首页 > 最新文献

Molecular Cancer最新文献

英文 中文
Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. 伴侣介导的自噬调节蜗牛蛋白的稳定性:对乳腺癌转移的影响
IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-11 DOI: 10.1186/s12943-024-02138-0
Ki-Jun Ryu, Ki Won Lee, Seung-Ho Park, Taeyoung Kim, Keun-Seok Hong, Hyemin Kim, Minju Kim, Dong Woo Ok, Gu Neut Bom Kwon, Young-Jun Park, Hyuk-Kwon Kwon, Cheol Hwangbo, Kwang Dong Kim, J Eugene Lee, Jiyun Yoo

Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.

乳腺癌仍然是一个重大的健康问题,其中三阴性乳腺癌(TNBC)是一种侵袭性亚型,预后较差。上皮-间质转化(EMT)在早期肿瘤向浸润性恶性肿瘤发展的过程中非常重要。蜗牛是EMT的核心成分,受到严格调控,可能会被蛋白酶体降解。我们报告了一种独立于蛋白酶体的新型蛋白酶体降解途径,该途径涉及伴侣介导的自噬(CMA),通过Snail与HSC70的胞浆相互作用和溶酶体靶向介导,阻止了Snail在腔内型乳腺癌细胞中的积累。相反,在 TNBC 细胞中,蜗牛主要定位于细胞核,从而逃避了 CMA 介导的降解。饥饿诱导的 CMA 激活可通过促进细胞质转位来下调 TNBC 细胞中的 Snail。逃避CMA介导的Snail降解会诱导EMT,并增强管腔型乳腺癌细胞的转移潜力。我们的研究结果阐明了 CMA 在蜗牛调控中的作用,强调了它在乳腺癌中的重要性,并为临床干预提供了一个潜在的治疗靶点。
{"title":"Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis.","authors":"Ki-Jun Ryu, Ki Won Lee, Seung-Ho Park, Taeyoung Kim, Keun-Seok Hong, Hyemin Kim, Minju Kim, Dong Woo Ok, Gu Neut Bom Kwon, Young-Jun Park, Hyuk-Kwon Kwon, Cheol Hwangbo, Kwang Dong Kim, J Eugene Lee, Jiyun Yoo","doi":"10.1186/s12943-024-02138-0","DOIUrl":"10.1186/s12943-024-02138-0","url":null,"abstract":"<p><p>Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size matters: integrating tumour volume and immune activation signatures predicts immunotherapy response 大小很重要:综合肿瘤体积和免疫激活特征预测免疫疗法反应
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-11 DOI: 10.1186/s12943-024-02146-0
Su Yin Lim, Ines Pires da Silva, Nurudeen A. Adegoke, Serigne N. Lo, Alexander M. Menzies, Matteo S. Carlino, Richard A. Scolyer, Georgina V. Long, Jenny H. Lee, Helen Rizos
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, providing significant benefit to patients across various tumour types, including melanoma. However, around 40% of melanoma patients do not benefit from ICI treatment, and accurately predicting ICI response remains challenging. We now describe a novel and simple approach that integrates immune-associated transcriptome signatures and tumour volume burden to better predict ICI response in melanoma patients. RNA sequencing was performed on pre-treatment (PRE) tumour specimens derived from 32 patients with advanced melanoma treated with combination PD1 and CTLA4 inhibitors. Of these 32 patients, 11 also had early during treatment (EDT, 5–15 days after treatment start) tumour samples. Tumour volume was assessed at PRE for all 32 patients, and at first computed tomography (CT) imaging for the 11 patients with EDT samples. Analysis of the Hallmark IFNγ gene set revealed no association with ICI response at PRE (AUC ROC curve = 0.6404, p = 0.24, 63% sensitivity, 71% specificity). When IFNg activity was evaluated with tumour volume (ratio of gene set expression to tumour volume) using logistic regression to predict ICI response, we observed high discriminative power in separating ICI responders from non-responders (AUC = 0.7760, p = 0.02, 88% sensitivity, 67% specificity); this approach was reproduced with other immune-associated transcriptomic gene sets. These findings were further replicated in an independent cohort of 23 melanoma patients treated with PD1 inhibitor. Hence, integrating tumour volume with immune-associated transcriptomic signatures improves the prediction of ICI response, and suggest that higher levels of immune activation relative to tumour burden are required for durable ICI response.
