首页 > 最新文献

ACS Materials Letters最新文献

英文 中文
Mechanochemistry-Driven Optimization of Halide-Based Solid-State Electrolytes via Orthogonal Design of Experiments and Regression Modeling 基于正交实验设计和回归模型的机械化学驱动卤化物固态电解质优化研究
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-12 DOI: 10.1021/acsmaterialslett.5c01492
Matthew Beltran, , , Boyu Wang, , , Yuan Tan, , , Junghyun Choi, , , Dongsoo Lee, , and , Laisuo Su*, 

The mechanochemical synthesis of halide-based solid-state electrolytes (SSEs) requires the fine-tuning of key parameters to optimize ionic conductivity, yet rigorous statistical analysis of the parametric effects remains lacking. In this work, we applied an orthogonal design of experiments on Li2ZrCl6 (LZC) – a cost-effective halide-based SSE – to evaluate the impact of six parameters. The results reveal that ionic conductivity is most influenced by the ball-to-precursor mass ratio, the ball-mill step time, and the milling speed. Structural characterizations indicate a resistive intermediate spinel-LZC phase that inhibits performance. A multivariate linear regression model was employed to quantify the impacts of the parameters. Finally, a Gaussian process regression model predicted an optimized ionic conductivity and its corresponding set of synthesis conditions. The findings reported here establish a hierarchy of the importance of parameters for experimental optimization of current and future SSEs to enable consistent, high-quality production for next-generation all-solid-state Li-ion batteries.

卤化物基固态电解质(sse)的机械化学合成需要对关键参数进行微调以优化离子电导率,但对参数效应的严格统计分析仍然缺乏。在这项工作中,我们采用正交设计的实验,以Li2ZrCl6 (LZC) -一个具有成本效益的卤化物为基础的SSE -评估六个参数的影响。结果表明,离子电导率受球前驱体质量比、球磨步长和磨速的影响最大。结构表征表明一种阻性中间尖晶石- lzc相抑制了性能。采用多元线性回归模型量化各参数的影响。最后,利用高斯过程回归模型预测了最佳离子电导率及其相应的合成条件。本文报告的研究结果建立了当前和未来ssi实验优化参数重要性的层次结构,以实现下一代全固态锂离子电池的一致、高质量生产。
{"title":"Mechanochemistry-Driven Optimization of Halide-Based Solid-State Electrolytes via Orthogonal Design of Experiments and Regression Modeling","authors":"Matthew Beltran,&nbsp;, ,&nbsp;Boyu Wang,&nbsp;, ,&nbsp;Yuan Tan,&nbsp;, ,&nbsp;Junghyun Choi,&nbsp;, ,&nbsp;Dongsoo Lee,&nbsp;, and ,&nbsp;Laisuo Su*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01492","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01492","url":null,"abstract":"<p >The mechanochemical synthesis of halide-based solid-state electrolytes (SSEs) requires the fine-tuning of key parameters to optimize ionic conductivity, yet rigorous statistical analysis of the parametric effects remains lacking. In this work, we applied an orthogonal design of experiments on Li<sub>2</sub>ZrCl<sub>6</sub> (LZC) – a cost-effective halide-based SSE – to evaluate the impact of six parameters. The results reveal that ionic conductivity is most influenced by the ball-to-precursor mass ratio, the ball-mill step time, and the milling speed. Structural characterizations indicate a resistive intermediate spinel-LZC phase that inhibits performance. A multivariate linear regression model was employed to quantify the impacts of the parameters. Finally, a Gaussian process regression model predicted an optimized ionic conductivity and its corresponding set of synthesis conditions. The findings reported here establish a hierarchy of the importance of parameters for experimental optimization of current and future SSEs to enable consistent, high-quality production for next-generation all-solid-state Li-ion batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"614–620"},"PeriodicalIF":8.7,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MoS2-Modified Electrodes for the Lithium Redox Mediated Nitrogen Reduction at Low Overpotentials 低过电位下锂氧化还原介导氮还原的mos2修饰电极
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-12 DOI: 10.1021/acsmaterialslett.5c01305
Jason John, , , Rebecca Y. Hodgetts, , , Thi Mung Vu, , , Darcy Simondson, , , Syed Asad Abbas, , , Hoang-Long Du, , , Rosalie K. Hocking, , , Douglas R. Macfarlane*, , and , Alexandr N. Simonov*, 

High rates of the lithium redox-mediated nitrogen reduction reaction (Li-NRR) typically require significant overpotentials >0.5 V, limiting energy efficiency of the process. Aiming to accelerate the Li-NRR at low overpotentials, we used nickel cathodes modified with a layer-expanded molybdenum disulfide (MoS2LE). Under 15 bar of N2 and an apparent Li-NRR overpotential of 0.2 V, the MoS2LE/Ni electrodes produce NH3 at an improved yield rate of 90 ± 20 nmol s–1 cm–2 and faradaic efficiency of 57% ± 2%, as compared to 39 ± 4 nmol s–1 cm–2 and 39 ± 5% for unmodified Ni (in 2 M lithium bis(trifluoromethylsulfonyl)imide + 0.1 M C2H5OH tetrahydrofuran solutions). Characterization of the electrodes suggests that the improved performance stems from the transformation of MoS2LE into (poly)sulfide species within the solid electrolyte interphase (SEI). These results broaden our understanding of the Li-NRR performance-SEI relationships, which support the development of practical ammonia electrosynthesis technologies.

