首页 > 最新文献

ACS Materials Letters最新文献

英文 中文
Ultralong Metal–Organic Framework Nanowires with Accelerated Reconstruction for Enhanced Oxygen Evolution Reaction 加速重构的超长金属-有机骨架纳米线用于增强析氧反应
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c00942
Anqian Hu, , , Jia Gao, , , Jieting Ding, , , Kui Shen, , , Liyu Chen*, , and , Yingwei Li*, 

Many transition-metal-based catalysts, including metal–organic frameworks (MOFs), usually undergo reconstruction to form catalytically active oxyhydroxide sites during the oxygen evolution reaction (OER). However, structural transformation of conventional bulk MOFs mostly occurs at the surface, while internal active centers are not utilized, limiting the improvement in electrocatalytic performance. Herein, we demonstrate that reducing the MOF dimension can accelerate the transformation to metal oxyhydroxides and boost the OER activity. An ultralong NiCo-MOF-74 nanowire (NiCo-MOF-74-NW) enriched with surface open metal sites is prepared by a “pre-assembly–crystallization” strategy. Structural characterization and in situ analysis reveal that the nanowire morphology facilitates reconstruction into active CoOOH species during electrocatalysis. NiCo-MOF-74-NW achieves a low overpotential of 292 mV at 100 mA cm–2, along with enhanced intrinsic activity and favorable reaction kinetics compared to MOF microrods (NiCo-MOF-74-MR). This work provides insights for designing MOF-based electrocatalysts through the decrease of dimensions to promote surface reconstruction.

许多过渡金属基催化剂,包括金属有机框架(mof),通常在析氧反应(OER)中进行重构以形成具有催化活性的氢氧化物位点。然而,传统大块mof的结构转变大多发生在表面,而没有利用内部活性中心,限制了电催化性能的提高。研究表明,减小MOF维数可以加速向金属氢氧化物的转化,提高OER活性。采用“预组装-结晶”策略制备了一种富含表面开放金属位的超长NiCo-MOF-74纳米线(NiCo-MOF-74- nw)。结构表征和原位分析表明,纳米线形态有助于在电催化过程中重构成活性CoOOH。与MOF微棒(NiCo-MOF-74-MR)相比,NiCo-MOF-74-NW在100 mA cm-2下实现了292 mV的低过电位,同时具有增强的内在活性和良好的反应动力学。这项工作为设计基于mof的电催化剂提供了新的思路,通过减小尺寸来促进表面重建。
{"title":"Ultralong Metal–Organic Framework Nanowires with Accelerated Reconstruction for Enhanced Oxygen Evolution Reaction","authors":"Anqian Hu,&nbsp;, ,&nbsp;Jia Gao,&nbsp;, ,&nbsp;Jieting Ding,&nbsp;, ,&nbsp;Kui Shen,&nbsp;, ,&nbsp;Liyu Chen*,&nbsp;, and ,&nbsp;Yingwei Li*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00942","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c00942","url":null,"abstract":"<p >Many transition-metal-based catalysts, including metal–organic frameworks (MOFs), usually undergo reconstruction to form catalytically active oxyhydroxide sites during the oxygen evolution reaction (OER). However, structural transformation of conventional bulk MOFs mostly occurs at the surface, while internal active centers are not utilized, limiting the improvement in electrocatalytic performance. Herein, we demonstrate that reducing the MOF dimension can accelerate the transformation to metal oxyhydroxides and boost the OER activity. An ultralong NiCo-MOF-74 nanowire (NiCo-MOF-74-NW) enriched with surface open metal sites is prepared by a “pre-assembly–crystallization” strategy. Structural characterization and in situ analysis reveal that the nanowire morphology facilitates reconstruction into active CoOOH species during electrocatalysis. NiCo-MOF-74-NW achieves a low overpotential of 292 mV at 100 mA cm<sup>–2</sup>, along with enhanced intrinsic activity and favorable reaction kinetics compared to MOF microrods (NiCo-MOF-74-MR). This work provides insights for designing MOF-based electrocatalysts through the decrease of dimensions to promote surface reconstruction.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"99–107"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Generation of Active Sites in Nodes of Ni-MFU-4l Metal–Organic Framework for Hydrogenation Reaction Ni-MFU-4l金属-有机骨架加氢反应节点活性位点的快速生成
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c01329
Milad Ahmadi Khoshooei, , , Jan Hofmann, , , Haomiao Xie, , , Simon M. Vornholt, , , Yunsung Yoo, , , Fanrui Sha, , , Yongwei Chen, , , Kent O. Kirlikovali, , , Karena W. Chapman, , and , Omar K. Farha*, 

