首页 > 最新文献

Molecular Pain最新文献

英文 中文
Concomitant use of Pre-emptive analgesia with Local and General Anesthesia in Rat Uterine Surgical Pain Model 在大鼠子宫手术疼痛模型中同时使用局部和全身麻醉的预先镇痛法
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-18 DOI: 10.1177/17448069241252385
Saima Mumtaz, Najma Baseer, Syed Hamid Habib
Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. Method: It was a lab-based experimental study in which sixty female Sprague-Dawley rats; eight to ten weeks old, weighing 150–300 gm were used. The rats were divided into three main groups: i) Control group (CG), ii) superficial pain group (SG) (with skin incision only), iii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., “tramadol, buprenorphine, and saline subgroups.” Pain behavior was evaluated using the “Rat Grimace Scale” (RGS) at 2, 4, 6, 9 and 24 hours post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from the spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count two hours postoperatively. Results: Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p≤0.05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p≤0.05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p≤0.05). Conclusion: A preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.
抢先镇痛用于术后疼痛治疗,可缓解疼痛,且不良反应少。本研究评估了抢先镇痛对子宫手术疼痛模型大鼠行为和脊髓中 c-fos 表达的影响:这是一项以实验室为基础的实验研究,使用了 60 只雌性 Sprague-Dawley 大鼠;8 至 10 周大,体重 150 至 300 克。大鼠分为三大组:i) 对照组(CG);ii) 浅痛组(SG)(仅皮肤切口);iii) 深痛组(皮肤和子宫切口)。根据预先镇痛的类型,每组又分为三个亚组,即 "曲马多亚组、丁丙诺啡亚组和生理盐水亚组"。在手术后 2、4、6、9 和 24 小时,使用 "大鼠痛苦量表"(RGS)对疼痛行为进行评估。此外,还对脊髓背角(T12-L2)切片进行了 c-fos 免疫组化,并在术后两小时用光密度和平均细胞数评估其表达:与生理盐水亚组相比,曲马多和丁丙诺啡亚组中浅痛和深痛组的 RGS 均显著减少(p≤0.05)。在 SD 组和 DG 组中,c-fos 阳性细胞的数量以及脊髓背角浅层和 X 层的光密度均明显减少(p≤0.05)。相比之下,生理盐水组的c-fos表达主要集中在浅层和深层疼痛组的I-II和III-IV层,深层疼痛组仅在X层(p≤0.05):抢先治疗可显著抑制疼痛传递的表层和深层成分。这些研究结果提供了令人信服的证据,证明抢先治疗在减轻子宫手术相关疼痛反应方面具有镇痛效果。
{"title":"Concomitant use of Pre-emptive analgesia with Local and General Anesthesia in Rat Uterine Surgical Pain Model","authors":"Saima Mumtaz, Najma Baseer, Syed Hamid Habib","doi":"10.1177/17448069241252385","DOIUrl":"https://doi.org/10.1177/17448069241252385","url":null,"abstract":"Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated.
 Method: It was a lab-based experimental study in which sixty female Sprague-Dawley rats; eight to ten weeks old, weighing 150–300 gm were used. The rats were divided into three main groups: i) Control group (CG), ii) superficial pain group (SG) (with skin incision only), iii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., “tramadol, buprenorphine, and saline subgroups.” Pain behavior was evaluated using the “Rat Grimace Scale” (RGS) at 2, 4, 6, 9 and 24 hours post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from the spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count two hours postoperatively. 
 Results: Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p≤0.05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p≤0.05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p≤0.05).
 Conclusion: A preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"52 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain 炎症性和神经性疼痛小鼠不同替代剪接模式的转录组分析
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-10 DOI: 10.1177/17448069241249455
Mingzhu Zhai, Jiabin Huang, Shaomin Yang, Na Li, Jun Zeng, Yi Zheng, Wuping Sun, Benqing Wu
Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.
尽管慢性疼痛的分子机制已被广泛研究,但人们对慢性疼痛的外周和中枢神经系统中的替代剪接基因和事件的全貌却知之甚少。本研究分析了炎症性疼痛和神经病理性疼痛下小鼠大脑、背根神经节和脊髓组织中替代剪接(AS)的变化模式。我们总共发现了 6495 个不同的替代剪接(DAS)基因。这两种模型中共有的DAS基因的分子功能主要集中在钙信号通路、突触组织、轴突再生和神经退行性疾病等方面。此外,我们还在这两种模型共有的差异表达基因(DEG)中发现了509个DAS,占DEG总数的一小部分。我们的研究结果支持这一假设,即AS具有不同于转录调控的独立调控模式。综上所述,这些研究结果表明AS是哺乳动物慢性疼痛的重要分子机制之一。本研究全面描述了神经病理性疼痛和炎症性疼痛模型全路径中AS谱的变化,为慢性疼痛的内在机制提供了新的见解,并为基因组临床诊断方法和合理用药提供了指导。
{"title":"Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain","authors":"Mingzhu Zhai, Jiabin Huang, Shaomin Yang, Na Li, Jun Zeng, Yi Zheng, Wuping Sun, Benqing Wu","doi":"10.1177/17448069241249455","DOIUrl":"https://doi.org/10.1177/17448069241249455","url":null,"abstract":"Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"49 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term plasticity of NMDA GluN2B (NR2B) receptor in anterior cingulate cortical synapses. 前扣带回皮质突触中 NMDA GluN2B (NR2B) 受体的长期可塑性。
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241230258
Min Zhuo