高速率的锂氧化还原介导的氮还原反应(Li-NRR)通常需要显著的过电位(0.5 V),限制了该过程的能量效率。为了在低过电位下加速Li-NRR,我们使用了用层扩展二硫化钼(MoS2LE)修饰的镍阴极。在15 bar的N2和0.2 V的Li-NRR过电位下,MoS2LE/Ni电极产生NH3的产率为90±20 nmol s-1 cm-2,法拉第效率为57%±2%,而未修饰的Ni(在2 M的二(三氟甲基磺酰基)亚胺锂+ 0.1 M的C2H5OH四氢呋喃溶液中)的产率为39±4 nmol s-1 cm-2和39±5%。电极的表征表明,性能的提高源于MoS2LE在固体电解质界面(SEI)内转化为(多)硫化物。这些结果拓宽了我们对Li-NRR性能- sei关系的理解,为实用氨电合成技术的发展提供了支持。
{"title":"MoS2-Modified Electrodes for the Lithium Redox Mediated Nitrogen Reduction at Low Overpotentials","authors":"Jason John,&nbsp;, ,&nbsp;Rebecca Y. Hodgetts,&nbsp;, ,&nbsp;Thi Mung Vu,&nbsp;, ,&nbsp;Darcy Simondson,&nbsp;, ,&nbsp;Syed Asad Abbas,&nbsp;, ,&nbsp;Hoang-Long Du,&nbsp;, ,&nbsp;Rosalie K. Hocking,&nbsp;, ,&nbsp;Douglas R. Macfarlane*,&nbsp;, and ,&nbsp;Alexandr N. Simonov*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01305","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01305","url":null,"abstract":"<p >High rates of the lithium redox-mediated nitrogen reduction reaction (Li-NRR) typically require significant overpotentials &gt;0.5 V, limiting energy efficiency of the process. Aiming to accelerate the Li-NRR at low overpotentials, we used nickel cathodes modified with a layer-expanded molybdenum disulfide (MoS<sub>2</sub><sup>LE</sup>). Under 15 bar of N<sub>2</sub> and an apparent Li-NRR overpotential of 0.2 V, the MoS<sub>2</sub><sup>LE</sup>/Ni electrodes produce NH<sub>3</sub> at an improved yield rate of 90 ± 20 nmol s<sup>–1</sup> cm<sup>–2</sup> and faradaic efficiency of 57% ± 2%, as compared to 39 ± 4 nmol s<sup>–1</sup> cm<sup>–2</sup> and 39 ± 5% for unmodified Ni (in 2 M lithium bis(trifluoromethylsulfonyl)imide + 0.1 M C<sub>2</sub>H<sub>5</sub>OH tetrahydrofuran solutions). Characterization of the electrodes suggests that the improved performance stems from the transformation of MoS<sub>2</sub><sup>LE</sup> into (poly)sulfide species within the solid electrolyte interphase (SEI). These results broaden our understanding of the Li-NRR performance-SEI relationships, which support the development of practical ammonia electrosynthesis technologies.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"485–491"},"PeriodicalIF":8.7,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-Induced In Situ Lithiation of Si-Based Interlayers for Stable Li-Metal Anodes in All-Solid-State Batteries 全固态电池稳定锂金属阳极硅基夹层的压力诱导原位锂化
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-11 DOI: 10.1021/acsmaterialslett.5c01201
So-Jeong Im, , , Byeong Guk Kim, , , Jihyeon Ryu, , , Jaeik Hyun, , , Sunhye Yang, , , Jeong-Hee Choi, , , Seung Yol Jeong*, , , Yoon-Cheol Ha*, , and , Ki-Hun Nam*, 

Li metal anodes are essential for high-energy-density all-solid-state batteries (ASSBs) but suffer from dendrite growth and interfacial instability. Here, a Si@CNT interlayer is introduced to enhance interfacial contact and Li-ion transport. The Si@CNT composite, prepared via scalable spray drying, undergoes in situ lithiation during cell assembly, forming a conductive and lithiophilic LixSi phase with an embedded carbon nanotube (CNT) network. This structure suppresses dendrite formation, mitigates electrolyte decomposition, and promotes fast Li transport. Li symmetric cells exhibit high critical current densities of 4.5 mA cm–2 at 45 °C and 8.0 mA cm–2 at 80 °C with stable cycling over 800 h. Full cells show 84% capacity retention after 200 cycles and deliver ∼171 mAh g–1 at 10C, outperforming bare Li- and Si-only references. These results demonstrate a scalable interfacial strategy for high-rate, long-life ASSBs.