Metal–organic frameworks (MOFs) represent a well-defined class of materials capable of incorporating catalytically active sites for gas-phase catalysis. However, the reducing conditions of hydrogenation catalysis can lead to nanoparticle formation in MOFs, which can significantly diminish the catalytic activity of single-site metals and reduce the longevity of MOF-based hydrogen solutions. Here, we present a straightforward approach to accessing catalytically active single metal sites in a robust Ni-MFU-4l MOF for gas-phase hydrogenation without the formation of Ni nanoparticles. By carefully tuning the local node chemistry through postsynthetic exchange of the terminal ligand coordinated to the Ni(II) centers in the MOF, from −Cl to −OH or −HCOO, we can readily generate Ni–H active species. We further demonstrate, using in situ pair-distribution function analysis, that these Ni–H sites are the sole catalytically active sites in the terminal ligand-exchanged counterparts, whereas nanoparticles readily form in the parent Ni-MFU-4l-Cl under otherwise identical catalytic conditions.

金属有机框架(mof)代表了一类定义明确的材料,能够结合催化活性位点进行气相催化。然而,氢化催化的还原条件会导致mof中形成纳米颗粒,从而显著降低单位点金属的催化活性,降低mof基氢溶液的使用寿命。在这里,我们提出了一种直接的方法,在一个强大的Ni- mfu -4l MOF中获得催化活性的单金属位点,用于气相加氢而不形成Ni纳米颗粒。通过合成后与MOF中Ni(II)中心的末端配体交换,从−Cl到−OH或−HCOO,仔细调整局部节点化学,我们可以很容易地生成Ni - h活性物质。我们进一步证明,使用原位配对分布函数分析,这些Ni-H位点是末端配体交换对偶物中唯一的催化活性位点,而纳米颗粒在其他相同的催化条件下很容易在母体Ni-MFU-4l-Cl中形成。
{"title":"Facile Generation of Active Sites in Nodes of Ni-MFU-4l Metal–Organic Framework for Hydrogenation Reaction","authors":"Milad Ahmadi Khoshooei,&nbsp;, ,&nbsp;Jan Hofmann,&nbsp;, ,&nbsp;Haomiao Xie,&nbsp;, ,&nbsp;Simon M. Vornholt,&nbsp;, ,&nbsp;Yunsung Yoo,&nbsp;, ,&nbsp;Fanrui Sha,&nbsp;, ,&nbsp;Yongwei Chen,&nbsp;, ,&nbsp;Kent O. Kirlikovali,&nbsp;, ,&nbsp;Karena W. Chapman,&nbsp;, and ,&nbsp;Omar K. Farha*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01329","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01329","url":null,"abstract":"<p >Metal–organic frameworks (MOFs) represent a well-defined class of materials capable of incorporating catalytically active sites for gas-phase catalysis. However, the reducing conditions of hydrogenation catalysis can lead to nanoparticle formation in MOFs, which can significantly diminish the catalytic activity of single-site metals and reduce the longevity of MOF-based hydrogen solutions. Here, we present a straightforward approach to accessing catalytically active single metal sites in a robust Ni-MFU-4l MOF for gas-phase hydrogenation without the formation of Ni nanoparticles. By carefully tuning the local node chemistry through postsynthetic exchange of the terminal ligand coordinated to the Ni(II) centers in the MOF, from −Cl to −OH or −HCOO, we can readily generate Ni–H active species. We further demonstrate, using in situ pair-distribution function analysis, that these Ni–H sites are the sole catalytically active sites in the terminal ligand-exchanged counterparts, whereas nanoparticles readily form in the parent Ni-MFU-4l-Cl under otherwise identical catalytic conditions.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"213–219"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and Photoluminescence Studies of Tin-Vacancy Centers in Chemical Vapor Deposition Diamond 化学气相沉积金刚石中锡空位中心的制备及光致发光研究
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c01218
Rani Mary Joy*, , , Miquel Cherta Garrido, , , Omar J. Y. Harb, , , Hendrik Jeuris, , , Rozita Rouzbahani, , , Jan D’Haen, , , Stephane Clemmen, , , Dries Van Thourhout, , , Danny E. P. Vanpoucke, , , Paulius Pobedinskas, , and , Ken Haenen*, 

Group IV color centers in diamond are promising single-photon emitters for quantum information processing and networking. Among them, the tin-vacancy (SnV) center stands out due to its long spin coherence times at cryogenic temperatures above 1 K. While SnV centers have been realized using various fabrication routes, their in situ formation via microwave plasma-enhanced chemical vapor deposition (MW PE CVD) remains relatively unexplored. In this study, SnV centers, identified by a zero-phonon line (ZPL) near 620 nm, were synthesized in nanocrystalline diamond and free-standing microcrystalline diamond using tin oxide (SnO2) as a dopant source at substrate temperatures of 750°C and 850°C. Photoluminescence measurements reveal that lowering the substrate temperature enhances both the ZPL intensity and spatial uniformity of SnV centers. These results highlight substrate temperature as a key parameter for controlling SnV incorporation during MW PE CVD growth and provide insights into optimizing fabrication strategies for diamond-based quantum technologies.