The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.

前扣带回皮层(ACC)是感知疼痛、情绪恐惧和焦虑的关键皮层区域。皮层兴奋被认为是慢性疼痛及其相关情绪失调(如焦虑和抑郁)的主要机制。含有 NMDA 受体的 GluN2B(或称 NR2B)在这种兴奋中起着至关重要的作用。GluN2B 的激活不仅有助于诱导突触后形式的 LTP(post-LTP),而且在外周损伤后还检测到 GluN2B 亚基通过酪氨酸磷酸化长期上调。此外,有报道称突触前 NMDA 受体可能有助于调节 ACC 中突触前终端谷氨酸的释放。据信,抑制 NMDA 受体亚型和/或下游信号蛋白可作为未来治疗慢性疼痛、焦虑症和抑郁症的一种新型治疗机制。
{"title":"Long-term plasticity of NMDA GluN2B (NR2B) receptor in anterior cingulate cortical synapses.","authors":"Min Zhuo","doi":"10.1177/17448069241230258","DOIUrl":"10.1177/17448069241230258","url":null,"abstract":"<p><p>The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241230258"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. 肉毒杆菌神经毒素通过调节疼痛相关受体产生的镇痛效果;文献综述。
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241275099
Saereh Hosseindoost, Maziyar Askari Rad, Seyed Hassan Inanloo, Mojgan Rahimi, Samaneh Dehghan, Amirhossein Orandi, Ahmad Reza Dehpour, Hossein Majedi

Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.

由肉毒梭菌产生的肉毒杆菌神经毒素(BoNTs)已被用于治疗各种中枢和周围神经疾病。最近的研究表明,BoNTs 也可能对疼痛有好处。据推测,BoNTs 镇痛作用的机制之一是抑制疼痛相关受体向神经元细胞膜的传递。应用 BoNT 会破坏突触小泡与细胞膜的结合,而细胞膜负责转运各种受体,包括痛觉受体,如 TRP 通道、钙通道、钠通道、嘌呤能受体、神经激肽-1 受体和谷氨酸受体。BoNT 还能调节阿片能系统和 GABA 能系统,这两种系统都参与疼痛过程。了解这些作用的细胞和分子机制可为开发新型疼痛治疗方法提供宝贵的见解。本综述旨在总结 BoNTs 镇痛功能的实验证据,并讨论 BoNTs 通过抑制疼痛相关受体的传递而对疼痛状况产生作用的细胞和分子机制。
{"title":"The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review.","authors":"Saereh Hosseindoost, Maziyar Askari Rad, Seyed Hassan Inanloo, Mojgan Rahimi, Samaneh Dehghan, Amirhossein Orandi, Ahmad Reza Dehpour, Hossein Majedi","doi":"10.1177/17448069241275099","DOIUrl":"10.1177/17448069241275099","url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241275099"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMPAkines have site-specific analgesic effects in the cortex. AMPAkines在皮层具有特定部位的镇痛作用。
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069231214677
Elaine Zhu, Dave Mathew, Hyun Jung Jee, Mengqi Sun, Weizhuo Liu, Qiaosheng Zhang, Jing Wang