锂金属阳极是高能量密度全固态电池(assb)必不可少的材料,但存在枝晶生长和界面不稳定的问题。在这里,引入Si@CNT中间层来增强界面接触和锂离子输运。Si@CNT复合材料通过可扩展喷雾干燥制备,在电池组装过程中经历原位锂化,形成具有嵌入式碳纳米管(CNT)网络的导电和亲石性LixSi相。这种结构抑制了枝晶的形成,减缓了电解质的分解,促进了锂的快速运输。锂对称电池在45°C和80°C下表现出4.5 mA cm-2和8.0 mA cm-2的高临界电流密度,稳定循环超过800小时。满电池在200次循环后显示出84%的容量保持率,在10C下提供~ 171 mAh g-1,优于纯锂和硅的参考材料。这些结果证明了一种用于高速率、长寿命assb的可扩展接口策略。
{"title":"Pressure-Induced In Situ Lithiation of Si-Based Interlayers for Stable Li-Metal Anodes in All-Solid-State Batteries","authors":"So-Jeong Im,&nbsp;, ,&nbsp;Byeong Guk Kim,&nbsp;, ,&nbsp;Jihyeon Ryu,&nbsp;, ,&nbsp;Jaeik Hyun,&nbsp;, ,&nbsp;Sunhye Yang,&nbsp;, ,&nbsp;Jeong-Hee Choi,&nbsp;, ,&nbsp;Seung Yol Jeong*,&nbsp;, ,&nbsp;Yoon-Cheol Ha*,&nbsp;, and ,&nbsp;Ki-Hun Nam*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01201","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01201","url":null,"abstract":"<p >Li metal anodes are essential for high-energy-density all-solid-state batteries (ASSBs) but suffer from dendrite growth and interfacial instability. Here, a Si@CNT interlayer is introduced to enhance interfacial contact and Li-ion transport. The Si@CNT composite, prepared via scalable spray drying, undergoes in situ lithiation during cell assembly, forming a conductive and lithiophilic Li<sub><i>x</i></sub>Si phase with an embedded carbon nanotube (CNT) network. This structure suppresses dendrite formation, mitigates electrolyte decomposition, and promotes fast Li transport. Li symmetric cells exhibit high critical current densities of 4.5 mA cm<sup>–2</sup> at 45 °C and 8.0 mA cm<sup>–2</sup> at 80 °C with stable cycling over 800 h. Full cells show 84% capacity retention after 200 cycles and deliver ∼171 mAh g<sup>–1</sup> at 10C, outperforming bare Li- and Si-only references. These results demonstrate a scalable interfacial strategy for high-rate, long-life ASSBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"455–463"},"PeriodicalIF":8.7,"publicationDate":"2026-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dictyophora-Inspired Breathable Photothermal Superhydrophobic Coatings via Microphase Separation for Efficient Anti/Deicing in Low-Temperature, High-Humidity Environments 低温、高湿环境下采用微相分离的透气性光热超疏水涂层高效防除冰
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-08 DOI: 10.1021/acsmaterialslett.5c01603
Ping Wang, , , Jinqiu Tao, , , Junhao Xie, , , Chengjun Yue, , , Hongxia Zhao, , , Yong Yang, , , Lei Dong, , , Shuai Qi, , , Ming Jin, , , Hao Wu*, , , Lei Chen*, , and , Qianping Ran*, 

Photothermal superhydrophobic coatings suffer performance degradation in low-temperature, high-humidity environments due to vapor-condensation-induced mechanical interlocking within micro/nanostructures. Inspired by the interconnected porous network of dictyophora, we engineered a multifunctional biomimetic coating (PSPA) by incorporating polydopamine (PDA) into a low-surface-energy polymer network and precisely regulating microphase separation to construct a dictyophora-mimetic interconnected microporous architecture. This bioinspired design enables efficient vapor transport (29.8% transmission rate of ordinary cement boards), effectively suppressing vapor condensation and ice-substrate mechanical interlocking under harsh conditions while extending the static icing delay time to 674 s. Simultaneously, synergistic photothermal conversion via multiscale PDA and hierarchical micro/nanostructures achieves rapid active deicing within 20 s, with the interconnected network further imparting exceptional mechanical/chemical stability. This work establishes a new paradigm for highly efficient, reliable anti/deicing coatings in aerospace and extreme environments.