免疫检查点抑制剂(ICIs)改变了癌症治疗,为包括黑色素瘤在内的各种肿瘤类型的患者带来了重大益处。然而,约有40%的黑色素瘤患者无法从ICI治疗中获益,准确预测ICI反应仍是一项挑战。我们现在介绍一种新颖而简单的方法,该方法综合了免疫相关转录组特征和肿瘤体积负担,能更好地预测黑色素瘤患者的 ICI 反应。我们对 32 例接受 PD1 和 CTLA4 联合抑制剂治疗的晚期黑色素瘤患者的治疗前(PRE)肿瘤标本进行了 RNA 测序。在这32名患者中,有11名患者还获得了治疗早期(EDT,治疗开始后5-15天)的肿瘤样本。所有32名患者的肿瘤体积均在PRE时进行评估,11名有EDT样本的患者的肿瘤体积则在首次计算机断层扫描(CT)成像时进行评估。对 Hallmark IFNγ 基因集的分析表明,在 PRE 阶段,IFNγ 基因与 ICI 反应无关(AUC ROC 曲线 = 0.6404,p = 0.24,灵敏度为 63%,特异性为 71%)。当使用逻辑回归法评估 IFNg 活性与肿瘤体积(基因组表达量与肿瘤体积之比)以预测 ICI 反应时,我们观察到在区分 ICI 反应者与非反应者方面具有很高的鉴别力(AUC = 0.7760,p = 0.02,灵敏度为 88%,特异度为 67%);其他免疫相关转录组基因组也采用了这种方法。这些研究结果在接受 PD1 抑制剂治疗的 23 例黑色素瘤患者的独立队列中得到了进一步证实。因此,将肿瘤体积与免疫相关转录组特征相结合可改善对 ICI 反应的预测,并表明相对于肿瘤负荷而言,更高水平的免疫激活是持久 ICI 反应的必要条件。
{"title":"Size matters: integrating tumour volume and immune activation signatures predicts immunotherapy response","authors":"Su Yin Lim, Ines Pires da Silva, Nurudeen A. Adegoke, Serigne N. Lo, Alexander M. Menzies, Matteo S. Carlino, Richard A. Scolyer, Georgina V. Long, Jenny H. Lee, Helen Rizos","doi":"10.1186/s12943-024-02146-0","DOIUrl":"https://doi.org/10.1186/s12943-024-02146-0","url":null,"abstract":"Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, providing significant benefit to patients across various tumour types, including melanoma. However, around 40% of melanoma patients do not benefit from ICI treatment, and accurately predicting ICI response remains challenging. We now describe a novel and simple approach that integrates immune-associated transcriptome signatures and tumour volume burden to better predict ICI response in melanoma patients. RNA sequencing was performed on pre-treatment (PRE) tumour specimens derived from 32 patients with advanced melanoma treated with combination PD1 and CTLA4 inhibitors. Of these 32 patients, 11 also had early during treatment (EDT, 5–15 days after treatment start) tumour samples. Tumour volume was assessed at PRE for all 32 patients, and at first computed tomography (CT) imaging for the 11 patients with EDT samples. Analysis of the Hallmark IFNγ gene set revealed no association with ICI response at PRE (AUC ROC curve = 0.6404, p = 0.24, 63% sensitivity, 71% specificity). When IFNg activity was evaluated with tumour volume (ratio of gene set expression to tumour volume) using logistic regression to predict ICI response, we observed high discriminative power in separating ICI responders from non-responders (AUC = 0.7760, p = 0.02, 88% sensitivity, 67% specificity); this approach was reproduced with other immune-associated transcriptomic gene sets. These findings were further replicated in an independent cohort of 23 melanoma patients treated with PD1 inhibitor. Hence, integrating tumour volume with immune-associated transcriptomic signatures improves the prediction of ICI response, and suggest that higher levels of immune activation relative to tumour burden are required for durable ICI response.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and applications of RNA vaccines in tumor treatment RNA 疫苗在肿瘤治疗中的进展和应用
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-09 DOI: 10.1186/s12943-024-02141-5
Ruohan Yang, Jiuwei Cui
Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.
与其他类型的肿瘤疫苗相比,RNA 疫苗因其高效、快速的开发能力、低成本制造和安全给药的潜力,已成为传统疫苗疗法的有前途的替代品。RNA 疫苗主要包括 mRNA、环状 RNA(circRNA)和自扩增 mRNA(SAM)。针对不同肿瘤的不同 RNA 疫苗平台已在动物和人体模型中取得了令人鼓舞的结果。本综述全面介绍了 RNA 疫苗在抗肿瘤治疗中的进展和应用。此外,还讨论了将这一前景广阔的疫苗平台扩展到广泛治疗用途的未来方向。
{"title":"Advances and applications of RNA vaccines in tumor treatment","authors":"Ruohan Yang, Jiuwei Cui","doi":"10.1186/s12943-024-02141-5","DOIUrl":"https://doi.org/10.1186/s12943-024-02141-5","url":null,"abstract":"Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy 更正:铁变态反应中的 RNA m6A 修饰:对推进肿瘤免疫疗法的意义
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-08 DOI: 10.1186/s12943-024-02144-2
Jun-xiao Shi, Zhi-chao Zhang, Hao-zan Yin, Xian-jie Piao, Cheng-hu Liu, Qian-jia Liu, Jia-cheng Zhang, Wen-xuan Zhou, Fu-chen Liu, Fu Yang, Yue-fan Wang, Hui Liu
<p><b>Correction:</b> <b><i>Mol Cancer</i></b> <b>23, 213 (2024)</b></p><p><b>https://doi.org/10.1186/s12943-024-02132-6</b></p><p>Following publication of the original article [1], the authors noticed that the Funding information was not indicated in the article. The details of Funding were included in the revised manuscript that was submitted by the author to production system. The Funding information is given below. The original article has been corrected.</p><p><b>Funding</b></p><p>This work was supported by the National Science and Technology Major Project (Nos. 2023ZD0500102), the National Natural Science Foundation of China (Nos. 82270634), and Clinical Young Talent Project, Eagle breeding Team of Meng Chao Tengfei Project (Eastern Hepatobiliary Surgery Hospital).</p><ol data-track-component="outbound reference" data-track-context="references section"><li data-counter="1."><p>Shi J, Zhang Z, Yin H, et al. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer. 2024;23:213. https://doi.org/10.1186/s12943-024-02132-6.</p><p>Article PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><span>Author notes</span><ol><li><p>Jun-xiao Shi, Zhi-chao Zhang, Hao-zan Yin, and Xian-jie Piao contributed equally to this work.</p></li></ol><h3>Authors and Affiliations</h3><ol><li><p>The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China</p><p>Jun-xiao Shi, Zhi-chao Zhang, Xian-jie Piao, Cheng-hu Liu, Qian-jia Liu, Jia-cheng Zhang, Wen-xuan Zhou, Fu-chen Liu, Yue-fan Wang & Hui Liu</p></li><li><p>The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China</p><p>Hao-zan Yin & Fu Yang</p></li><li><p>Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China</p><p>Fu Yang</p></li><li><p>Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China</p><p>Fu Yang</p></li></ol><span>Authors</span><ol><li><span>Jun-xiao Shi</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Zhi-chao Zhang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Hao-zan Yin</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Xian-jie Piao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Cheng-hu Liu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Qian-jia Liu</span>View author p