金刚石的IV族色中心是量子信息处理和网络中有前途的单光子发射体。其中,锡空位(SnV)中心因其在1 K以上低温下的长自旋相干时间而引人注目。虽然SnV中心已经通过各种制造路线实现,但通过微波等离子体增强化学气相沉积(MW PE CVD)原位形成SnV中心的研究仍然相对较少。本研究以氧化锡(SnO2)为掺杂源,在750℃和850℃的衬底温度下,在纳米金刚石和独立微晶金刚石中合成了近620 nm的SnV中心,并通过零声子线(ZPL)进行了鉴定。光致发光测量结果表明,降低衬底温度可以提高ZPL强度和SnV中心的空间均匀性。这些结果强调了衬底温度是在MW PE CVD生长过程中控制SnV掺入的关键参数,并为优化基于金刚石的量子技术的制造策略提供了见解。
{"title":"Fabrication and Photoluminescence Studies of Tin-Vacancy Centers in Chemical Vapor Deposition Diamond","authors":"Rani Mary Joy*,&nbsp;, ,&nbsp;Miquel Cherta Garrido,&nbsp;, ,&nbsp;Omar J. Y. Harb,&nbsp;, ,&nbsp;Hendrik Jeuris,&nbsp;, ,&nbsp;Rozita Rouzbahani,&nbsp;, ,&nbsp;Jan D’Haen,&nbsp;, ,&nbsp;Stephane Clemmen,&nbsp;, ,&nbsp;Dries Van Thourhout,&nbsp;, ,&nbsp;Danny E. P. Vanpoucke,&nbsp;, ,&nbsp;Paulius Pobedinskas,&nbsp;, and ,&nbsp;Ken Haenen*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01218","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01218","url":null,"abstract":"<p >Group IV color centers in diamond are promising single-photon emitters for quantum information processing and networking. Among them, the tin-vacancy (SnV) center stands out due to its long spin coherence times at cryogenic temperatures above 1 K. While SnV centers have been realized using various fabrication routes, their in situ formation via microwave plasma-enhanced chemical vapor deposition (MW PE CVD) remains relatively unexplored. In this study, SnV centers, identified by a zero-phonon line (ZPL) near 620 nm, were synthesized in nanocrystalline diamond and free-standing microcrystalline diamond using tin oxide (SnO<sub>2</sub>) as a dopant source at substrate temperatures of 750°C and 850°C. Photoluminescence measurements reveal that lowering the substrate temperature enhances both the ZPL intensity and spatial uniformity of SnV centers. These results highlight substrate temperature as a key parameter for controlling SnV incorporation during MW PE CVD growth and provide insights into optimizing fabrication strategies for diamond-based quantum technologies.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"137–144"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Functional PdAg Alloy Oxygen Electrocatalyst for Stable Operation in Zinc–Air Batteries and Proton Exchange Membrane Fuel Cells 锌-空气电池和质子交换膜燃料电池稳定运行的双功能PdAg合金氧电催化剂
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c01274
Dilmurod Sayfiddinov, , , Ramasamy Santhosh Kumar, , , Venkitesan Sakthivel, , , Ae Rhan Kim, , , Seon Kyu Kim, , , Jin Su Hyun, , and , Dong Jin Yoo*, 

High overpotential resulting from the slow reaction rate of the oxygen reduction reaction (ORR) at air electrodes limits the practical use of proton exchange membrane fuel cells (PEMFCs) and zinc–air batteries (ZABs). In this study, a simplified single-step synthesis of PdAg alloy nanoparticles loaded on reduced graphene oxide (PdAg-rGO) as a bifunctional catalyst for the ORR and the oxygen evolution reaction (OER) was designed. Electrochemical evaluations revealed that the PdAg-rGO electrocatalyst showed a good ORR Eonset potential in alkaline (0.87 V) and acidic media (0.74 V). For the OER, PdAg-rGO required a 290 mV overpotential to deliver 50 mA cm–2 and a Tafel slope of 61 mV dec–1. Notably, PdAg-rGO demonstrated long durability, maintaining stable performance over 120 h in ZAB and over 100 h in PEMFC tests. The findings highlight the practical potential of the PdAg alloy as a robust and versatile ORR catalyst for emerging technologies in energy systems.