光热超疏水涂层在低温、高湿环境下,由于微/纳米结构中的蒸汽冷凝引起的机械联锁,其性能会下降。受双叶藻互联多孔网络的启发,我们设计了一种多功能仿生涂层(PSPA),通过将聚多巴胺(PDA)结合到低表面能聚合物网络中,并精确调节微相分离,构建了一种模拟双叶藻互联微孔结构。这种仿生设计实现了高效的蒸汽传输(普通水泥板的传输率为29.8%),有效抑制了恶劣条件下的蒸汽凝结和冰基机械联锁,同时将静结冰延迟时间延长至674秒。同时,通过多尺度PDA和分层微/纳米结构的协同光热转换可以在20秒内实现快速主动除冰,并且相互连接的网络进一步提高了卓越的机械/化学稳定性。这项工作为航空航天和极端环境中高效、可靠的防/除冰涂料建立了新的范例。
{"title":"Dictyophora-Inspired Breathable Photothermal Superhydrophobic Coatings via Microphase Separation for Efficient Anti/Deicing in Low-Temperature, High-Humidity Environments","authors":"Ping Wang,&nbsp;, ,&nbsp;Jinqiu Tao,&nbsp;, ,&nbsp;Junhao Xie,&nbsp;, ,&nbsp;Chengjun Yue,&nbsp;, ,&nbsp;Hongxia Zhao,&nbsp;, ,&nbsp;Yong Yang,&nbsp;, ,&nbsp;Lei Dong,&nbsp;, ,&nbsp;Shuai Qi,&nbsp;, ,&nbsp;Ming Jin,&nbsp;, ,&nbsp;Hao Wu*,&nbsp;, ,&nbsp;Lei Chen*,&nbsp;, and ,&nbsp;Qianping Ran*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01603","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01603","url":null,"abstract":"<p >Photothermal superhydrophobic coatings suffer performance degradation in low-temperature, high-humidity environments due to vapor-condensation-induced mechanical interlocking within micro/nanostructures. Inspired by the interconnected porous network of dictyophora, we engineered a multifunctional biomimetic coating (PSPA) by incorporating polydopamine (PDA) into a low-surface-energy polymer network and precisely regulating microphase separation to construct a dictyophora-mimetic interconnected microporous architecture. This bioinspired design enables efficient vapor transport (29.8% transmission rate of ordinary cement boards), effectively suppressing vapor condensation and ice-substrate mechanical interlocking under harsh conditions while extending the static icing delay time to 674 s. Simultaneously, synergistic photothermal conversion via multiscale PDA and hierarchical micro/nanostructures achieves rapid active deicing within 20 s, with the interconnected network further imparting exceptional mechanical/chemical stability. This work establishes a new paradigm for highly efficient, reliable anti/deicing coatings in aerospace and extreme environments.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"636–645"},"PeriodicalIF":8.7,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Self-Assembled Nanophotosensitizer Effectively Inactivates Biofilm-Related Infections 一种自组装纳米光敏剂有效灭活生物膜相关感染
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-08 DOI: 10.1021/acsmaterialslett.5c01432
Ye Zhang, , , Yuanhan Zhong, , , Yanjun Wang, , , Hongzhu Wang, , , Shihao Hong, , , Yufei Zhang, , , Hongyu Wang, , , Ruiyao Wang, , , Jie Li, , , Siyuan Huang, , and , Xinge Zhang*, 

Bacterial biofilm significantly hinders the penetration of antimicrobial agents, making bacterial clearance challenging and leading to persistent biofilm-associated infections. A precise combination of phototherapeutics and chemotherapy can synergistically improve the therapeutic outcome and thereby may overcome drug-resistant bacteria through a multipronged assault. Herein, a nanophotosensitizer (BHZnC) was developed through a multicomponent self-assembly strategy, incorporating phototherapeutics and antimicrobial peptides, coordinated with Zn2+ and modified with benzoxaborole-conjugated histatin-5 (BHst-5) and Chlorin e6 (Ce6). This innovative system not only effectively penetrates biofilm matrices but also prevents degradation of Hst-5 by proteases secreted by Candida albicans (C. albicans). The binding of Hst-5 with Zn2+ promotes microbial membrane fusion and rupture, thereby enhancing the bactericidal efficacy. In vivo studies demonstrate that the combination of chemotherapy and phototherapeutics exhibits a superior antibiofilm performance against a drug-resistant bacteria model attributed to their synergistic anti-infection efficacy.

