Pub Date : 2024-01-24DOI: 10.1007/s00706-023-03163-3
Antonín Šimek, Tomáš Kazda, Jiří Báňa, Ondřej Čech
This paper investigates the effect of water content on lithium-ion battery electrolytes with particular emphasis on the degradation of lithium hexafluorophosphate, a commonly used salt in commercial electrolytes. The study addresses various degradation mechanisms caused by water in a battery system. In addition, the research utilizes electrochemical techniques to detect water and associated changes in electrochemical performance of the cell. The electrochemical water detection method investigated is very fast. The lower detection limit was not tested, but contamination of 250 ppm can be reliably detected. It can be used, for example, in experimental research to determine the purity and quality of the electrolyte used.
{"title":"Basic method for water detection in LiPF6-based electrolytes","authors":"Antonín Šimek, Tomáš Kazda, Jiří Báňa, Ondřej Čech","doi":"10.1007/s00706-023-03163-3","DOIUrl":"https://doi.org/10.1007/s00706-023-03163-3","url":null,"abstract":"<p>This paper investigates the effect of water content on lithium-ion battery electrolytes with particular emphasis on the degradation of lithium hexafluorophosphate, a commonly used salt in commercial electrolytes. The study addresses various degradation mechanisms caused by water in a battery system. In addition, the research utilizes electrochemical techniques to detect water and associated changes in electrochemical performance of the cell. The electrochemical water detection method investigated is very fast. The lower detection limit was not tested, but contamination of 250 ppm can be reliably detected. It can be used, for example, in experimental research to determine the purity and quality of the electrolyte used.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1007/s00706-023-03161-5
Yurii V. Shmatok, Nataliya I. Globa, Vitalii A. Sirosh, Iryna V. Romanova, Sviatoslav A. Kirillov
Fe-doped lithium-manganese spinel of the composition LiFe0.05Mn1.95O4 was synthesized by means of a citric acid-aided route. The influence of annealing temperature on structural and morphological characteristics LiFe0.05Mn1.95O4 is investigated by XRD and SEM methods. Specific and kinetic electrochemical characteristics of LiFe0.05Mn1.95O4 in organic and aqueous electrolyte solutions were studied by galvanostatic cycling method and cyclic voltammetry. LiFe0.05Mn1.95O4 samples annealed at temperatures of 700, 750, and 800 °C demonstrate specific capacity of 114, 102, and 109 mAh g−1 at the cycling current density of 0.5 C, respectively. The best cycling stability and rate performance with discharge currents up to 50 C were obtained in a case of the sample annealed at 750 °C.
Graphical abstract
通过柠檬酸辅助路线合成了成分为 LiFe0.05Mn1.95O4 的掺铁锂锰尖晶石。通过 XRD 和 SEM 方法研究了退火温度对 LiFe0.05Mn1.95O4 结构和形态特征的影响。利用电静态循环法和循环伏安法研究了 LiFe0.05Mn1.95O4 在有机和水性电解质溶液中的电化学特性和动力学特性。在 700、750 和 800 °C 温度下退火的 LiFe0.05Mn1.95O4样品在 0.5 C 循环电流密度下的比容量分别为 114、102 和 109 mAh g-1。在 750 °C 下退火的样品在放电电流达到 50 C 时获得了最佳的循环稳定性和速率性能。
{"title":"LiFe0.05Mn1.95O4 as a high-rate cathode material for lithium-ion batteries","authors":"Yurii V. Shmatok, Nataliya I. Globa, Vitalii A. Sirosh, Iryna V. Romanova, Sviatoslav A. Kirillov","doi":"10.1007/s00706-023-03161-5","DOIUrl":"https://doi.org/10.1007/s00706-023-03161-5","url":null,"abstract":"<p>Fe-doped lithium-manganese spinel of the composition LiFe<sub>0.05</sub>Mn<sub>1.95</sub>O<sub>4</sub> was synthesized by means of a citric acid-aided route. The influence of annealing temperature on structural and morphological characteristics LiFe<sub>0.05</sub>Mn<sub>1.95</sub>O<sub>4</sub> is investigated by XRD and SEM methods. Specific and kinetic electrochemical characteristics of LiFe<sub>0.05</sub>Mn<sub>1.95</sub>O<sub>4</sub> in organic and aqueous electrolyte solutions were studied by galvanostatic cycling method and cyclic voltammetry. LiFe<sub>0.05</sub>Mn<sub>1.95</sub>O<sub>4</sub> samples annealed at temperatures of 700, 750, and 800 °C demonstrate specific capacity of 114, 102, and 109 mAh g<sup>−1</sup> at the cycling current density of 0.5 C, respectively. The best cycling stability and rate performance with discharge currents up to 50 C were obtained in a case of the sample annealed at 750 °C.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-20DOI: 10.1007/s00706-023-03156-2
Jan Kočí, Martin Míka Havlík, Václav Procházka, Nikola Klusoňová, Eliška Sedláčková
This work describes the modification of organic–inorganic nanofibrous templates for advanced electrotechnical applications and their filling with active particles from various materials, according to their intended use. The organic component of the templates consists of high molecular polyvinylpyrrolidone. The inorganic part is colloidal SiO2. The organic–inorganic templates produce by electrospinning can be filled with inorganic particles with diameter below 50 µm (for example, different types of spinels or electroactive nanopowders). The idea is to create a modifiable and flexible material for use as a template for electrodes or a solid electrolyte in a safe solid-state battery. The quality and properties of nanofibers are very important for advanced applications, and therefore, the optimization of the manufacturing process is needed. The most important property is the viscosity of the organic–inorganic solution for electrospinning. The influence of viscosity on the quality of nanofibrous layers was observed even with very subtle differences in viscosity. The age of the precursors and the resulting workability time also plays a significant role.