空气电极上氧还原反应(ORR)反应速率慢导致的高过电位限制了质子交换膜燃料电池(pemfc)和锌空气电池(ZABs)的实际应用。在本研究中,设计了一种简化的单步合成PdAg合金纳米颗粒的方法,负载还原氧化石墨烯(PdAg- rgo)作为ORR和析氧反应(OER)的双功能催化剂。电化学评价表明,PdAg-rGO电催化剂在碱性(0.87 V)和酸性(0.74 V)介质中均表现出良好的ORR启动电位。对于OER, PdAg-rGO需要290 mV过电位来提供50 mA cm-2和61 mV 12 - 1的Tafel斜率。值得注意的是,PdAg-rGO表现出较长的耐久性,在ZAB测试中保持120小时的稳定性能,在PEMFC测试中保持100小时以上的稳定性能。这一发现突出了PdAg合金作为能源系统新兴技术中强大而通用的ORR催化剂的实际潜力。
{"title":"Dual-Functional PdAg Alloy Oxygen Electrocatalyst for Stable Operation in Zinc–Air Batteries and Proton Exchange Membrane Fuel Cells","authors":"Dilmurod Sayfiddinov,&nbsp;, ,&nbsp;Ramasamy Santhosh Kumar,&nbsp;, ,&nbsp;Venkitesan Sakthivel,&nbsp;, ,&nbsp;Ae Rhan Kim,&nbsp;, ,&nbsp;Seon Kyu Kim,&nbsp;, ,&nbsp;Jin Su Hyun,&nbsp;, and ,&nbsp;Dong Jin Yoo*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01274","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01274","url":null,"abstract":"<p >High overpotential resulting from the slow reaction rate of the oxygen reduction reaction (ORR) at air electrodes limits the practical use of proton exchange membrane fuel cells (PEMFCs) and zinc–air batteries (ZABs). In this study, a simplified single-step synthesis of PdAg alloy nanoparticles loaded on reduced graphene oxide (PdAg-rGO) as a bifunctional catalyst for the ORR and the oxygen evolution reaction (OER) was designed. Electrochemical evaluations revealed that the PdAg-rGO electrocatalyst showed a good ORR <i>E</i><sub>onset</sub> potential in alkaline (0.87 V) and acidic media (0.74 V). For the OER, PdAg-rGO required a 290 mV overpotential to deliver 50 mA cm<sup>–2</sup> and a Tafel slope of 61 mV dec<sup>–1</sup>. Notably, PdAg-rGO demonstrated long durability, maintaining stable performance over 120 h in ZAB and over 100 h in PEMFC tests. The findings highlight the practical potential of the PdAg alloy as a robust and versatile ORR catalyst for emerging technologies in energy systems.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"161–170"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-the-Art Emerging Materials under a Terahertz Emission Spotlight 在太赫兹发射聚光灯下最先进的新兴材料
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c00915
Srabani Kar*, , , Kaveh Delfanazari, , and , Yu-Chieh Wen, 

The generation and manipulation of photoinduced transient currents, as well as characterization of the emission of resultant electromagnetic waves, are crucial for the design and coherent operation of advanced optoelectronic devices. An ultrafast optical pulse-driven transient photocurrent lasts for picosecond time scale bursts as a terahertz (THz) emission. The emitted radiation, permitted by the intrinsic structural properties of materials, is remarkably enriched with information on associated ultrafast transients and can potentially explore microscopic insights into fascinating nonlinear dynamical characteristics. This review aims to understand terahertz (THz) emission and the underlying ultrafast photophysics in contemporary matter systems. Since THz emission is the manifestation of photocurrents and induced dynamic polarization that sustain a picosecond time scale, it offers a noncontact and noninvasive platform for studying such ultrafast phenomena.