Different brain areas have distinct roles in the processing and regulation of pain and thus may form specific pharmacological targets. Prior research has shown that AMPAkines, a class of drugs that increase glutamate signaling, can enhance descending inhibition from the prefrontal cortex (PFC) and nucleus accumbens. On the other hand, activation of neurons in the anterior cingulate cortex (ACC) is known to produce the aversive component of pain. The impact of AMPAkines on ACC, however, is not known. We found that direct delivery of CX516, a well-known AMPAkine, into the ACC had no effect on the aversive response to pain in rats. Furthermore, AMPAkines did not modulate the nociceptive response of ACC neurons. In contrast, AMPAkine delivery into the prelimbic region of the prefrontal cortex (PL) reduced pain aversion. These results indicate that the analgesic effects of AMPAkines in the cortex are likely mediated by the PFC but not the ACC.

不同的大脑区域在疼痛的处理和调节中具有不同的作用,因此可能形成特定的药理学靶点。先前的研究表明,AMPAkines是一类增加谷氨酸信号传导的药物,可以增强前额叶皮层(PFC)和伏隔核的下行抑制。另一方面,已知前扣带皮层(ACC)神经元的激活会产生令人厌恶的疼痛成分。然而,AMPAkines对ACC的影响尚不清楚。我们发现,将CX516(一种众所周知的AMPAkine)直接递送到ACC中对大鼠对疼痛的厌恶反应没有影响。此外,AMPAkines不调节ACC神经元的伤害性反应。相反,AMPAkine输送到前额叶皮层(PL)的边缘前区域降低了疼痛厌恶。这些结果表明,AMPAkines在皮层的镇痛作用可能是由PFC介导的,而不是ACC介导的。
{"title":"AMPAkines have site-specific analgesic effects in the cortex.","authors":"Elaine Zhu, Dave Mathew, Hyun Jung Jee, Mengqi Sun, Weizhuo Liu, Qiaosheng Zhang, Jing Wang","doi":"10.1177/17448069231214677","DOIUrl":"10.1177/17448069231214677","url":null,"abstract":"<p><p>Different brain areas have distinct roles in the processing and regulation of pain and thus may form specific pharmacological targets. Prior research has shown that AMPAkines, a class of drugs that increase glutamate signaling, can enhance descending inhibition from the prefrontal cortex (PFC) and nucleus accumbens. On the other hand, activation of neurons in the anterior cingulate cortex (ACC) is known to produce the aversive component of pain. The impact of AMPAkines on ACC, however, is not known. We found that direct delivery of CX516, a well-known AMPAkine, into the ACC had no effect on the aversive response to pain in rats. Furthermore, AMPAkines did not modulate the nociceptive response of ACC neurons. In contrast, AMPAkine delivery into the prelimbic region of the prefrontal cortex (PL) reduced pain aversion. These results indicate that the analgesic effects of AMPAkines in the cortex are likely mediated by the PFC but not the ACC.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231214677"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid cleavage of IL-1β in DRG neurons produces tissue injury-induced pain hypersensitivity. DRG 神经元中 IL-1β 的快速裂解会产生组织损伤诱导的痛觉过敏。
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241285357
Daisuke Fujita, Yutaka Matsuoka, Shunsuke Yamakita, Yasuhiko Horii, Daiki Ishikawa, Kohsuke Kushimoto, Hiroaki Amino, Fumimasa Amaya

Background: IL-1β plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1β (cIL-1β) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1β in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1β, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1β expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1β on the activity of spinal dorsal horn neurons. Results: cIL-1β expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1β cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1β expression. Regional anesthesia using local anesthetics prevented cIL-1β processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1β in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1β causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1β in the primary afferent neurons is involved in physiological nociceptive signal transduction.