{"title":"The effect of solution viscosity on the quality of electroactive nanofibers produced by electrospinning","authors":"Jan Kočí, Martin Míka Havlík, Václav Procházka, Nikola Klusoňová, Eliška Sedláčková","doi":"10.1007/s00706-023-03156-2","DOIUrl":"https://doi.org/10.1007/s00706-023-03156-2","url":null,"abstract":"<p>This work describes the modification of organic–inorganic nanofibrous templates for advanced electrotechnical applications and their filling with active particles from various materials, according to their intended use. The organic component of the templates consists of high molecular polyvinylpyrrolidone. The inorganic part is colloidal SiO<sub>2</sub>. The organic–inorganic templates produce by electrospinning can be filled with inorganic particles with diameter below 50 µm (for example, different types of spinels or electroactive nanopowders). The idea is to create a modifiable and flexible material for use as a template for electrodes or a solid electrolyte in a safe solid-state battery. The quality and properties of nanofibers are very important for advanced applications, and therefore, the optimization of the manufacturing process is needed. The most important property is the viscosity of the organic–inorganic solution for electrospinning. The influence of viscosity on the quality of nanofibrous layers was observed even with very subtle differences in viscosity. The age of the precursors and the resulting workability time also plays a significant role.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"59 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1007/s00706-023-03155-3
Didem Giray Dilgin, Kader Vural, Serkan Karakaya, Yusuf Dilgin
This study describes a simple, highly sensitive, and cost-effective electrochemical determination of salbutamol (SBT) at a disposable pencil graphite electrode modified with Nafion/functionalized multi-walled carbon nanotubes composite material (Nf/f-MWCNTs/PGE). The electrochemical response of SBT at this modified electrode was investigated by both differential pulse voltammetry (DPV) and cyclic voltammetry techniques. The voltammetric measurements confirmed that the combination of f-MWCNTs with Nafion shows remarkable electrocatalytic activity on the oxidation of SBT due to a synergistic effect of Nafion via electrostatic interaction and f-MWCNTs via excellent conductivity and large specific surface area. Differential pulse voltammetry results show that the composite electrode gives two linear ranges of 0.10–17.5 µM and 17.5–100 µM with a detection limit (LOD) of 0.027 µM SBT. Moreover, the studies of some potential interferants show that there is no significant interference in the determination of SBT. The proposed procedure was successfully applied to determine SBT in tube- and syrup-type pharmaceutical formulations, animal feed, and beef meat samples, and acceptable results were obtained with high accuracy and precision. Moreover, the proposed sensor displays good intra-day and inter-day precisions for the voltammetric determination of SBT.
{"title":"Simple, sensitive, and cost-effective voltammetric determination of salbutamol at a pencil graphite electrode modified with Nafion and functionalized multi-walled carbon nanotubes","authors":"Didem Giray Dilgin, Kader Vural, Serkan Karakaya, Yusuf Dilgin","doi":"10.1007/s00706-023-03155-3","DOIUrl":"https://doi.org/10.1007/s00706-023-03155-3","url":null,"abstract":"<p>This study describes a simple, highly sensitive, and cost-effective electrochemical determination of salbutamol (SBT) at a disposable pencil graphite electrode modified with Nafion/functionalized multi-walled carbon nanotubes composite material (Nf/<i>f-</i>MWCNTs/PGE). The electrochemical response of SBT at this modified electrode was investigated by both differential pulse voltammetry (DPV) and cyclic voltammetry techniques. The voltammetric measurements confirmed that the combination of <i>f-</i>MWCNTs with Nafion shows remarkable electrocatalytic activity on the oxidation of SBT due to a synergistic effect of Nafion via electrostatic interaction and <i>f-</i>MWCNTs via excellent conductivity and large specific surface area. Differential pulse voltammetry results show that the composite electrode gives two linear ranges of 0.10–17.5 µM and 17.5–100 µM with a detection limit (LOD) of 0.027 µM SBT. Moreover, the studies of some potential interferants show that there is no significant interference in the determination of SBT. The proposed procedure was successfully applied to determine SBT in tube- and syrup-type pharmaceutical formulations, animal feed, and beef meat samples, and acceptable results were obtained with high accuracy and precision. Moreover, the proposed sensor displays good intra-day and inter-day precisions for the voltammetric determination of SBT.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1007/s00706-023-03160-6
Barbora Pitňa Lásková, Markéta Zukalová, Monika Vinarčíková, Ladislav Kavan
The porous structure of three different, commercially available porous carbonaceous materials is investigated by the αS-plot method and by the t-plot method. Subsequently, the electrochemical properties of sulfur-free porous carbon electrodes from inspected materials are studied by cyclic voltammetry. The comparison of double-layer capacitances with the corresponding adsorption isotherms of N2 reveals the role of micropores during the capacitive charging of carbons by Li+. The studied carbons are added to the sulfur cathodes and evaluated. The cyclic voltammograms show no contribution of micropores in the carbon structure to the electrochemical processes taking place in the lithium–sulfur coin cell. The highest specific capacity of 816 mAh/g is observed for material with the lowest content of micropores in the structure (14%). The partially mesoporous and partially microporous (65%) sample and the predominantly microporous one (87%), show specific capacities of 664 mAh/g and 560 mAh/g, respectively. The galvanostatic cycling of lithium–sulfur coin cells with carbonaceous additives reveals that the mesopores and macropores in the carbon structure increase the specific charge capacity of the lithium–sulfur batteries and that the micropores improve the cycling stability of these batteries.