更正:Mol Cancer 23, 213 (2024)https://doi.org/10.1186/s12943-024-02132-6Following 原文[1]发表后,作者注意到文章中未标注资助信息。作者在提交给生产系统的修订稿中包含了详细的资助信息。资助信息如下。本文得到了国家科技重大专项(编号:2023ZD0500102)、国家自然科学基金(编号:82270634)、临床青年人才项目、孟超腾飞计划雏鹰培育团队(东方肝胆外科医院)的支持。Mol Cancer.2024;23:213. https://doi.org/10.1186/s12943-024-02132-6.Article PubMed PubMed Central Google Scholar Download references作者注释施俊孝、张志超、尹浩赞和彪贤杰对本工作有同等贡献。作者和工作单位海军军医大学东方肝胆外科医院肝外三科,上海,200438 史俊晓,张志超,彪宪杰,刘成虎,刘乾嘉,张家成,周文轩,刘福臣,王月凡 &;刘辉海军军医大学医学遗传学系,中国上海,200433 殷浩赞 &;Fu Yang教育部生物安全防御重点实验室,上海,200433Fu Yang上海市医学生物防御重点实验室,上海,200433、ChinaFu Yang作者:施俊孝查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者张志超查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者殷浩赞查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者卞宪杰查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者jie PiaoView 作者发表作品您也可以在 PubMed Google ScholarCheng-hu LiuView 作者发表作品您也可以在 PubMed Google ScholarQian-jia LiuView 作者发表作品您也可以在 PubMed Google ScholarJia-cheng ZhangView作者发表论文您也可以在PubMed Google Scholar中搜索该作者Wen-xuan ZhouView作者发表论文您也可以在PubMed Google Scholar中搜索该作者Fu-chen LiuView作者发表论文您也可以在PubMed Google Scholar中搜索该作者Fu YangView作者发表论文您也可以在PubMed Google Scholar中搜索该作者Yue- fan WangView作者发表论文您也可以在PubMed Google Scholar中搜索该作者Yue- fan WangView作者发表论文fan Wang查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Hui Liu查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者通信作者Fu Yang、王月凡或刘晖。出版者注释施普林格-自然对出版地图和机构隶属关系中的管辖权主张保持中立。原文的在线版本可在以下网址找到:https://doi.org/10.1186/s12943-024-02132-6.Open Access 本文采用知识共享署名-非商业性-禁止衍生 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式进行任何非商业性使用、共享、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明您是否修改了许可材料。根据本许可协议,您无权分享源自本文或本文部分内容的改编材料。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的信用栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出了许可使用范围,则您需要直接获得版权所有者的许可。如需查看该许可的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/.Reprints and permissionsCite this articleShi, Jx., Zhang, Zc., Yin, Hz. et al. Correction:RNA m6A在铁变态反应中的修饰:对推进肿瘤免疫疗法的意义。Mol Cancer 23, 225 (2024). https://doi.org/10.1186/s12943-024-02144-2Download citationPublished: 08 October 2024DOI: https://doi.org/10.1186/s12943-024-02144-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Correction: RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy","authors":"Jun-xiao Shi, Zhi-chao Zhang, Hao-zan Yin, Xian-jie Piao, Cheng-hu Liu, Qian-jia Liu, Jia-cheng Zhang, Wen-xuan Zhou, Fu-chen Liu, Fu Yang, Yue-fan Wang, Hui Liu","doi":"10.1186/s12943-024-02144-2","DOIUrl":"https://doi.org/10.1186/s12943-024-02144-2","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction:&lt;/b&gt; &lt;b&gt;&lt;i&gt;Mol Cancer&lt;/i&gt;&lt;/b&gt; &lt;b&gt;23, 213 (2024)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s12943-024-02132-6&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Following publication of the original article [1], the authors noticed that the Funding information was not indicated in the article. The details of Funding were included in the revised manuscript that was submitted by the author to production system. The Funding information is given below. The original article has been corrected.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Funding&lt;/b&gt;&lt;/p&gt;&lt;p&gt;This work was supported by the National Science and Technology Major Project (Nos. 2023ZD0500102), the National Natural Science Foundation of China (Nos. 82270634), and Clinical Young Talent Project, Eagle breeding Team of Meng Chao Tengfei Project (Eastern Hepatobiliary Surgery Hospital).&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Shi J, Zhang Z, Yin H, et al. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer. 2024;23:213. https://doi.org/10.1186/s12943-024-02132-6.&lt;/p&gt;&lt;p&gt;Article PubMed PubMed Central Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;span&gt;Author notes&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Jun-xiao Shi, Zhi-chao Zhang, Hao-zan Yin, and Xian-jie Piao contributed equally to this work.&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China&lt;/p&gt;&lt;p&gt;Jun-xiao Shi, Zhi-chao Zhang, Xian-jie Piao, Cheng-hu Liu, Qian-jia Liu, Jia-cheng Zhang, Wen-xuan Zhou, Fu-chen Liu, Yue-fan Wang &amp; Hui Liu&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China&lt;/p&gt;&lt;p&gt;Hao-zan Yin &amp; Fu Yang&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China&lt;/p&gt;&lt;p&gt;Fu Yang&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China&lt;/p&gt;&lt;p&gt;Fu Yang&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Jun-xiao Shi&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Zhi-chao Zhang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Hao-zan Yin&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Xian-jie Piao&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Cheng-hu Liu&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Qian-jia Liu&lt;/span&gt;View author p","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proapoptotic activity of JNK-sensitive BH3-only proteins underpins ovarian cancer response to replication checkpoint inhibitors 仅对 JNK 敏感的 BH3 蛋白的促凋亡活性是卵巢癌对复制检查点抑制剂反应的基础
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-07 DOI: 10.1186/s12943-024-02125-5
Annapoorna Venkatachalam, Cristina Correia, Kevin L. Peterson, Xianon Hou, Paula A. Schneider, Annabella R. Strathman, Karen S. Flatten, Chance C. Sine, Emily A. Balczewski, Cordelia D. McGehee, Melissa C. Larson, Laura N. Duffield, X. Wei Meng, Nicole D. Vincelette, Husheng Ding, Ann L. Oberg, Fergus J. Couch, Elizabeth M. Swisher, Hu Li, S. John Weroha, Scott H. Kaufmann
Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.