光致瞬变电流的产生和控制,以及由此产生的电磁波的发射特性,对于先进光电器件的设计和相干操作至关重要。超快光脉冲驱动的瞬态光电流持续皮秒时间尺度爆发为太赫兹(THz)发射。材料的固有结构特性允许发射的辐射显著地丰富了相关的超快瞬态信息,并且可以潜在地探索迷人的非线性动力学特性的微观见解。本文旨在了解当代物质系统中太赫兹(THz)发射及其潜在的超快光物理。由于太赫兹辐射是持续皮秒时间尺度的光电流和诱导动态极化的表现,因此它为研究这种超快现象提供了非接触和非侵入性的平台。
{"title":"State-of-the-Art Emerging Materials under a Terahertz Emission Spotlight","authors":"Srabani Kar*,&nbsp;, ,&nbsp;Kaveh Delfanazari,&nbsp;, and ,&nbsp;Yu-Chieh Wen,&nbsp;","doi":"10.1021/acsmaterialslett.5c00915","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c00915","url":null,"abstract":"<p >The generation and manipulation of photoinduced transient currents, as well as characterization of the emission of resultant electromagnetic waves, are crucial for the design and coherent operation of advanced optoelectronic devices. An ultrafast optical pulse-driven transient photocurrent lasts for picosecond time scale bursts as a terahertz (THz) emission. The emitted radiation, permitted by the intrinsic structural properties of materials, is remarkably enriched with information on associated ultrafast transients and can potentially explore microscopic insights into fascinating nonlinear dynamical characteristics. This review aims to understand terahertz (THz) emission and the underlying ultrafast photophysics in contemporary matter systems. Since THz emission is the manifestation of photocurrents and induced dynamic polarization that sustain a picosecond time scale, it offers a noncontact and noninvasive platform for studying such ultrafast phenomena.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"16–34"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelet Glycoprotein VI Inhabitable MXene-Incorporated Fibrous Scaffolds for Preventing Tumor Progression and Metastasis 血小板糖蛋白VI可居住mxene结合纤维支架预防肿瘤进展和转移
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-02 DOI: 10.1021/acsmaterialslett.5c01294
Wei Yang, , , Debao Shi, , , Lianzi Wang, , , Min Zhang, , , Liying Lv, , , Jinglin Wang*, , and , Xiaoya Ding*, 

Postoperative recurrence and metastasis remain major causes of mortality in breast cancer due to residual tumor cells and complex metastatic processes. Here, we develop an NIR-responsive MXene-based scaffold that integrates antiplatelet therapy, chemotherapy, and photothermal therapy for postoperative intervention. The scaffold is fabricated by printing sodium alginate, gelatin methacryloyl, and MXene into CaCl2 solution followed by UV cross-linking. Benefiting from the photothermal capacity of MXene nanosheets, the scaffold enables efficient photothermal conversion and NIR-triggered drug release. Incorporation of the platelet glycoprotein (GPVI) inhibitor evobrutinib disrupts platelet–tumor interactions, thereby suppressing epithelial–mesenchymal transition and tumor invasion. In vivo, the scaffold provides sustained doxorubicin release and photothermal ablation to inhibit residual tumor growth while reducing lung metastasis through GPVI blockade. Transcriptomic analysis further confirms that the scaffold impedes tumor progression by modulating platelet activation and angiogenesis. This multifunctional platform offers a promising strategy for preventing postoperative breast cancer recurrence and metastasis.

