors":"Chaohui Li*,&nbsp;Hyoungwon Park,&nbsp;Shudi Qiu,&nbsp;Fabian Streller,&nbsp;Kaicheng Zhang,&nbsp;Zijian Peng,&nbsp;Jiwon Byun,&nbsp;Jingjing Tian,&nbsp;Santanu Maiti,&nbsp;Zhiqiang Xie,&nbsp;Lirong Dong,&nbsp;Chao Liu,&nbsp;Vincent M. Le Corre,&nbsp;Ying Shang,&nbsp;Jianchang Wu,&nbsp;Jiyun Zhang,&nbsp;Mingjie Feng,&nbsp;Andreas Späth,&nbsp;Karen Forberich,&nbsp;Andres Osvet,&nbsp;Thomas Heumueller,&nbsp;Silke H. Christiansen,&nbsp;Marcus Halik,&nbsp;Rainer H. Fink,&nbsp;Tobias Unruh,&nbsp;Ning Li,&nbsp;Larry Lüer* and Christoph J. Brabec*,&nbsp;","doi":"10.1021/acsenergylett.4c0258010.1021/acsenergylett.4c02580","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02580https://doi.org/10.1021/acsenergylett.4c02580","url":null,"abstract":"<p >Formamidinium (FA)-based perovskites exhibit significant potential for highly efficient photovoltaics due to their promising optoelectronic properties and optimal bandgap. However, the undesired inactive phase arises from multiple crystal nucleation pathways formed by various intermediate phases during the film formation process, persistently accompanying it. FA-based perovskites frequently struggle to form uniform, highly crystalline films. This challenge complicates the development of reliable and highly reproducible crystallization processes for perovskites and the establishment of guidelines for controlling the α-phase formation. In this work, we investigate the role of poly(acrylonitril-<i>co</i>-methyl acrylate) (PAM) to simultaneously control nucleation and subsequent α-phase crystallization. This successfully demonstrates the regulation of oriented crystal growth through the creation of a PAM-PbI<sub>2</sub> intermediate. Ultimately, PAM-modified p–i–n architecture devices obtain a promising power conversion efficiency (PCE) of 25.30%, with <i>V</i><sub>OC</sub> (1.211 V), achieving 95% of the detailed balance limit. Additionally, PAM-modified devices maintain ≥90% of the initial efficiency for 1000 h under 1 sun and 65 °C operation.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5434–5443 5434–5443"},"PeriodicalIF":19.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Trends and Future Perspectives on Zn-Ion Batteries Using Ga-Based Liquid Metal Coatings on Zn Anodes 在锌阳极上使用镓基液态金属涂层的锌离子电池的研究趋势和未来展望
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1021/acsenergylett.4c0219110.1021/acsenergylett.4c02191
Seungwoo Hong, Zungsun Choi, Byungil Hwang* and Aleksandar Matic*, 

Zn-ion batteries (ZIBs) are considered promising alternatives to conventional Li-ion secondary batteries due to their high safety, environmental friendliness, and cost-effectiveness. Despite these advantages, uneven metal plating and stripping, dendrite formation, and passivation and corrosion owing to the hydrogen evolution reaction (HER) have hindered the practical implementation of ZIBs. A promising route for overcoming these problems involves coating the Zn anode with eutectic gallium indium (EGaIn)-based liquid metal (LM) with a strong Zn affinity and growth direction tenability. Despite considerable research on EGaIn-coated Zn anodes for ZIBs, this topic has not been comprehensively reviewed. Hence, this Review introduces the application of LMs to ZIBs and particularly discusses the mitigation of stability issues using LM and the fundamental processes related to Zn anodes. We summarize the progress in this field and suggest promising future research directions to advance ZIBs.