最近的研究表明,复制检查点调节剂(RCMs),如 CHK1、ATR 和 WEE1 抑制剂,在实体瘤(包括铂耐药的高级别浆液性卵巢癌(HGSOC))中具有良好的单药治疗活性。然而,临床反应率通常低于 30%。虽然临床前和临床研究已对 RCM 诱导的 DNA 损伤进行了广泛研究,但复制检查点干扰与肿瘤缩小之间的联系仍未完全弄清。在这里,我们利用 HGSOC 细胞系和患者衍生异种移植(PDXs)来研究从 RCM 治疗到卵巢癌细胞死亡的过程。这些研究表明,RCM 在体外增加 CDC25A 水平和 CDK2 信号传导,导致 HGSOC 细胞系细胞周期进展失调和复制应激增加,与同源重组状态无关。这些事件导致 JNK 和多种纯 BH3 蛋白(包括 BCL2L11/BIM、BBC3/PUMA 和 BMF)相继被激活,而所有这些都是完全启动 RCM 诱导的细胞凋亡所必需的。HGSOC PDXs 对多(ADP 核糖)聚合酶抑制剂有抗药性,但对 RCMs 的体内外反应是细胞数量在三维培养中减少,体内反应是异种移植缩小或生长速度明显降低。这些发现确定了将复制检查点抑制与卵巢癌抗肿瘤反应联系起来的关键细胞死亡启动事件。
{"title":"Proapoptotic activity of JNK-sensitive BH3-only proteins underpins ovarian cancer response to replication checkpoint inhibitors","authors":"Annapoorna Venkatachalam, Cristina Correia, Kevin L. Peterson, Xianon Hou, Paula A. Schneider, Annabella R. Strathman, Karen S. Flatten, Chance C. Sine, Emily A. Balczewski, Cordelia D. McGehee, Melissa C. Larson, Laura N. Duffield, X. Wei Meng, Nicole D. Vincelette, Husheng Ding, Ann L. Oberg, Fergus J. Couch, Elizabeth M. Swisher, Hu Li, S. John Weroha, Scott H. Kaufmann","doi":"10.1186/s12943-024-02125-5","DOIUrl":"https://doi.org/10.1186/s12943-024-02125-5","url":null,"abstract":"Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.\u0000","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence alphafold model for molecular biology and drug discovery: a machine-learning-driven informatics investigation 用于分子生物学和药物发现的人工智能 alphafold 模型:机器学习驱动的信息学研究
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-05 DOI: 10.1186/s12943-024-02140-6
Song-Bin Guo, Yuan Meng, Liteng Lin, Zhen-Zhong Zhou, Hai-Long Li, Xiao-Peng Tian, Wei-Juan Huang
AlphaFold model has reshaped biological research. However, vast unstructured data in the entire AlphaFold field requires further analysis to fully understand the current research landscape and guide future exploration. Thus, this scientometric analysis aimed to identify critical research clusters, track emerging trends, and highlight underexplored areas in this field by utilizing machine-learning-driven informatics methods. Quantitative statistical analysis reveals that the AlphaFold field is enjoying an astonishing development trend (Annual Growth Rate = 180.13%) and global collaboration (International Co-authorship = 33.33%). Unsupervised clustering algorithm, time series tracking, and global impact assessment point out that Cluster 3 (Artificial Intelligence-Powered Advancements in AlphaFold for Structural Biology) has the greatest influence (Average Citation = 48.36 ± 184.98). Additionally, regression curve and hotspot burst analysis highlight “structure prediction” (s = 12.40, R2 = 0.9480, p = 0.0051), “artificial intelligence” (s = 5.00, R2 = 0.8096, p = 0.0375), “drug discovery” (s = 1.90, R2 = 0.7987, p = 0.0409), and “molecular dynamics” (s = 2.40, R2 = 0.8000, p = 0.0405) as core hotspots driving the research frontier. More importantly, the Walktrap algorithm further reveals that “structure prediction, artificial intelligence, molecular dynamics” (Relevance Percentage[RP] = 100%, Development Percentage[DP] = 25.0%), “sars-cov-2, covid-19, vaccine design” (RP = 97.8%, DP = 37.5%), and “homology modeling, virtual screening, membrane protein” (RP = 89.9%, DP = 26.1%) are closely intertwined with the AlphaFold model but remain underexplored, which implies a broad exploration space. In conclusion, through the machine-learning-driven informatics methods, this scientometric analysis offers an objective and comprehensive overview of global AlphaFold research, identifying critical research clusters and hotspots while prospectively pointing out underexplored critical areas.