由于残留的肿瘤细胞和复杂的转移过程,术后复发和转移仍然是乳腺癌死亡的主要原因。在这里,我们开发了一种nir反应性mxeni支架,将抗血小板治疗、化疗和光热治疗整合到术后干预中。该支架是通过将海藻酸钠、明胶甲基丙烯和MXene打印到CaCl2溶液中,然后进行UV交联制备的。得益于MXene纳米片的光热性能,该支架能够实现有效的光热转换和nir触发的药物释放。血小板糖蛋白(GPVI)抑制剂evobrutinib的掺入破坏血小板-肿瘤相互作用,从而抑制上皮-间质转化和肿瘤侵袭。在体内,该支架提供持续的阿霉素释放和光热消融来抑制残留肿瘤生长,同时通过GPVI阻断减少肺转移。转录组学分析进一步证实,支架通过调节血小板活化和血管生成阻碍肿瘤进展。这个多功能平台为预防乳腺癌术后复发和转移提供了一个有希望的策略。
{"title":"Platelet Glycoprotein VI Inhabitable MXene-Incorporated Fibrous Scaffolds for Preventing Tumor Progression and Metastasis","authors":"Wei Yang,&nbsp;, ,&nbsp;Debao Shi,&nbsp;, ,&nbsp;Lianzi Wang,&nbsp;, ,&nbsp;Min Zhang,&nbsp;, ,&nbsp;Liying Lv,&nbsp;, ,&nbsp;Jinglin Wang*,&nbsp;, and ,&nbsp;Xiaoya Ding*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01294","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01294","url":null,"abstract":"<p >Postoperative recurrence and metastasis remain major causes of mortality in breast cancer due to residual tumor cells and complex metastatic processes. Here, we develop an NIR-responsive MXene-based scaffold that integrates antiplatelet therapy, chemotherapy, and photothermal therapy for postoperative intervention. The scaffold is fabricated by printing sodium alginate, gelatin methacryloyl, and MXene into CaCl<sub>2</sub> solution followed by UV cross-linking. Benefiting from the photothermal capacity of MXene nanosheets, the scaffold enables efficient photothermal conversion and NIR-triggered drug release. Incorporation of the platelet glycoprotein (GPVI) inhibitor evobrutinib disrupts platelet–tumor interactions, thereby suppressing epithelial–mesenchymal transition and tumor invasion. <i>In vivo</i>, the scaffold provides sustained doxorubicin release and photothermal ablation to inhibit residual tumor growth while reducing lung metastasis through GPVI blockade. Transcriptomic analysis further confirms that the scaffold impedes tumor progression by modulating platelet activation and angiogenesis. This multifunctional platform offers a promising strategy for preventing postoperative breast cancer recurrence and metastasis.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"179–188"},"PeriodicalIF":8.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning for Materials Chemistry: New Frontiers and Emerging Paradigms 材料化学的机器学习:新前沿和新兴范例
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1021/acsmaterialslett.5c01387
Shyue Ping Ong*, , , Chad Risko*, , and , Osvaldo N. Oliveira Jr.*, 
{"title":"Machine Learning for Materials Chemistry: New Frontiers and Emerging Paradigms","authors":"Shyue Ping Ong*,&nbsp;, ,&nbsp;Chad Risko*,&nbsp;, and ,&nbsp;Osvaldo N. Oliveira Jr.*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01387","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01387","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 12","pages":"3733"},"PeriodicalIF":8.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Nanocoil/Ti3C2Tx Composite Film toward Wearable and Sensitive K+ Sensor with Rapid Response 碳纳米线圈/Ti3C2Tx复合薄膜用于可穿戴、灵敏、快速响应的K+传感器
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1021/acsmaterialslett.5c00885
Renjie Fan, , , Wenyuan Qiu, , , Siyi Wang, , , Wuning Wei, , , Zhiheng Wu, , and , Chenghao Deng*, 

The advancement of wearable ion sensors necessitates ion-selective electrodes (ISEs) with high sensitivity and rapid response kinetics. This study introduces a porous conductive film based on a carbon nanocoil (CNC)/Ti3C2Tx composite for ISE design. The Ti3C2Tx nanoflakes, exhibiting metallically conductive behavior and abundant surface functional groups, form the film’s structural backbone, ensuring stability and superior electrical conductivity. Concurrently, the helical morphology of CNCs induces a porous architecture, significantly enhancing the ion transport efficiency and ion-to-electron transduction pathways. Consequently, the sensor demonstrates high sensitivity (62.3 mV/decade) and a fast response (0.08 s).

可穿戴式离子传感器的发展需要具有高灵敏度和快速响应动力学的离子选择电极(ISEs)。本研究介绍了一种基于碳纳米线圈(CNC)/Ti3C2Tx复合材料的多孔导电膜,用于ISE设计。Ti3C2Tx纳米薄片具有金属导电性和丰富的表面官能团,形成了薄膜的结构骨架,确保了薄膜的稳定性和优异的导电性。同时,cnc的螺旋形态诱导了多孔结构,显著提高了离子传输效率和离子到电子的转导途径。因此,该传感器具有高灵敏度(62.3 mV/ 10年)和快速响应(0.08 s)。
{"title":"Carbon Nanocoil/Ti3C2Tx Composite Film toward Wearable and Sensitive K+ Sensor with Rapid Response","authors":"Renjie Fan,&nbsp;, ,&nbsp;Wenyuan Qiu,&nbsp;, ,&nbsp;Siyi Wang,&nbsp;, ,&nbsp;Wuning Wei,&nbsp;, ,&nbsp;Zhiheng Wu,&nbsp;, and ,&nbsp;Chenghao Deng*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00885","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c00885","url":null,"abstract":"<p >The advancement of wearable ion sensors necessitates ion-selective electrodes (ISEs) with high sensitivity and rapid response kinetics. This study introduces a porous conductive film based on a carbon nanocoil (CNC)/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> composite for ISE design. The Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> nanoflakes, exhibiting metallically conductive behavior and abundant surface functional groups, form the film’s structural backbone, ensuring stability and superior electrical conductivity. Concurrently, the helical morphology of CNCs induces a porous architecture, significantly enhancing the ion transport efficiency and ion-to-electron transduction pathways. Consequently, the sensor demonstrates high sensitivity (62.3 mV/decade) and a fast response (0.08 s).</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 12","pages":"4037–4041"},"PeriodicalIF":8.7,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Li2TaS1–xOxCl5: Triple-Anion Glassy Superionic Conductors for High-Performance Solid-State Batteries Li2TaS1-xOxCl5:高性能固态电池用三阴离子玻璃超离子导体
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-14 DOI: 10.1021/acsmaterialslett.5c01054
Bright O. Ogbolu, , , Thilina N.D.D. Gamaralalage, , , Md Mahinur Islam, , , Tehreem Toheed, , , Joseph Sariego, , , Tej P. Poudel, , , Brian E. Francisco, , and , Yan-Yan Hu*, 