锌离子电池(ZIBs)因其高度安全性、环保性和成本效益而被认为是传统锂离子二次电池的理想替代品。尽管具有这些优点,但金属电镀和剥离不均匀、枝晶形成以及氢进化反应(HER)导致的钝化和腐蚀等问题阻碍了 ZIB 的实际应用。克服这些问题的一条可行途径是在锌阳极上镀上共晶镓铟 (EGaIn) 基液态金属 (LM),这种液态金属具有很强的锌亲和性和生长方向稳定性。尽管有关 EGaIn 涂层 Zn 阳极用于 ZIB 的研究相当多,但尚未对这一主题进行全面综述。因此,本综述介绍了将 LM 应用于 ZIB 的情况,特别讨论了使用 LM 缓解稳定性问题以及与锌阳极相关的基本过程。我们总结了这一领域的进展,并提出了未来有望推动 ZIBs 发展的研究方向。
{"title":"Research Trends and Future Perspectives on Zn-Ion Batteries Using Ga-Based Liquid Metal Coatings on Zn Anodes","authors":"Seungwoo Hong,&nbsp;Zungsun Choi,&nbsp;Byungil Hwang* and Aleksandar Matic*,&nbsp;","doi":"10.1021/acsenergylett.4c0219110.1021/acsenergylett.4c02191","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02191https://doi.org/10.1021/acsenergylett.4c02191","url":null,"abstract":"<p >Zn-ion batteries (ZIBs) are considered promising alternatives to conventional Li-ion secondary batteries due to their high safety, environmental friendliness, and cost-effectiveness. Despite these advantages, uneven metal plating and stripping, dendrite formation, and passivation and corrosion owing to the hydrogen evolution reaction (HER) have hindered the practical implementation of ZIBs. A promising route for overcoming these problems involves coating the Zn anode with eutectic gallium indium (EGaIn)-based liquid metal (LM) with a strong Zn affinity and growth direction tenability. Despite considerable research on EGaIn-coated Zn anodes for ZIBs, this topic has not been comprehensively reviewed. Hence, this Review introduces the application of LMs to ZIBs and particularly discusses the mitigation of stability issues using LM and the fundamental processes related to Zn anodes. We summarize the progress in this field and suggest promising future research directions to advance ZIBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5421–5433 5421–5433"},"PeriodicalIF":19.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Defect Recovery in Perovskite Nanocrystals with Excess Halide for Core–Shell Structure 具有过量卤化物的核壳结构过氧化物纳米晶体的表面缺陷恢复
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1021/acsenergylett.4c0187010.1021/acsenergylett.4c01870
Dong Hyeon Lee, Woo Hyeon Jeong, Seokhyun Choung, Ji Won Jang, Gyudong Lee, Hochan Song, Sanghun Han, Gyeong Eun Seok, Jihoon Kim, Myeonggeun Han, Jeong Woo Han, Hyosung Choi, Jongmin Choi*, Bo Ram Lee* and Yong-Young Noh*, 

We present a method to synthesize stable and uniform high-quality perovskite nanocrystals (PNCs) by using excess halide to recover surface defects in CsPbBr3/ZnS core/shell nanocrystals. Use of N-bromosuccinimide as a halide donor recovered surface halide vacancies of bare CsPbBr3 PNCs during the growth of the ZnS shell, as confirmed by DFT calculations. This approach achieves a high photoluminescence quantum yield of nearly 1, and significantly increases the stability of PNCs under adverse conditions such as high humidity and elevated temperature. CsPbBr3/ZnS PNC light-emitting diodes demonstrated outstanding luminous characteristics, with a remarkable external quantum efficiency of 12.77% and a maximum luminance of 1449 cd m–2 at 517 nm. These characteristics of the PNCs will have a wide variety of applications and will help enable development of highly efficient optoelectronic devices.