AlphaFold 模型重塑了生物学研究。然而,整个 AlphaFold 领域的大量非结构化数据需要进一步分析,以充分了解当前的研究状况并指导未来的探索。因此,本次科学计量学分析旨在利用机器学习驱动的信息学方法,识别关键研究集群,跟踪新兴趋势,并突出该领域中未充分探索的领域。定量统计分析显示,AlphaFold 领域正呈现出惊人的发展趋势(年增长率 = 180.13%)和全球合作(国际合著 = 33.33%)。无监督聚类算法、时间序列跟踪和全球影响力评估指出,聚类 3(人工智能驱动的 AlphaFold 结构生物学进展)的影响力最大(平均引用次数 = 48.36 ± 184.98)。此外,回归曲线和热点迸发分析突出表明,"结构预测"(s = 12.40,R2 = 0.9480,p = 0.0051)、"人工智能"(s = 5.00,R2 = 0.8096,p = 0.0375)、"药物发现"(s = 1.90,R2 = 0.7987,p = 0.0409)和 "分子动力学"(s = 2.40,R2 = 0.8000,p = 0.0405)是推动研究前沿的核心热点。更重要的是,Walktrap 算法进一步揭示了 "结构预测、人工智能、分子动力学"(相关百分比[RP] = 100%,发展百分比[DP] = 25.0%)、"sars-cov-2、covid-19、疫苗设计"(RP = 97.8%,DP = 37.5%)和 "同源建模、虚拟筛选、膜蛋白"(RP = 89.9%,DP = 26.1%)与 AlphaFold 模型密切相关,但仍未得到充分开发,这意味着还有广阔的探索空间。总之,通过机器学习驱动的信息学方法,本次科学计量学分析客观、全面地概述了全球AlphaFold研究,确定了关键的研究集群和热点,同时前瞻性地指出了尚未充分开发的关键领域。
{"title":"Artificial intelligence alphafold model for molecular biology and drug discovery: a machine-learning-driven informatics investigation","authors":"Song-Bin Guo, Yuan Meng, Liteng Lin, Zhen-Zhong Zhou, Hai-Long Li, Xiao-Peng Tian, Wei-Juan Huang","doi":"10.1186/s12943-024-02140-6","DOIUrl":"https://doi.org/10.1186/s12943-024-02140-6","url":null,"abstract":"AlphaFold model has reshaped biological research. However, vast unstructured data in the entire AlphaFold field requires further analysis to fully understand the current research landscape and guide future exploration. Thus, this scientometric analysis aimed to identify critical research clusters, track emerging trends, and highlight underexplored areas in this field by utilizing machine-learning-driven informatics methods. Quantitative statistical analysis reveals that the AlphaFold field is enjoying an astonishing development trend (Annual Growth Rate = 180.13%) and global collaboration (International Co-authorship = 33.33%). Unsupervised clustering algorithm, time series tracking, and global impact assessment point out that Cluster 3 (Artificial Intelligence-Powered Advancements in AlphaFold for Structural Biology) has the greatest influence (Average Citation = 48.36 ± 184.98). Additionally, regression curve and hotspot burst analysis highlight “structure prediction” (s = 12.40, R2 = 0.9480, p = 0.0051), “artificial intelligence” (s = 5.00, R2 = 0.8096, p = 0.0375), “drug discovery” (s = 1.90, R2 = 0.7987, p = 0.0409), and “molecular dynamics” (s = 2.40, R2 = 0.8000, p = 0.0405) as core hotspots driving the research frontier. More importantly, the Walktrap algorithm further reveals that “structure prediction, artificial intelligence, molecular dynamics” (Relevance Percentage[RP] = 100%, Development Percentage[DP] = 25.0%), “sars-cov-2, covid-19, vaccine design” (RP = 97.8%, DP = 37.5%), and “homology modeling, virtual screening, membrane protein” (RP = 89.9%, DP = 26.1%) are closely intertwined with the AlphaFold model but remain underexplored, which implies a broad exploration space. In conclusion, through the machine-learning-driven informatics methods, this scientometric analysis offers an objective and comprehensive overview of global AlphaFold research, identifying critical research clusters and hotspots while prospectively pointing out underexplored critical areas.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological targeting of P300/CBP reveals EWS::FLI1-mediated senescence evasion in Ewing sarcoma. P300/CBP 的药理靶向揭示了 EWS::FLI1 在尤文肉瘤中介导的衰老逃避。
IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-05 DOI: 10.1186/s12943-024-02115-7
Erdong Wei, Ana Mitanoska, Quinn O'Brien, Kendall Porter, MacKenzie Molina, Haseeb Ahsan, Usuk Jung, Lauren Mills, Michael Kyba, Darko Bosnakovski

Ewing sarcoma (ES) poses a significant therapeutic challenge due to the difficulty in targeting its main oncodriver, EWS::FLI1. We show that pharmacological targeting of the EWS::FLI1 transcriptional complex via inhibition of P300/CBP drives a global transcriptional outcome similar to direct knockdown of EWS::FLI1, and furthermore yields prognostic risk factors for ES patient outcome. We find that EWS::FLI1 upregulates LMNB1 via repetitive GGAA motif recognition and acetylation codes in ES cells and EWS::FLI1-permissive mesenchymal stem cells, which when reversed by P300 inhibition leads to senescence of ES cells. P300-inhibited senescent ES cells can then be eliminated by senolytics targeting the PI3K signaling pathway. The vulnerability of ES cells to this combination therapy suggests an appealing synergistic strategy for future therapeutic exploration.

尤文肉瘤(ES)的主要致癌因子EWS::FLI1很难靶向治疗,这给治疗带来了巨大挑战。我们的研究表明,通过抑制 P300/CBP 对 EWS::FLI1 转录复合物进行药理学靶向,能产生与直接敲除 EWS::FLI1 相似的全局转录结果,并能进一步产生影响 ES 患者预后的风险因素。我们发现,EWS::FLI1通过ES细胞和EWS::FLI1允许的间充质干细胞中重复的GGAA图案识别和乙酰化代码上调LMNB1,当P300抑制逆转时会导致ES细胞衰老。然后,P300抑制的衰老ES细胞可通过靶向PI3K信号通路的衰老剂消除。ES 细胞易受这种联合疗法的影响,这为未来的治疗探索提供了一种有吸引力的协同策略。
{"title":"Pharmacological targeting of P300/CBP reveals EWS::FLI1-mediated senescence evasion in Ewing sarcoma.","authors":"Erdong Wei, Ana Mitanoska, Quinn O'Brien, Kendall Porter, MacKenzie Molina, Haseeb Ahsan, Usuk Jung, Lauren Mills, Michael Kyba, Darko Bosnakovski","doi":"10.1186/s12943-024-02115-7","DOIUrl":"10.1186/s12943-024-02115-7","url":null,"abstract":"<p><p>Ewing sarcoma (ES) poses a significant therapeutic challenge due to the difficulty in targeting its main oncodriver, EWS::FLI1. We show that pharmacological targeting of the EWS::FLI1 transcriptional complex via inhibition of P300/CBP drives a global transcriptional outcome similar to direct knockdown of EWS::FLI1, and furthermore yields prognostic risk factors for ES patient outcome. We find that EWS::FLI1 upregulates LMNB1 via repetitive GGAA motif recognition and acetylation codes in ES cells and EWS::FLI1-permissive mesenchymal stem cells, which when reversed by P300 inhibition leads to senescence of ES cells. P300-inhibited senescent ES cells can then be eliminated by senolytics targeting the PI3K signaling pathway. The vulnerability of ES cells to this combination therapy suggests an appealing synergistic strategy for future therapeutic exploration.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering resistance mechanisms in cancer: final report of MATCH-R study with a focus on molecular drivers and PDX development. 解密癌症的抗药性机制:MATCH-R 研究的最终报告,重点关注分子驱动因素和 PDX 开发。
IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-04 DOI: 10.1186/s12943-024-02134-4
Damien Vasseur, Ludovic Bigot, Kristi Beshiri, Juan Flórez-Arango, Francesco Facchinetti, Antoine Hollebecque, Lambros Tselikas, Mihaela Aldea, Felix Blanc-Durand, Anas Gazzah, David Planchard, Ludovic Lacroix, Noémie Pata-Merci, Catline Nobre, Alice Da Silva, Claudio Nicotra, Maud Ngo-Camus, Floriane Braye, Sergey I Nikolaev, Stefan Michiels, Gérôme Jules-Clement, Ken André Olaussen, Fabrice André, Jean-Yves Scoazec, Fabrice Barlesi, Santiago Ponce, Jean-Charles Soria, Benjamin Besse, Yohann Loriot, Luc Friboulet

Background: Understanding the resistance mechanisms of tumor is crucial for advancing cancer therapies. The prospective MATCH-R trial (NCT02517892), led by Gustave Roussy, aimed to characterize resistance mechanisms to cancer treatments through molecular analysis of fresh tumor biopsies. This report presents the genomic data analysis of the MATCH-R study conducted from 2015 to 2022 and focuses on targeted therapies.