细菌生物膜明显阻碍抗菌药物的渗透,使细菌清除具有挑战性,并导致持续的生物膜相关感染。光疗和化疗的精确结合可以协同提高治疗效果,从而可以通过多管齐下的攻击来克服耐药细菌。本研究通过多组分自组装策略开发了一种纳米光敏剂(BHZnC),该光敏剂包含光疗和抗菌肽,与Zn2+配合,并用苯并恶硼罗偶联的组蛋白-5 (BHst-5)和氯胺e6 (Ce6)修饰。这个创新的系统不仅能有效地穿透生物膜基质,还能阻止白色念珠菌分泌的蛋白酶降解Hst-5。Hst-5与Zn2+的结合促进了微生物膜的融合和破裂,从而增强了杀菌效果。体内研究表明,化疗和光疗结合在抗耐药细菌模型上表现出优越的抗生素膜性能,这归因于它们的协同抗感染功效。
{"title":"A Self-Assembled Nanophotosensitizer Effectively Inactivates Biofilm-Related Infections","authors":"Ye Zhang,&nbsp;, ,&nbsp;Yuanhan Zhong,&nbsp;, ,&nbsp;Yanjun Wang,&nbsp;, ,&nbsp;Hongzhu Wang,&nbsp;, ,&nbsp;Shihao Hong,&nbsp;, ,&nbsp;Yufei Zhang,&nbsp;, ,&nbsp;Hongyu Wang,&nbsp;, ,&nbsp;Ruiyao Wang,&nbsp;, ,&nbsp;Jie Li,&nbsp;, ,&nbsp;Siyuan Huang,&nbsp;, and ,&nbsp;Xinge Zhang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01432","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01432","url":null,"abstract":"<p >Bacterial biofilm significantly hinders the penetration of antimicrobial agents, making bacterial clearance challenging and leading to persistent biofilm-associated infections. A precise combination of phototherapeutics and chemotherapy can synergistically improve the therapeutic outcome and thereby may overcome drug-resistant bacteria through a multipronged assault. Herein, a nanophotosensitizer (BHZnC) was developed through a multicomponent self-assembly strategy, incorporating phototherapeutics and antimicrobial peptides, coordinated with Zn<sup>2+</sup> and modified with benzoxaborole-conjugated histatin-5 (BHst-5) and Chlorin e6 (Ce6). This innovative system not only effectively penetrates biofilm matrices but also prevents degradation of Hst-5 by proteases secreted by <i>Candida albicans</i> (<i>C. albicans</i>). The binding of Hst-5 with Zn<sup>2+</sup> promotes microbial membrane fusion and rupture, thereby enhancing the bactericidal efficacy. In vivo studies demonstrate that the combination of chemotherapy and phototherapeutics exhibits a superior antibiofilm performance against a drug-resistant bacteria model attributed to their synergistic anti-infection efficacy.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"574–583"},"PeriodicalIF":8.7,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Crystallization in Aqueous Electrolytes: Unlocking the Complex Chemistry of a Seemingly Simple Molecule 电化学结晶在水电解质:解锁一个看似简单的分子的复杂化学
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-07 DOI: 10.1021/acsmaterialslett.5c00736
Stephen T. Fuller, , , Evalyn S. Wilber, , , Susan Moseley, , and , Kent J. X. Zheng*, 

Compared to other synthetic routes, electrochemical synthesis offers unique control of the reaction rate, or current density J. Recently, interest in electrochemical crystallization from aqueous electrolytes has resurged, driven in part by water’s inherent reactivity. Spontaneous proton production (H2O ↔ H+ + OH) presents both challenges and unique opportunities. In this Review, we first explore the key physicochemical processes involved in aqueous electrocrystallization of metals, a simpler group of materials with well-defined lattice structures. We then turn our attention to critical considerations for growing more complex compounds, characterized by intricate lattice symmetries and stoichiometries. We argue that achieving precision control in aqueous electrochemical crystallization requires a holistic understanding of proton activity and the ability to regulate interfacial chemical kinetics and transport phenomena across multiple length scales. With such control, electrochemical crystallization in aqueous systems offers a sustainable platform for the precision synthesis of materials essential to energy technologies and sustainability.