我们提出了一种利用过量卤化物恢复 CsPbBr3/ZnS 核/壳纳米晶体表面缺陷,从而合成稳定、均匀的高质量过氧化物纳米晶体(PNCs)的方法。在 ZnS 外壳的生长过程中,使用 N-bromosuccinimide 作为卤化物供体恢复了裸 CsPbBr3 PNCs 的表面卤化物空位,这一点已得到 DFT 计算的证实。这种方法实现了接近 1 的高光量子产率,并显著提高了 PNC 在高湿度和高温等不利条件下的稳定性。CsPbBr3/ZnS PNC 发光二极管具有出色的发光特性,外部量子效率高达 12.77%,在 517 纳米波长下的最大亮度为 1449 cd m-2。PNC 的这些特性将有广泛的应用前景,有助于开发高效光电器件。
{"title":"Surface Defect Recovery in Perovskite Nanocrystals with Excess Halide for Core–Shell Structure","authors":"Dong Hyeon Lee,&nbsp;Woo Hyeon Jeong,&nbsp;Seokhyun Choung,&nbsp;Ji Won Jang,&nbsp;Gyudong Lee,&nbsp;Hochan Song,&nbsp;Sanghun Han,&nbsp;Gyeong Eun Seok,&nbsp;Jihoon Kim,&nbsp;Myeonggeun Han,&nbsp;Jeong Woo Han,&nbsp;Hyosung Choi,&nbsp;Jongmin Choi*,&nbsp;Bo Ram Lee* and Yong-Young Noh*,&nbsp;","doi":"10.1021/acsenergylett.4c0187010.1021/acsenergylett.4c01870","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c01870https://doi.org/10.1021/acsenergylett.4c01870","url":null,"abstract":"<p >We present a method to synthesize stable and uniform high-quality perovskite nanocrystals (PNCs) by using excess halide to recover surface defects in CsPbBr<sub>3</sub>/ZnS core/shell nanocrystals. Use of <i>N</i>-bromosuccinimide as a halide donor recovered surface halide vacancies of bare CsPbBr<sub>3</sub> PNCs during the growth of the ZnS shell, as confirmed by DFT calculations. This approach achieves a high photoluminescence quantum yield of nearly 1, and significantly increases the stability of PNCs under adverse conditions such as high humidity and elevated temperature. CsPbBr<sub>3</sub>/ZnS PNC light-emitting diodes demonstrated outstanding luminous characteristics, with a remarkable external quantum efficiency of 12.77% and a maximum luminance of 1449 cd m<sup>–2</sup> at 517 nm. These characteristics of the PNCs will have a wide variety of applications and will help enable development of highly efficient optoelectronic devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5413–5420 5413–5420"},"PeriodicalIF":19.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries 用于全固态电池的单晶富镍阴极的 ZnO-Li3TaO4 双功能表面改性
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1021/acsenergylett.4c0201610.1021/acsenergylett.4c02016
Jun Pyo Son, Jae-Seung Kim, Chang-Gi Lee, Juhyoun Park, Jong Seok Kim, Se-Ho Kim, Baptiste Gault, Dong-Hwa Seo and Yoon Seok Jung*, 

Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.

在本文中,我们介绍了一种 ZnO-Li3TaO4 复合涂层,旨在稳定含 Li6PS5Cl 的 ASSB 中的单晶 LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA)。原子探针断层扫描和透射电子显微镜等详细分析证实,这种双重功能涂层可形成富含钽的表层和掺杂锌的近表面区域。ZnO-Li3TaO4 涂层显著增强了界面稳定性和结构稳定性,在 30 °C 的 sNCMA|Li6PS5Cl|(Li-In)电池中表现出卓越的性能(初始放电容量为 196 mA h g-1,1000 次循环后容量保持率为 82.7%),超过了未涂层或仅有 Li3TaO4 涂层的 sNCMA 性能(200 次循环后容量保持率分别仅为 82.5% 或 84.2%)。电化学阻抗光谱和原位 X 射线光电子能谱证实了 ZnO-Li3TaO4 的保护作用。最后,密度泛函理论计算以及与氧化惰性 Li2ZrCl6 阴极的对比测试阐明了性能增强的机制,特别是 Zn 掺杂抑制了 Ni2+ 迁移,强调了阴极结构稳定性在全固态电池中的重要性。
{"title":"Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries","authors":"Jun Pyo Son,&nbsp;Jae-Seung Kim,&nbsp;Chang-Gi Lee,&nbsp;Juhyoun Park,&nbsp;Jong Seok Kim,&nbsp;Se-Ho Kim,&nbsp;Baptiste Gault,&nbsp;Dong-Hwa Seo and Yoon Seok Jung*,&nbsp;","doi":"10.1021/acsenergylett.4c0201610.1021/acsenergylett.4c02016","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02016https://doi.org/10.1021/acsenergylett.4c02016","url":null,"abstract":"<p >Herein, we introduce a ZnO–Li<sub>3</sub>TaO<sub>4</sub> composite coating designed to stabilize single-crystalline LiNi<sub>0.95</sub>Co<sub>0.03</sub>Mn<sub>0.015</sub>Al<sub>0.005</sub>O<sub>2</sub> (sNCMA) in ASSBs with Li<sub>6</sub>PS<sub>5</sub>Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li<sub>3</sub>TaO<sub>4</sub> coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li<sub>6</sub>PS<sub>5</sub>Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g<sup>–1</sup> with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li<sub>3</sub>TaO<sub>4</sub>-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li<sub>3</sub>TaO<sub>4</sub> is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li<sub>2</sub>ZrCl<sub>6</sub> catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni<sup>2+</sup> migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5403–5412 5403–5412"},"PeriodicalIF":19.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries 通过烷基链调谐实现溶解鞘重组,有望开发瘦电解质锂离子电池
IF 19.3 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1021/acsenergylett.4c0204910.1021/acsenergylett.4c02049
Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed and Husam N. Alshareef*, 