Methods: The study included resistant metastatic patients (pts) who accepted an image-guided tumor biopsy. After evaluation of tumor content (TC) in frozen tissue biopsies, targeted NGS (10 < TC < 30%) or Whole Exome Sequencing and RNA sequencing (TC > 30%) were performed before and/or after the anticancer therapy. Patient-derived xenografts (PDX) were established by implanting tumor fragments into NOD scid gamma mice and amplified up to five passages.

Results: A total of 1,120 biopsies were collected from 857 pts with the most frequent tumor types being lung (38.8%), digestive (16.3%) and prostate (14.1%) cancer. Molecular targetable driver were identified in 30.9% (n = 265/857) of the patients, with EGFR (41.5%), FGFR2/3 (15.5%), ALK (11.7%), BRAF (6.8%), and KRAS (5.7%) being the most common altered genes. Furthermore, 66.0% (n = 175/265) had a biopsy at progression on targeted therapy. Among resistant cases, 41.1% (n = 72/175) had no identified molecular mechanism, 32.0% (n = 56/175) showed on-target resistance, and 25.1% (n = 44/175) exhibited a by-pass resistance mechanism. Molecular profiling of the 44 patients with by-pass resistance identified 51 variants, with KRAS (13.7%), PIK3CA (11.8%), PTEN (11.8%), NF2 (7.8%), AKT1 (5.9%), and NF1 (5.9%) being the most altered genes. Treatment was tailored for 45% of the patients with a resistance mechanism identified leading to an 11 months median extension of clinical benefit. A total of 341 biopsies were implanted in mice, successfully establishing 136 PDX models achieving a 39.9% success rate. PDX models are available for EGFR (n = 31), FGFR2/3 (n = 26), KRAS (n = 18), ALK (n = 16), BRAF (n = 6) and NTRK (n = 2) driven cancers. These models closely recapitulate the biology of the original tumors in term of molecular alterations and pharmacological status, and served as valuable models to validate overcoming treatment strategies.

Conclusion: The MATCH-R study highlights the feasibility of on purpose image guided tumor biopsies and PDX establishment to characterize resistance mechanisms and guide personalized therapies to improve outcomes in pre-treated metastatic patients.

背景:了解肿瘤的抗药性机制对于推进癌症治疗至关重要。由古斯塔夫-鲁西(Gustave Roussy)领导的前瞻性MATCH-R试验(NCT02517892)旨在通过对新鲜肿瘤活检组织的分子分析来确定癌症治疗的耐药机制。本报告介绍了2015年至2022年进行的MATCH-R研究的基因组数据分析,重点关注靶向疗法:研究对象包括接受影像引导下肿瘤活检的耐药转移性患者(pts)。在对冷冻组织活检中的肿瘤内容(TC)进行评估后,在抗癌治疗前和/或治疗后进行了靶向 NGS(10 30%)。通过将肿瘤片段植入 NOD scid gamma 小鼠体内建立了患者衍生异种移植(PDX),并扩增至五次传代:共收集了 857 名患者的 1120 份活检样本,最常见的肿瘤类型为肺癌(38.8%)、消化道癌(16.3%)和前列腺癌(14.1%)。30.9%的患者(n = 265/857)发现了分子靶向驱动基因,其中最常见的改变基因是表皮生长因子受体(EGFR)(41.5%)、表皮生长因子受体2/3(FGFR2/3)(15.5%)、ALK(11.7%)、BRAF(6.8%)和KRAS(5.7%)。此外,66.0%(n = 175/265)的患者在接受靶向治疗时进行了活检。在耐药病例中,41.1%(n = 72/175)未发现分子机制,32.0%(n = 56/175)表现出靶向耐药,25.1%(n = 44/175)表现出旁路耐药机制。对44名旁路耐药患者进行的分子图谱分析发现了51个变异基因,其中KRAS(13.7%)、PIK3CA(11.8%)、PTEN(11.8%)、NF2(7.8%)、AKT1(5.9%)和NF1(5.9%)是改变最多的基因。为45%的患者量身定制了治疗方案,并确定了耐药机制,从而将临床获益的中位时间延长了11个月。共将 341 例活检组织植入小鼠体内,成功建立了 136 个 PDX 模型,成功率为 39.9%。PDX模型可用于表皮生长因子受体(EGFR)(n = 31)、表皮生长因子受体2/3(n = 26)、KRAS(n = 18)、ALK(n = 16)、BRAF(n = 6)和NTRK(n = 2)驱动的癌症。这些模型在分子改变和药理状态方面密切再现了原始肿瘤的生物学特性,是验证克服治疗策略的宝贵模型:MATCH-R研究强调了在图像引导下进行肿瘤活检和建立PDX以确定耐药机制和指导个性化疗法的可行性,从而改善预处理转移性患者的预后。
{"title":"Deciphering resistance mechanisms in cancer: final report of MATCH-R study with a focus on molecular drivers and PDX development.","authors":"Damien Vasseur, Ludovic Bigot, Kristi Beshiri, Juan Flórez-Arango, Francesco Facchinetti, Antoine Hollebecque, Lambros Tselikas, Mihaela Aldea, Felix Blanc-Durand, Anas Gazzah, David Planchard, Ludovic Lacroix, Noémie Pata-Merci, Catline Nobre, Alice Da Silva, Claudio Nicotra, Maud Ngo-Camus, Floriane Braye, Sergey I Nikolaev, Stefan Michiels, Gérôme Jules-Clement, Ken André Olaussen, Fabrice André, Jean-Yves Scoazec, Fabrice Barlesi, Santiago Ponce, Jean-Charles Soria, Benjamin Besse, Yohann Loriot, Luc Friboulet","doi":"10.1186/s12943-024-02134-4","DOIUrl":"10.1186/s12943-024-02134-4","url":null,"abstract":"<p><strong>Background: </strong>Understanding the resistance mechanisms of tumor is crucial for advancing cancer therapies. The prospective MATCH-R trial (NCT02517892), led by Gustave Roussy, aimed to characterize resistance mechanisms to cancer treatments through molecular analysis of fresh tumor biopsies. This report presents the genomic data analysis of the MATCH-R study conducted from 2015 to 2022 and focuses on targeted therapies.</p><p><strong>Methods: </strong>The study included resistant metastatic patients (pts) who accepted an image-guided tumor biopsy. After evaluation of tumor content (TC) in frozen tissue biopsies, targeted NGS (10 < TC < 30%) or Whole Exome Sequencing and RNA sequencing (TC > 30%) were performed before and/or after the anticancer therapy. Patient-derived xenografts (PDX) were established by implanting tumor fragments into NOD scid gamma mice and amplified up to five passages.