The development of stable, high-performance solid electrolytes is critical for advancing all-solid-state lithium batteries (ASSLBs). We report a series of triple-anion electrolytes, Li2TaS1–xOxCl5 (0 ≤ x ≤ 0.9), synthesized via a rapid 2-hour mechanochemical process. The optimal composition, Li2TaS0.4O0.6Cl5 (LTSOC), achieves a room-temperature ionic conductivity of ∼4.2 mS cm–1, over 15 times that of Li2TaSCl5. XRD confirms its amorphous nature, while 6/7Li NMR reveals one magnetically equivalent lithium environment due to fast ion-exchange dynamics. Raman spectroscopy shows extensive anion mixing within Ta-centered octahedra, where O2– and S2– occupy axial positions, linking Ta–O–S–Cl units, while Li+ primarily migrates along equatorial Cl-lined pathways. Nanoindentation reveals a reduced elastic modulus with oxygen incorporation. When employed with commercial NMC811, LTSOC delivers an initial capacity of 187 mAh g–1 at 0.1C, with ∼81.8% retention after 100 cycles and Coulombic efficiency exceeding 99%. These results demonstrate the promise of amorphous, mixed-anion solid electrolytes for scalable, high-performance ASSLBs.

开发稳定、高性能的固体电解质对于推进全固态锂电池(ASSLBs)至关重要。我们报道了一系列三阴离子电解质Li2TaS1-xOxCl5(0≤x≤0.9),通过2小时的快速机械化学过程合成。最佳组合Li2TaS0.4O0.6Cl5 (LTSOC)的室温离子电导率为~ 4.2 mS cm-1,是Li2TaSCl5的15倍以上。XRD证实了它的无定形性质,而6/7Li NMR由于快速的离子交换动力学揭示了一个磁性等效的锂环境。拉曼光谱显示,在以ta为中心的八面体中存在广泛的阴离子混合,其中O2 -和S2 -占据轴向位置,连接Ta-O-S-Cl单元,而Li+主要沿着赤道Cl -排列的途径迁移。纳米压痕显示,随着氧的掺入,弹性模量降低。当与商用NMC811一起使用时,LTSOC在0.1C时的初始容量为187 mAh g-1, 100次循环后的保留率为~ 81.8%,库仑效率超过99%。这些结果表明,无定形、混合阴离子固体电解质有望用于可扩展的高性能assb。
{"title":"Li2TaS1–xOxCl5: Triple-Anion Glassy Superionic Conductors for High-Performance Solid-State Batteries","authors":"Bright O. Ogbolu,&nbsp;, ,&nbsp;Thilina N.D.D. Gamaralalage,&nbsp;, ,&nbsp;Md Mahinur Islam,&nbsp;, ,&nbsp;Tehreem Toheed,&nbsp;, ,&nbsp;Joseph Sariego,&nbsp;, ,&nbsp;Tej P. Poudel,&nbsp;, ,&nbsp;Brian E. Francisco,&nbsp;, and ,&nbsp;Yan-Yan Hu*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01054","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01054","url":null,"abstract":"<p >The development of stable, high-performance solid electrolytes is critical for advancing all-solid-state lithium batteries (ASSLBs). We report a series of triple-anion electrolytes, Li<sub>2</sub>TaS<sub>1–<i>x</i></sub>O<sub><i>x</i></sub>Cl<sub>5</sub> (0 ≤ <i>x</i> ≤ 0.9), synthesized via a rapid 2-hour mechanochemical process. The optimal composition, Li<sub>2</sub>TaS<sub>0.4</sub>O<sub>0.6</sub>Cl<sub>5</sub> (LTSOC), achieves a room-temperature ionic conductivity of ∼4.2 mS cm<sup>–1</sup>, over 15 times that of Li<sub>2</sub>TaSCl<sub>5</sub>. XRD confirms its amorphous nature, while <sup>6/7</sup>Li NMR reveals one magnetically equivalent lithium environment due to fast ion-exchange dynamics. Raman spectroscopy shows extensive anion mixing within Ta-centered octahedra, where O<sup>2–</sup> and S<sup>2–</sup> occupy axial positions, linking Ta–O–S–Cl units, while Li<sup>+</sup> primarily migrates along equatorial Cl<sup>–</sup>-lined pathways. Nanoindentation reveals a reduced elastic modulus with oxygen incorporation. When employed with commercial NMC811, LTSOC delivers an initial capacity of 187 mAh g<sup>–1</sup> at 0.1C, with ∼81.8% retention after 100 cycles and Coulombic efficiency exceeding 99%. These results demonstrate the promise of amorphous, mixed-anion solid electrolytes for scalable, high-performance ASSLBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 12","pages":"4029–4036"},"PeriodicalIF":8.7,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Geometry to Activity: Understanding Surface Curvature Effects in Energy Electrocatalysis 从几何到活性:理解能量电催化中的表面曲率效应
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-11 DOI: 10.1021/acsmaterialslett.5c01121
Qichen Wang, , , Lulu Lyu, , , Hetong Pan, , , Ziyi Wang, , , Dongjun Lee, , , Jingjing Liu, , , Zhipeng Li*, , , Yongpeng Lei*, , and , Yong-Mook Kang*, 