Sparsely solvating electrolyte (SSE), which can achieve a quasi-solid-phase sulfur reaction path, stands out as a promising strategy to alleviate the dependence on electrolyte usage and construct lean-electrolyte lithium–sulfur (Li–S) batteries. Nonetheless, its formation relies upon a high dosage of salt and diluent, thereby leading to increased electrolyte cost. To this end, we herein customize a localized SSE (LSSE) featuring a low ratio of salt-to-solvent and diluent-to-solvent through alkyl chain tuning. A multimodal 2D nuclear magnetic resonance technique is developed to unveil the Li-ion solvation sheath reorganization, which is crucial for studying the coordination and dynamics in liquid electrolytes. LSSE affords an anion-derived solid electrolyte interface and effective restriction of the shuttling effect; hence, our Li–S batteries can sustain a steady operation under 4 μL mgS–1 and 3 mg cm–2. Our work opens a new avenue for advancing SSE design in the pursuit of pragmatic lean-electrolyte Li–S batteries.

稀疏溶解电解质(SSE)可实现准固相硫反应路径,是减轻对电解质用量的依赖和构建贫电解质锂硫(Li-S)电池的有效策略。然而,其形成依赖于高剂量的盐和稀释剂,从而导致电解液成本增加。为此,我们通过烷基链调整定制了一种局部 SSE(LSSE),其特点是盐与溶剂和稀释剂与溶剂的比例较低。我们开发了一种多模态二维核磁共振技术来揭示锂离子溶解鞘重组,这对于研究液态电解质中的配位和动力学至关重要。LSSE 提供了一个阴离子衍生的固体电解质界面,并有效限制了穿梭效应;因此,我们的锂-S 电池可以在 4 μL mgS-1 和 3 mg cm-2 的条件下保持稳定运行。我们的工作为推进固态电解质的设计、追求实用的贫电解质锂-S 电池开辟了一条新途径。
{"title":"Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries","authors":"Zixiong Shi,&nbsp;Simil Thomas,&nbsp;Dong Guo,&nbsp;Zhengnan Tian,&nbsp;Zhiming Zhao,&nbsp;Yizhou Wang,&nbsp;Abdul-Hamid Emwas,&nbsp;Nimer Wehbe,&nbsp;Georgian Melinte,&nbsp;Osman M. Bakr,&nbsp;Omar F. Mohammed and Husam N. Alshareef*,&nbsp;","doi":"10.1021/acsenergylett.4c0204910.1021/acsenergylett.4c02049","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02049https://doi.org/10.1021/acsenergylett.4c02049","url":null,"abstract":"<p >Sparsely solvating electrolyte (SSE), which can achieve a quasi-solid-phase sulfur reaction path, stands out as a promising strategy to alleviate the dependence on electrolyte usage and construct lean-electrolyte lithium–sulfur (Li–S) batteries. Nonetheless, its formation relies upon a high dosage of salt and diluent, thereby leading to increased electrolyte cost. To this end, we herein customize a localized SSE (LSSE) featuring a low ratio of salt-to-solvent and diluent-to-solvent through alkyl chain tuning. A multimodal 2D nuclear magnetic resonance technique is developed to unveil the Li-ion solvation sheath reorganization, which is crucial for studying the coordination and dynamics in liquid electrolytes. LSSE affords an anion-derived solid electrolyte interface and effective restriction of the shuttling effect; hence, our Li–S batteries can sustain a steady operation under 4 μL mg<sub>S</sub><sup>–1</sup> and 3 mg cm<sup>–2</sup>. Our work opens a new avenue for advancing SSE design in the pursuit of pragmatic lean-electrolyte Li–S batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5391–5402 5391–5402"},"PeriodicalIF":19.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1