</p><p><strong>Results: </strong>A total of 1,120 biopsies were collected from 857 pts with the most frequent tumor types being lung (38.8%), digestive (16.3%) and prostate (14.1%) cancer. Molecular targetable driver were identified in 30.9% (n = 265/857) of the patients, with EGFR (41.5%), FGFR2/3 (15.5%), ALK (11.7%), BRAF (6.8%), and KRAS (5.7%) being the most common altered genes. Furthermore, 66.0% (n = 175/265) had a biopsy at progression on targeted therapy. Among resistant cases, 41.1% (n = 72/175) had no identified molecular mechanism, 32.0% (n = 56/175) showed on-target resistance, and 25.1% (n = 44/175) exhibited a by-pass resistance mechanism. Molecular profiling of the 44 patients with by-pass resistance identified 51 variants, with KRAS (13.7%), PIK3CA (11.8%), PTEN (11.8%), NF2 (7.8%), AKT1 (5.9%), and NF1 (5.9%) being the most altered genes. Treatment was tailored for 45% of the patients with a resistance mechanism identified leading to an 11 months median extension of clinical benefit. A total of 341 biopsies were implanted in mice, successfully establishing 136 PDX models achieving a 39.9% success rate. PDX models are available for EGFR (n = 31), FGFR2/3 (n = 26), KRAS (n = 18), ALK (n = 16), BRAF (n = 6) and NTRK (n = 2) driven cancers. These models closely recapitulate the biology of the original tumors in term of molecular alterations and pharmacological status, and served as valuable models to validate overcoming treatment strategies.</p><p><strong>Conclusion: </strong>The MATCH-R study highlights the feasibility of on purpose image guided tumor biopsies and PDX establishment to characterize resistance mechanisms and guide personalized therapies to improve outcomes in pre-treated metastatic patients.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Nac1 promotes stemness and regulates myeloid‑derived cell status in triple‑negative breast cancer. 更正:Nac1促进三阴性乳腺癌的干性并调节髓源性细胞状态。
IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1186/s12943-024-02143-3
Chrispus Ngule, Ruyi Shi, Xingcong Ren, Hongyan Jia, Felix Oyelami, Dong Li, Younhee Park, Jinhwan Kim, Hami Hemati, Yi Zhang, Xiaofang Xiong, Andrew Shinkle, Nathan L Vanderford, Sara Bachert, Binhua P Zhou, Jianlong Wang, Jianxun Song, Xia Liu, Jin-Ming Yang
{"title":"Correction: Nac1 promotes stemness and regulates myeloid‑derived cell status in triple‑negative breast cancer.","authors":"Chrispus Ngule, Ruyi Shi, Xingcong Ren, Hongyan Jia, Felix Oyelami, Dong Li, Younhee Park, Jinhwan Kim, Hami Hemati, Yi Zhang, Xiaofang Xiong, Andrew Shinkle, Nathan L Vanderford, Sara Bachert, Binhua P Zhou, Jianlong Wang, Jianxun Song, Xia Liu, Jin-Ming Yang","doi":"10.1186/s12943-024-02143-3","DOIUrl":"10.1186/s12943-024-02143-3","url":null,"abstract":"","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial expression of concern: miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer 社论表达的关切:miR-630靶向IGF1R,调节HER靶向药物的反应和HER2过度表达乳腺癌中癌细胞的整体进展
IF 37.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1186/s12943-024-02139-z
Claire Corcoran, Sweta Rani, Susan Breslin, Martina Gogarty, Irene M Ghobrial, John Crown, Lorraine O’Driscoll
<p><b>Correction:</b><b><i>Mol Cancer</i></b><b> 13</b>, <b>71 (2014)</b></p><p><b>https://doi.org/10.1186/1476-4598-13-71</b></p><p><b>Published: 24 March 2014</b></p><p>After the publication of this article, the publisher was alerted to an apparent panel duplication and frameshift in Fig. 4B migration (ii) SKBR3-LR NC mimic and 4 C invasion (ii) SKBR3-LR NC mimic. Because the issue was detected ten years after publication, the original images for the study are no longer available. The panel has not been replaced. Readers are urged to take caution when interpreting the content and conclusions of this article.</p><h3>Authors and Affiliations</h3><ol><li><p>School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland</p><p>Claire Corcoran, Sweta Rani, Susan Breslin, Martina Gogarty & Lorraine O’Driscoll</p></li><li><p>Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA</p><p>Irene M Ghobrial</p></li><li><p>Department of Oncology, St. Vincent’s University Hospital, Dublin 4, Ireland</p><p>John Crown</p></li></ol><span>Authors</span><ol><li><span>Claire Corcoran</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Sweta Rani</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Susan Breslin</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Martina Gogarty</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Irene M Ghobrial</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>John Crown</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lorraine O’Driscoll</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Lorraine O’Driscoll.</p><h3>Publisher’s note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p>The online version of the original article can be found at https://doi.org/10.1186/1476-4598-13-71.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mater