背景 IL-1β 在神经炎症的病理生理学中起着关键作用。背根神经节(DRG)神经元中存在裂解的 IL-1β(cIL-1β),这表明它在感觉神经元发出的生物信号中发挥着作用。本研究旨在分析 IL-1β 在组织损伤后痛觉传导中的作用。方法 对 C57BL/6 小鼠进行足底切口,然后在不同时间点进行免疫组化和 RNA 范围原位杂交,分析 DRG 中 cIL-1β、caspase-1 和 IL-1 受体 1(IL-1R1)的表达。通过免疫组化和行为分析,分析了鞘内注射caspase-1抑制剂或使用局麻药进行区域麻醉对cIL-1β表达和痛觉过敏性的影响。此外,还分析了 ERK 磷酸化,以研究 IL-1β 对脊髓背角神经元活性的影响。结果 足底切口 5 分钟后,caspase-1 阳性的 DRG 神经元中 cIL-1β 表达明显增加。鞘内caspase-1抑制剂可抑制IL-1β的裂解和足底切口后的痛觉过敏。尽管大多数表达IL-1R1的神经元缺乏cIL-1β表达,但在DRG神经元中也检测到了IL-1R1。使用局部麻醉剂进行区域麻醉可阻止 cIL-1β 的处理。caspase-1 抑制剂抑制了足底切口诱导的 ERK 磷酸化。结论 DRG 神经元中的 IL-1β 在组织损伤时以活动依赖的方式迅速裂解。裂解的 IL-1β 会导致损伤诱导的感觉神经元功能激活和痛觉过敏。初级传入神经元中的 IL-1β 参与了生理痛觉信号转导。
{"title":"Rapid cleavage of IL-1β in DRG neurons produces tissue injury-induced pain hypersensitivity.","authors":"Daisuke Fujita, Yutaka Matsuoka, Shunsuke Yamakita, Yasuhiko Horii, Daiki Ishikawa, Kohsuke Kushimoto, Hiroaki Amino, Fumimasa Amaya","doi":"10.1177/17448069241285357","DOIUrl":"10.1177/17448069241285357","url":null,"abstract":"<p><p><b>Background:</b> IL-1β plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1β (cIL-1β) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1β in nociceptive transduction after tissue injury. <b>Methods:</b> A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1β, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1β expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1β on the activity of spinal dorsal horn neurons. <b>Results:</b> cIL-1β expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1β cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1β expression. Regional anesthesia using local anesthetics prevented cIL-1β processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. <b>Conclusion:</b> IL-1β in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1β causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1β in the primary afferent neurons is involved in physiological nociceptive signal transduction.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241285357"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-brain mapping of afferents to the anterior cingulate cortex in adult mice. 成年小鼠前扣带皮层传入事件的全脑映射。
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241300990
Man Xue, Qi-Yu Chen, Wantong Shi, Zhaoxiang Zhou, Xuhui Li, Fang Xu, Guoqiang Bi, Xixiao Yang, Jing-Shan Lu, Min Zhuo

The anterior cingulate cortex (ACC) is critical for pain perception, emotion and cognition. Previous studies showed that the ACC has a complex network architecture, which can receive some projection fibers from many brain regions, including the thalamus, the cerebral cortex and other brain regions. However, there was still a lack of whole-brain mapping of the ACC in adult mice. In the present study, we utilized a rabies virus-based retrograde trans-monosynaptic tracing system to map whole-brain afferents to the unilateral ACC in adult mice. We also combined with a new high-throughput, high-speed and high-resolution VISoR imaging technique to generate a three-dimensional whole-brain reconstruction. Our results showed that several principal groups of brain structures send direct monosynaptic inputs to the ACC, including the cerebral cortex, amygdala, striatum, the thalamus, and the brainstem. We also found that cortical neurons in the ACC mainly receive ipsilateral monosynaptic projections. Some cortical areas and forebrain regions also bilaterally projected to the ACC. These findings provide a complete analysis of the afferents to the ACC in adult mice, and whole-brain mapping of ACC afferents would provide important anatomic evidence for the study of pain, memory, and cognition.