与其他合成途径相比,电化学合成提供了对反应速率或电流密度j的独特控制。最近,人们对水电解质的电化学结晶的兴趣重新燃起,部分原因是水的固有反应性。自发产生的质子(H2O↔h++ OH -)既有挑战,也有独特的机会。在这篇综述中,我们首先探讨了涉及金属水电结晶的关键物理化学过程,金属是一组具有明确定义的晶格结构的简单材料。然后,我们将注意力转向生长更复杂的化合物的关键考虑因素,其特征是复杂的晶格对称性和化学计量。我们认为,在水电化学结晶中实现精确控制需要对质子活性的全面理解,以及在多个长度尺度上调节界面化学动力学和传输现象的能力。有了这样的控制,水系统中的电化学结晶为能源技术和可持续发展所必需的材料的精确合成提供了一个可持续的平台。
{"title":"Electrochemical Crystallization in Aqueous Electrolytes: Unlocking the Complex Chemistry of a Seemingly Simple Molecule","authors":"Stephen T. Fuller,&nbsp;, ,&nbsp;Evalyn S. Wilber,&nbsp;, ,&nbsp;Susan Moseley,&nbsp;, and ,&nbsp;Kent J. X. Zheng*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00736","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c00736","url":null,"abstract":"<p >Compared to other synthetic routes, electrochemical synthesis offers unique control of the reaction rate, or current density <i>J</i>. Recently, interest in electrochemical crystallization from aqueous electrolytes has resurged, driven in part by water’s inherent reactivity. Spontaneous proton production (H<sub>2</sub>O ↔ H<sup>+</sup> + OH<sup>–</sup>) presents both challenges and unique opportunities. In this Review, we first explore the key physicochemical processes involved in aqueous electrocrystallization of metals, a simpler group of materials with well-defined lattice structures. We then turn our attention to critical considerations for growing more complex compounds, characterized by intricate lattice symmetries and stoichiometries. We argue that achieving precision control in aqueous electrochemical crystallization requires a holistic understanding of proton activity and the ability to regulate interfacial chemical kinetics and transport phenomena across multiple length scales. With such control, electrochemical crystallization in aqueous systems offers a sustainable platform for the precision synthesis of materials essential to energy technologies and sustainability.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"309–333"},"PeriodicalIF":8.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Tumor-Activatable Sorafenib Prodrug for Alleviating Hypoxia and Enhancing Hepatocellular Carcinoma Therapy 一种肿瘤活化索拉非尼前药缓解缺氧和加强肝癌治疗
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-06 DOI: 10.1021/acsmaterialslett.5c01379
Xinhao Zhang, , , Jialin Kuang, , , Na Li*, , , Wei Pan*, , and , Bo Tang, 

Sorafenib (Sfb) is a widely used chemotherapy drug for the clinical treatment of hepatocellular carcinoma (HCC); however, its therapeutic effect is often hindered by inherent nonspecific toxicity and hypoxia-induced epithelial–mesenchymal transition (EMT). Besides, its inhibition of tumor angiogenesis further aggravates hypoxia, intensifying this challenge. Herein, we have developed a tumor-activatable Sfb prodrug (Sfb-Fca) to reverse the hypoxic tumor microenvironment for EMT alleviation and enhance therapeutic outcomes in HCC. Sfb-Fca consists of two components: the major moiety (Sfb) and the ferrocene acid (Fca) moiety, linked via a thioketal bond. This bond is cleaved in the presence of the elevated H2O2 levels typical of cancer cells, releasing Sfb for chemotherapy and Fca for hypoxia modulation. Fca catalyzes the production of O2 via a Fenton-like reaction, alleviating tumor hypoxia, reducing intracellular levels of HIF-1α and ZEB1 protein, and synergistically enabling effective chemodynamic therapy for enhancing the therapeutic effects of Sfb.

索拉非尼(Sfb)是一种广泛用于临床治疗肝细胞癌(HCC)的化疗药物;然而,其治疗效果往往受到固有的非特异性毒性和缺氧诱导的上皮-间质转化(EMT)的阻碍。此外,它对肿瘤血管生成的抑制作用进一步加剧了缺氧,加剧了这一挑战。在此,我们开发了一种肿瘤可激活的Sfb前药(Sfb- fca),以逆转缺氧的肿瘤微环境,减轻EMT,提高HCC的治疗效果。Sfb-Fca由两部分组成:主要部分(Sfb)和二茂铁酸(Fca)部分,通过硫基键连接。这种结合在H2O2水平升高的情况下被切断,释放Sfb用于化疗,Fca用于缺氧调节。Fca通过fenton样反应催化O2的产生,缓解肿瘤缺氧,降低细胞内HIF-1α和ZEB1蛋白水平,协同有效的化学动力学治疗,增强Sfb的治疗效果。
{"title":"A Tumor-Activatable Sorafenib Prodrug for Alleviating Hypoxia and Enhancing Hepatocellular Carcinoma Therapy","authors":"Xinhao Zhang,&nbsp;, ,&nbsp;Jialin Kuang,&nbsp;, ,&nbsp;Na Li*,&nbsp;, ,&nbsp;Wei Pan*,&nbsp;, and ,&nbsp;Bo Tang,&nbsp;","doi":"10.1021/acsmaterialslett.5c01379","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01379","url":null,"abstract":"<p >Sorafenib (Sfb) is a widely used chemotherapy drug for the clinical treatment of hepatocellular carcinoma (HCC); however, its therapeutic effect is often hindered by inherent nonspecific toxicity and hypoxia-induced epithelial–mesenchymal transition (EMT). Besides, its inhibition of tumor angiogenesis further aggravates hypoxia, intensifying this challenge. Herein, we have developed a tumor-activatable Sfb prodrug (Sfb-Fca) to reverse the hypoxic tumor microenvironment for EMT alleviation and enhance therapeutic outcomes in HCC. Sfb-Fca consists of two components: the major moiety (Sfb) and the ferrocene acid (Fca) moiety, linked via a thioketal bond. This bond is cleaved in the presence of the elevated H<sub>2</sub>O<sub>2</sub> levels typical of cancer cells, releasing Sfb for chemotherapy and Fca for hypoxia modulation. Fca catalyzes the production of O<sub>2</sub> via a Fenton-like reaction, alleviating tumor hypoxia, reducing intracellular levels of HIF-1α and ZEB1 protein, and synergistically enabling effective chemodynamic therapy for enhancing the therapeutic effects of Sfb.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"517–525"},"PeriodicalIF":8.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced Enthalpy in Solar Interfacial Evaporation by β-Cyclodextrin/MnO2 Heterointerfacial Modulation β-环糊精/MnO2异质界面调制太阳界面蒸发的还原焓
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-06 DOI: 10.1021/acsmaterialslett.5c01408
Mingxiao Zhai, , , Jiajun An, , , Changkang Du, , , Yanru Yang, , , Congliang Huang*, , and , Xiaodong Wang*, 