Electrocatalysis holds great promise in the field of sustainable energy conversion. Surface-curvature engineering has recently emerged as a powerful strategy to boost catalytic performance by tailoring the electronic structures, charge transport, and local microenvironments. Despite promising advancements, a deep mechanistic understanding of how surface curvature influences catalytic activity through electronic and spatial effects remains insufficient. This Review systematically elucidates the fundamental mechanisms arising from highly curved surfaces in diverse catalysts. We first clarify key concepts and characterization techniques for curved electrocatalysts. Subsequently, we analyze the unique reaction mechanisms of carbon- and metal-based curved catalysts across various reactions. Then, the surface curvature effect on the catalytic stability of electrocatalysts are discussed. Finally, we propose future challenges and opportunities for surface-curvature strategies. This review provides a comprehensive understanding of the impact of surface curvature on catalytic behavior and serves as a reference for proof-of-concept designs of highly active curved electrocatalysts.

电催化在可持续能源转换领域具有广阔的应用前景。表面曲率工程最近成为一种通过调整电子结构、电荷传输和局部微环境来提高催化性能的强大策略。尽管有了很好的进展,但对表面曲率如何通过电子和空间效应影响催化活性的机理理解仍然不足。本文系统地阐述了不同催化剂中高弯曲表面产生的基本机理。我们首先澄清了弯曲电催化剂的关键概念和表征技术。随后,我们分析了碳基和金属基弯曲催化剂在不同反应中的独特反应机理。然后讨论了表面曲率对电催化剂催化稳定性的影响。最后,我们提出了曲面曲率策略未来的挑战和机遇。这一综述提供了对表面曲率对催化行为的影响的全面理解,并为高活性弯曲电催化剂的概念验证设计提供了参考。
{"title":"From Geometry to Activity: Understanding Surface Curvature Effects in Energy Electrocatalysis","authors":"Qichen Wang,&nbsp;, ,&nbsp;Lulu Lyu,&nbsp;, ,&nbsp;Hetong Pan,&nbsp;, ,&nbsp;Ziyi Wang,&nbsp;, ,&nbsp;Dongjun Lee,&nbsp;, ,&nbsp;Jingjing Liu,&nbsp;, ,&nbsp;Zhipeng Li*,&nbsp;, ,&nbsp;Yongpeng Lei*,&nbsp;, and ,&nbsp;Yong-Mook Kang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01121","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01121","url":null,"abstract":"<p >Electrocatalysis holds great promise in the field of sustainable energy conversion. Surface-curvature engineering has recently emerged as a powerful strategy to boost catalytic performance by tailoring the electronic structures, charge transport, and local microenvironments. Despite promising advancements, a deep mechanistic understanding of how surface curvature influences catalytic activity through electronic and spatial effects remains insufficient. This Review systematically elucidates the fundamental mechanisms arising from highly curved surfaces in diverse catalysts. We first clarify key concepts and characterization techniques for curved electrocatalysts. Subsequently, we analyze the unique reaction mechanisms of carbon- and metal-based curved catalysts across various reactions. Then, the surface curvature effect on the catalytic stability of electrocatalysts are discussed. Finally, we propose future challenges and opportunities for surface-curvature strategies. This review provides a comprehensive understanding of the impact of surface curvature on catalytic behavior and serves as a reference for proof-of-concept designs of highly active curved electrocatalysts.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 12","pages":"4005–4028"},"PeriodicalIF":8.7,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1