Pub Date : 2024-06-17DOI: 10.1557/s43579-024-00572-1
Daniel Irmer, Mohamed Sennour, Fan Sun, Philippe Vermaut, Charbel Moussa, Vladimir A. Esin
Abstract
The transition from heterogeneous nucleation of nanoscale hardening S-phase precipitates on dislocation lines in cold-rolled aluminium alloy 2024 (Al–Cu–Mg) to a spatially homogeneous distribution during artificial ageing is studied by means of in situ and ex situ transmission electron microscopy (TEM). Three stages of precipitate evolution following nucleation on dislocation lines are established: (i) Growth and coalescence on dislocation lines, (ii) Ostwald ripening controlled by pipe diffusion, and (iii) Ostwald ripening controlled by volume diffusion. Whilst Ostwald ripening controlled by pipe diffusion is active (stage (ii) and transition from stage (ii) to stage (iii)) dislocation annihilation and/or re-arrangement can occur.
Graphical abstract
摘要 通过原位和非原位透射电子显微镜(TEM),研究了冷轧铝合金 2024(Al-Cu-Mg)在人工时效过程中,位错线上的纳米级硬化 S 相沉淀物从异质成核到空间均匀分布的转变过程。研究确定了位错线成核后沉淀演变的三个阶段:(i) 位错线上的生长和凝聚,(ii) 由管道扩散控制的奥斯特瓦尔德熟化,以及 (iii) 由体积扩散控制的奥斯特瓦尔德熟化。在由管道扩散控制的奥斯特瓦尔德熟化活跃期间(第(ii)阶段和从第(ii)阶段到第(iii)阶段的过渡),位错会发生湮灭和/或重新排列。
{"title":"From heterogeneous nucleation to homogeneous spatial distribution of hardening precipitates: An in situ TEM study on cold-rolled AA2024-T3 (Al–Cu–Mg)","authors":"Daniel Irmer, Mohamed Sennour, Fan Sun, Philippe Vermaut, Charbel Moussa, Vladimir A. Esin","doi":"10.1557/s43579-024-00572-1","DOIUrl":"https://doi.org/10.1557/s43579-024-00572-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The transition from heterogeneous nucleation of nanoscale hardening S-phase precipitates on dislocation lines in cold-rolled aluminium alloy 2024 (Al–Cu–Mg) to a spatially homogeneous distribution during artificial ageing is studied by means of <i>in situ</i> and <i>ex situ</i> transmission electron microscopy (TEM). Three stages of precipitate evolution following nucleation on dislocation lines are established: (i) Growth and coalescence on dislocation lines, (ii) Ostwald ripening controlled by pipe diffusion, and (iii) Ostwald ripening controlled by volume diffusion. Whilst Ostwald ripening controlled by pipe diffusion is active (stage (ii) and transition from stage (ii) to stage (iii)) dislocation annihilation and/or re-arrangement can occur.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"51 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1557/s43579-024-00573-0
Tamara B. S. Ibarra-Cervantes, Guadalupe G. Flores-Rojas, Eduardo Mendizabal, Emilio Bucio
The functionalization of polymeric matrices through graft polymerization offers various advantages by providing new properties, allowing for additional chemical reactions that the matrix alone could not undergo or that would require drastic chemical conditions to occur. In this work, epoxy groups were incorporated through a graft polymer of poly(glycidyl methacrylate), using a prefunctionalization with peroxide groups in the polytetrafluoroethylene matrix through gamma radiation. These peroxide groups were subsequently used as radical chemical initiators in the graft polymerization reaction of glycidyl methacrylate. The graft polymerization reaction was studied based on the absorbed dose, monomer concentration, reaction time, and temperature.