Under concentrated sunlight with a high operation temperature (>100 °C), the enthalpy reduction performance of interfacial materials still remains largely unexplored, which is crucial for future large-scale industrial seawater desalination. Here, an interfacial material that can reduce the evaporation enthalpy under high solar concentration was developed by chemically grafting cyclodextrin (CD) onto porous MnO2 (β-CD-MnO2). Experiments demonstrate a 31.5% reduction in the evaporation enthalpy in the β-CD-MnO2 system, which has an evaporation rate of 1.76 kg·m–2·h–1. Our molecular dynamic simulations reveal that the enthalpy reduction arrives from the existence of water-cluster evaporation promoted by the intermediate water. The large existence of intermediate water content in β-CD-MnO2, which was observed in REMAN measurements, is attributed to the heterostructures, the silane linker, and the ring structure of cyclodextrin in β-CD-MnO2. Both outdoor experiments and concentrated solar experiments (13 suns) demonstrate that the β-CD-MnO2 evaporator could realize highly efficient interfacial evaporation with stable enthalpy reduction characteristics.

在高工作温度(>100°C)的集中阳光下,界面材料的焓还原性能还有待进一步研究,这对未来大规模工业化海水淡化至关重要。本研究通过将环糊精(CD)化学接枝到多孔MnO2 (β-CD-MnO2)上,制备了一种在高太阳浓度下可降低蒸发焓的界面材料。实验表明,β-CD-MnO2体系的蒸发焓降低了31.5%,蒸发速率为1.76 kg·m-2·h-1。我们的分子动力学模拟表明,焓降低来自于中间水促进的水团蒸发的存在。由于β-CD-MnO2的异质结构、硅烷连接剂和环糊精的环状结构,使得β-CD-MnO2中存在较大的中间含水量。室外实验和聚光太阳实验(13个太阳)表明,β-CD-MnO2蒸发器可以实现高效的界面蒸发,并具有稳定的焓还原特性。
{"title":"Reduced Enthalpy in Solar Interfacial Evaporation by β-Cyclodextrin/MnO2 Heterointerfacial Modulation","authors":"Mingxiao Zhai,&nbsp;, ,&nbsp;Jiajun An,&nbsp;, ,&nbsp;Changkang Du,&nbsp;, ,&nbsp;Yanru Yang,&nbsp;, ,&nbsp;Congliang Huang*,&nbsp;, and ,&nbsp;Xiaodong Wang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01408","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01408","url":null,"abstract":"<p >Under concentrated sunlight with a high operation temperature (&gt;100 °C), the enthalpy reduction performance of interfacial materials still remains largely unexplored, which is crucial for future large-scale industrial seawater desalination. Here, an interfacial material that can reduce the evaporation enthalpy under high solar concentration was developed by chemically grafting cyclodextrin (CD) onto porous MnO<sub>2</sub> (β-CD-MnO<sub>2</sub>). Experiments demonstrate a 31.5% reduction in the evaporation enthalpy in the β-CD-MnO<sub>2</sub> system, which has an evaporation rate of 1.76 kg·m<sup>–2</sup>·h<sup>–1</sup>. Our molecular dynamic simulations reveal that the enthalpy reduction arrives from the existence of water-cluster evaporation promoted by the intermediate water. The large existence of intermediate water content in β-CD-MnO<sub>2</sub>, which was observed in REMAN measurements, is attributed to the heterostructures, the silane linker, and the ring structure of cyclodextrin in β-CD-MnO<sub>2</sub>. Both outdoor experiments and concentrated solar experiments (13 suns) demonstrate that the β-CD-MnO<sub>2</sub> evaporator could realize highly efficient interfacial evaporation with stable enthalpy reduction characteristics.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"551–557"},"PeriodicalIF":8.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACS Materials Letters: Highlights of 2025 and What’s Next ACS材料通讯:2025年的亮点和下一步是什么
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-05 DOI: 10.1021/acsmaterialslett.5c01620
Hong-Cai Zhou*, , , Paul D. Goring, , and , Sara E. Skrabalak*, 
{"title":"ACS Materials Letters: Highlights of 2025 and What’s Next","authors":"Hong-Cai Zhou*,&nbsp;, ,&nbsp;Paul D. Goring,&nbsp;, and ,&nbsp;Sara E. Skrabalak*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01620","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01620","url":null,"abstract":"","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 1","pages":"1"},"PeriodicalIF":8.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145895772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Molecular Design Strategy for Poly(aryl ether ketone)s with Simultaneous Reductions in Dielectric Constant and Loss 同时降低介电常数和损耗的聚芳醚酮分子设计策略
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-04 DOI: 10.1021/acsmaterialslett.5c01271
Moonseok Jang, , , Jumin Kim, , and , Ji-Hun Seo*, 