更正:Mol Cancer 13, 71 (2014)https://doi.org/10.1186/1476-4598-13-71Published:2014年3月24日本文发表后,出版商被提醒图4B迁移(ii) SKBR3-LR NC模拟物和4 C侵袭(ii) SKBR3-LR NC模拟物中存在明显的面板重复和帧移。由于该问题是在发表十年后才发现的,因此该研究的原始图像已不可用。面板尚未更换。请读者在解释本文内容和结论时谨慎。作者和工作单位爱尔兰都柏林 2 号都柏林圣三一学院药学和制药科学学院、三一学院生物医学科学研究所爱尔兰都柏林 2 号都柏林圣三一学院药学和制药科学学院、三一学院生物医学科学研究所克莱尔-科科伦、斯韦塔-拉尼、苏珊-布雷斯林、玛蒂娜-戈加蒂、洛林-奥德里斯科尔美国马萨诸塞州波士顿哈佛医学院达纳-法伯癌症研究所肿瘤内科艾琳-M-戈布里亚尔美国马萨诸塞州波士顿哈佛医学院达纳-法伯癌症研究所肿瘤内科艾琳-M-戈布里亚尔美国马萨诸塞州波士顿哈佛医学院达纳-法伯癌症研究所肿瘤内科艾琳-M-戈布里亚尔美国马萨诸塞州波士顿圣文森特大学医院肿瘤内科Vincent's University Hospital, Dublin 4、爱尔兰John Crown作者Claire Corcoran查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Sweta Rani查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Susan Breslin查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Martina Gogarty查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Irene M GhobrialView 作者发表作品您也可以在 PubMed Google ScholarJohn CrownView 作者发表作品您也可以在 PubMed Google ScholarLorraine O'DriscollView 作者发表作品您也可以在 PubMed Google ScholarCorresponding authorCorrespondence to Lorraine O'Driscoll.出版者注释Springer Nature对出版地图中的管辖权主张和机构隶属关系保持中立。原始文章的在线版本可在以下网址找到:https://doi.org/10.1186/1476-4598-13-71.Open Access 本文采用知识共享署名-非商业性-禁止衍生 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式进行任何非商业性使用、共享、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明您是否修改了许可材料。根据本许可协议,您无权分享源自本文或本文部分内容的改编材料。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的信用栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出了许可使用范围,则您需要直接获得版权所有者的许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/.Reprints and permissionsCite this articleCorcoran, C., Rani, S., Breslin, S. et al. Editorial expression of concern: miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.Mol Cancer 23, 219 (2024). https://doi.org/10.1186/s12943-024-02139-zDownload citationPublished: 01 October 2024DOI: https://doi.org/10.1186/s12943-024-02139-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Editorial expression of concern: miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer","authors":"Claire Corcoran, Sweta Rani, Susan Breslin, Martina Gogarty, Irene M Ghobrial, John Crown, Lorraine O’Driscoll","doi":"10.1186/s12943-024-02139-z","DOIUrl":"https://doi.org/10.1186/s12943-024-02139-z","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction:&lt;/b&gt;&lt;b&gt;&lt;i&gt;Mol Cancer&lt;/i&gt;&lt;/b&gt;&lt;b&gt; 13&lt;/b&gt;, &lt;b&gt;71 (2014)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/1476-4598-13-71&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;Published: 24 March 2014&lt;/b&gt;&lt;/p&gt;&lt;p&gt;After the publication of this article, the publisher was alerted to an apparent panel duplication and frameshift in Fig. 4B migration (ii) SKBR3-LR NC mimic and 4 C invasion (ii) SKBR3-LR NC mimic. Because the issue was detected ten years after publication, the original images for the study are no longer available. The panel has not been replaced. Readers are urged to take caution when interpreting the content and conclusions of this article.&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;School of Pharmacy and Pharmaceutical Sciences &amp; Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland&lt;/p&gt;&lt;p&gt;Claire Corcoran, Sweta Rani, Susan Breslin, Martina Gogarty &amp; Lorraine O’Driscoll&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA&lt;/p&gt;&lt;p&gt;Irene M Ghobrial&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Oncology, St. Vincent’s University Hospital, Dublin 4, Ireland&lt;/p&gt;&lt;p&gt;John Crown&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Claire Corcoran&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Sweta Rani&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Susan Breslin&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Martina Gogarty&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Irene M Ghobrial&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;John Crown&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Lorraine O’Driscoll&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Corresponding author&lt;/h3&gt;&lt;p&gt;Correspondence to Lorraine O’Driscoll.&lt;/p&gt;&lt;h3&gt;Publisher’s note&lt;/h3&gt;&lt;p&gt;Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.&lt;/p&gt;&lt;p&gt;The online version of the original article can be found at https://doi.org/10.1186/1476-4598-13-71.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Open Access&lt;/b&gt; This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mater","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":37.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1