前扣带皮层(ACC)对疼痛感知、情绪和认知至关重要。先前的研究表明,ACC具有复杂的网络结构,它可以接收来自许多大脑区域的一些投射纤维,包括丘脑、大脑皮层和其他大脑区域。然而,仍然缺乏成年小鼠ACC的全脑图谱。在本研究中,我们利用狂犬病毒为基础的逆行跨单突触追踪系统来绘制成年小鼠单侧ACC的全脑传入事件。我们还结合了一种新的高通量,高速和高分辨率的VISoR成像技术来生成三维全脑重建。我们的研究结果表明,有几个主要的大脑结构组向ACC发送直接的单突触输入,包括大脑皮层、杏仁核、纹状体、丘脑和脑干。我们还发现前扣带皮层神经元主要接受同侧单突触投射。一些皮质区域和前脑区域也双侧投射到ACC。这些发现提供了对成年小鼠ACC传入事件的完整分析,ACC传入事件的全脑图谱将为疼痛、记忆和认知的研究提供重要的解剖学证据。
{"title":"Whole-brain mapping of afferents to the anterior cingulate cortex in adult mice.","authors":"Man Xue, Qi-Yu Chen, Wantong Shi, Zhaoxiang Zhou, Xuhui Li, Fang Xu, Guoqiang Bi, Xixiao Yang, Jing-Shan Lu, Min Zhuo","doi":"10.1177/17448069241300990","DOIUrl":"10.1177/17448069241300990","url":null,"abstract":"<p><p>The anterior cingulate cortex (ACC) is critical for pain perception, emotion and cognition. Previous studies showed that the ACC has a complex network architecture, which can receive some projection fibers from many brain regions, including the thalamus, the cerebral cortex and other brain regions. However, there was still a lack of whole-brain mapping of the ACC in adult mice. In the present study, we utilized a rabies virus-based retrograde trans-monosynaptic tracing system to map whole-brain afferents to the unilateral ACC in adult mice. We also combined with a new high-throughput, high-speed and high-resolution VISoR imaging technique to generate a three-dimensional whole-brain reconstruction. Our results showed that several principal groups of brain structures send direct monosynaptic inputs to the ACC, including the cerebral cortex, amygdala, striatum, the thalamus, and the brainstem. We also found that cortical neurons in the ACC mainly receive ipsilateral monosynaptic projections. Some cortical areas and forebrain regions also bilaterally projected to the ACC. These findings provide a complete analysis of the afferents to the ACC in adult mice, and whole-brain mapping of ACC afferents would provide important anatomic evidence for the study of pain, memory, and cognition.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"20 ","pages":"17448069241300990"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of systemic oxytocin administration on ultraviolet B-induced nociceptive hypersensitivity and tactile hyposensitivity in mice. 全身注射催产素对紫外线诱导的小鼠痛觉超敏和触觉减敏的影响
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241226553
M Danilo Boada, Silvia Gutierrez, James C Eisenach

Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.

紫外线辐射会诱发皮肤炎症,导致热敏和机械过敏。在这里,我们研究了因这种损伤而功能紊乱的触觉和痛觉外周传入的机械特性和概况,以及催产素(OXT)作为这种紊乱调节剂的作用。我们对 4-6 周大的雄性小鼠(C57BL/6J)腹腔注射 6 mg/Kg 的催产素后,对支配辐照区域(5.1 J/cm2)的 L4 传入神经进行了细胞内记录。记录到的神经元的分布因 UVB 辐射而改变,与急性和慢性损伤后观察到的模式相同,并降低了 A 和 C-高阈机械感受器的机械阈值,同时降低了触觉灵敏度。UVB 辐射不会改变体膜电特性或纤维传导速度。OXT 全身给药可迅速逆转低阈值和高阈值机械感受器的外周变化,使其趋于正常,并使记录的神经元分布趋于正常。OXT 和 V1aR 受体存在于支配皮肤的有髓鞘和无髓鞘传入神经末梢。我们的结论是,UVB 辐射与局部组织手术损伤、癌症转移和周围神经损伤类似,会改变低阈值和高阈值机械感受器传入的分布,使痛觉感受器敏感,同时使触觉单元脱敏。急性全身给药 OXT 可使所有这些效应部分恢复正常。
{"title":"Effects of systemic oxytocin administration on ultraviolet B-induced nociceptive hypersensitivity and tactile hyposensitivity in mice.","authors":"M Danilo Boada, Silvia Gutierrez, James C Eisenach","doi":"10.1177/17448069241226553","DOIUrl":"10.1177/17448069241226553","url":null,"abstract":"<p><p>Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm<sup>2</sup>) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241226553"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors. 等选蛋白 B4 (IB4) 连接链霉亲和素用于选择性敲除 IB4 阳性(+)神经感受器中的蛋白质。
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241230419
Oliver Bogen, Dionéia Araldi, Anatol Sucher, Kord Kober, Peter T Ohara, Jon D Levine

In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.