The growing demand for high-speed communication and highly integrated electronic devices has emphasized the importance of low-dielectric insulator materials. Herein, we present a facile molecular design strategy for poly(aryl ether ketone)s that simultaneously reduces the dielectric constant (Dk) and loss (Df). The incorporation of bulky cyclohexane side groups increased the intrinsic free volume while limiting additional relaxation. Selective methyl substitution further modulated dielectric properties; methyl groups on cyclohexane groups increased the free volume, whereas those on aromatic rings restricted the chain mobility. Dispersion-corrected density functional theory single-point calculations revealed a high torsional barrier for aromatic methyl groups, consistent with the restricted rotational motion. Consequently, the resulting polymer exhibited low Dk and Df values (2.65 and 0.0021, respectively) at 28 GHz. These dielectric property improvements were achieved by preserving the mechanical and thermal stabilities of the films, indicating the effectiveness of precise molecular design for next-generation low-k polymers.

高速通信和高集成度电子器件的需求日益增长,强调了低介电绝缘体材料的重要性。在此,我们提出了一种简单的聚芳醚酮分子设计策略,同时降低介电常数(Dk)和损耗(Df)。大体积环己烷侧基的加入增加了本征自由体积,同时限制了额外的弛豫。选择性甲基取代进一步调制介电性能;环己烷基团上的甲基增加了自由体积,而芳香环上的甲基限制了链的迁移率。经色散校正的密度泛函理论单点计算表明芳香甲基具有较高的扭转势垒,与受限制的旋转运动相一致。因此,所得聚合物在28 GHz下具有较低的Dk和Df值(分别为2.65和0.0021)。这些介电性能的改善是通过保持薄膜的机械和热稳定性来实现的,这表明了下一代低k聚合物精确分子设计的有效性。
{"title":"Facile Molecular Design Strategy for Poly(aryl ether ketone)s with Simultaneous Reductions in Dielectric Constant and Loss","authors":"Moonseok Jang,&nbsp;, ,&nbsp;Jumin Kim,&nbsp;, and ,&nbsp;Ji-Hun Seo*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01271","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01271","url":null,"abstract":"<p >The growing demand for high-speed communication and highly integrated electronic devices has emphasized the importance of low-dielectric insulator materials. Herein, we present a facile molecular design strategy for poly(aryl ether ketone)s that simultaneously reduces the dielectric constant (<i>D</i><sub><i>k</i></sub>) and loss (<i>D</i><sub><i>f</i></sub>). The incorporation of bulky cyclohexane side groups increased the intrinsic free volume while limiting additional relaxation. Selective methyl substitution further modulated dielectric properties; methyl groups on cyclohexane groups increased the free volume, whereas those on aromatic rings restricted the chain mobility. Dispersion-corrected density functional theory single-point calculations revealed a high torsional barrier for aromatic methyl groups, consistent with the restricted rotational motion. Consequently, the resulting polymer exhibited low <i>D</i><sub><i>k</i></sub> and <i>D</i><sub><i>f</i></sub> values (2.65 and 0.0021, respectively) at 28 GHz. These dielectric property improvements were achieved by preserving the mechanical and thermal stabilities of the films, indicating the effectiveness of precise molecular design for next-generation low-k polymers.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"476–484"},"PeriodicalIF":8.7,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1