使用反义寡核苷酸和短干扰 RNA 对痛觉感受器亚群中的蛋白质功能进行体内分析受到了其非选择性细胞摄取的限制。为了满足对选择性转染方法的需求,我们将异选择素 B4(IB4)与链霉亲和素共价连接,并分析了它是否可用于研究 IB4(+)-神经感受器的蛋白质功能。用 IB4 结合链霉亲和素与蛋白激酶 C epsilon(PKCe)mRNA 的生物素化反义寡核苷酸复合物对大鼠进行鞘内处理后发现:a)背根神经节(DRG)中的 PKCe 减少;b)IB4(+)而非 IB4(-)DRG 神经元中的 PKCe 表达减少;c)DRG 中的 PKCe 基因转录本减少。IB4(+) DRG 神经元中 PKCe 表达的这种敲除足以逆转超痛觉启动,这是一种依赖于 IB4(+)-nociceptors 中 PKCe 的慢性疼痛啮齿动物模型。这些结果证明,IB4-链霉亲和素可用于研究痛觉 C 纤维传入特定亚群中的蛋白质功能。
{"title":"Isolectin B4 (IB4)-conjugated streptavidin for the selective knockdown of proteins in IB4-positive (+) nociceptors.","authors":"Oliver Bogen, Dionéia Araldi, Anatol Sucher, Kord Kober, Peter T Ohara, Jon D Levine","doi":"10.1177/17448069241230419","DOIUrl":"10.1177/17448069241230419","url":null,"abstract":"<p><p><i>In vivo</i> analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241230419"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroacupuncture attenuates nociceptive behaviors in a mouse model of cancer pain. 电针可减轻癌痛小鼠模型的痛觉行为
IF 3.3 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-01-01 DOI: 10.1177/17448069241240692
Yu-Xue Zhao, Ming-Jiang Yao, Jian-Wu Shen, Wen-Xi Zhang, Yuan-Xi Zhou

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.

背景:疼痛是癌症患者的主要症状,而癌症诱发的骨痛(CIBP)是最常见的中度和重度癌症相关疼痛类型。目前治疗 CIBP 的镇痛疗法存在不良反应,且治疗效果有限。针灸作为一种安全的替代疗法,在疼痛治疗中被证明是有效的。我们对针灸治疗癌痛的镇痛效果进行了评估,并试图探索其潜在的镇痛机制:裸鼠左股骨远端接种癌细胞,建立癌痛模型。方法:将癌细胞接种到裸鼠的左股骨远端,建立癌痛模型。结果显示,电针治疗减轻了小鼠的癌痛行为,同时检测了小鼠外周和中枢的神经肽相关指标和炎症相关指标:结果:EA治疗缓解了癌症诱导的疼痛行为,包括机械异感、热痛和自发痛,还下调了异种移植小鼠受累足底皮肤中神经肽CGRP和p75的免疫荧光表达,抑制了异种移植小鼠腰脊髓中神经肽相关蛋白和炎症相关蛋白的过度表达:总之,我们的研究结果表明,EA治疗可改善癌痛小鼠异种移植模型中癌症诱发的疼痛行为,这可能是通过抑制肿瘤细胞异种移植后中枢水平的神经肽相关蛋白和炎症相关蛋白的表达实现的。
{"title":"Electroacupuncture attenuates nociceptive behaviors in a mouse model of cancer pain.","authors":"Yu-Xue Zhao, Ming-Jiang Yao, Jian-Wu Shen, Wen-Xi Zhang, Yuan-Xi Zhou","doi":"10.1177/17448069241240692","DOIUrl":"10.1177/17448069241240692","url":null,"abstract":"<p><p>Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069241240692"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11010748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Pain
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1