Pub Date : 2021-01-01DOI: 10.1177/18479804211011389
H. Abdullah, S. M. Mustaza, S. Bejo, Iskandar Yahya, N. Kamal, M. Othman
Leptospirosis disease was caused by rat urine which contains the genus Leptospira bacteria. In this study, the fabrication of Pd-Fe-doped polyaniline nanocomposite thin films for the determination of the genus Leptospira bacteria thin films has been investigated. Pd-Fe-doped polyaniline nanocomposite thin films were fabricated by sol–gel spin coating method. The electrode sensors were immersed in the Leptospira solution. The resulting materials were investigated using field-emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and current–voltage measurement. The atomic force microscopy images show the specific morphology films’ structure for Leptospira detection, whereas the field-emission scanning electron microscopy image shows the irregularity of clump nanoparticles in thin film surfaces. Transmission electron microscopy result shows that metal alloy (Fe-Pd) embedded in the polymer matrix. Current–voltage measurement with and without incubation of the thin film into Leptospira solution was done to show the relationship between concentration bacteria versus current. The result shows that polyaniline-Fe0.4-Pd0.6 nanocomposite thin film has higher sensitivity in detecting Leptospira, where it has performed with the highest percentage of the sensitivity of 16.9%. Besides that, selectivity tests were conducted to distinguish the existence of Leptospira, Pseudomonas aeruginosa, and Staphylococcus aureus bacteria. These results confirm the potentials of polyaniline metal alloys’ nanocomposite thin films to be used for Leptospira bacteria detection in water.
{"title":"Identification of Leptospira in water by Fe-Pd-doped polyaniline nanocomposite thin film","authors":"H. Abdullah, S. M. Mustaza, S. Bejo, Iskandar Yahya, N. Kamal, M. Othman","doi":"10.1177/18479804211011389","DOIUrl":"https://doi.org/10.1177/18479804211011389","url":null,"abstract":"Leptospirosis disease was caused by rat urine which contains the genus Leptospira bacteria. In this study, the fabrication of Pd-Fe-doped polyaniline nanocomposite thin films for the determination of the genus Leptospira bacteria thin films has been investigated. Pd-Fe-doped polyaniline nanocomposite thin films were fabricated by sol–gel spin coating method. The electrode sensors were immersed in the Leptospira solution. The resulting materials were investigated using field-emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and current–voltage measurement. The atomic force microscopy images show the specific morphology films’ structure for Leptospira detection, whereas the field-emission scanning electron microscopy image shows the irregularity of clump nanoparticles in thin film surfaces. Transmission electron microscopy result shows that metal alloy (Fe-Pd) embedded in the polymer matrix. Current–voltage measurement with and without incubation of the thin film into Leptospira solution was done to show the relationship between concentration bacteria versus current. The result shows that polyaniline-Fe0.4-Pd0.6 nanocomposite thin film has higher sensitivity in detecting Leptospira, where it has performed with the highest percentage of the sensitivity of 16.9%. Besides that, selectivity tests were conducted to distinguish the existence of Leptospira, Pseudomonas aeruginosa, and Staphylococcus aureus bacteria. These results confirm the potentials of polyaniline metal alloys’ nanocomposite thin films to be used for Leptospira bacteria detection in water.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18479804211011389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41801137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/18479804211015009
M. Badri, Noor Far'ain Md Noor, A. Zain, Muhamad MatSalleh, T. Aziz
In this work, we report a graphene-alkaline lignin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate composite as a transparent conductive electrode for indium tin oxide-free optoelectronic devices. The composite was prepared by dispersing exfoliated graphene-alkaline lignin into aqueous poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The effect of graphene concentration on the electrical and optical properties of graphene-alkaline lignin-poly(3,4- ethylenedioxythiophene) polystyrene sulfonate was studied. The graphene-alkaline lignin-poly(3,4- ethylenedioxythiophene) polystyrene sulfonate thin films exhibit excellent electrical conductivity and high transparency properties. The electrical conductivity is further increased by 1.9 ± 0.01 × 103 times when graphene content was augmented in the composites; however, the optical transparency was reduced due to the high optical absorbance of graphene. In this condition, the conductivity and optical transparency are as high as (4.19 ± 0.01) × 103 S/cm and 94.2%, respectively. This achievement is attributed to the organization of higher ordered network between conductive exfoliated graphene and poly(3,4-ethylenedioxythiophene) chains that induced a better conducting channel for charge transportation. The poly(3,4-ethylenedioxythiophene) chains act as a bridge connecting the graphene flakes, which, in turn, facilitate the movement of hole charges between them.
{"title":"Exfoliated graphene-alkaline lignin-PEDOT: PSS composite as a transparent conductive electrode","authors":"M. Badri, Noor Far'ain Md Noor, A. Zain, Muhamad MatSalleh, T. Aziz","doi":"10.1177/18479804211015009","DOIUrl":"https://doi.org/10.1177/18479804211015009","url":null,"abstract":"In this work, we report a graphene-alkaline lignin-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate composite as a transparent conductive electrode for indium tin oxide-free optoelectronic devices. The composite was prepared by dispersing exfoliated graphene-alkaline lignin into aqueous poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. The effect of graphene concentration on the electrical and optical properties of graphene-alkaline lignin-poly(3,4- ethylenedioxythiophene) polystyrene sulfonate was studied. The graphene-alkaline lignin-poly(3,4- ethylenedioxythiophene) polystyrene sulfonate thin films exhibit excellent electrical conductivity and high transparency properties. The electrical conductivity is further increased by 1.9 ± 0.01 × 103 times when graphene content was augmented in the composites; however, the optical transparency was reduced due to the high optical absorbance of graphene. In this condition, the conductivity and optical transparency are as high as (4.19 ± 0.01) × 103 S/cm and 94.2%, respectively. This achievement is attributed to the organization of higher ordered network between conductive exfoliated graphene and poly(3,4-ethylenedioxythiophene) chains that induced a better conducting channel for charge transportation. The poly(3,4-ethylenedioxythiophene) chains act as a bridge connecting the graphene flakes, which, in turn, facilitate the movement of hole charges between them.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18479804211015009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41929131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/18479804211056425
Tasawar Hayata, Zobia Kainata, S. A. Khana, A. Alsaedi
The theme of this article is to scrutinize the entropy rate in hydromagnetic flow of Reiner–Philippoff nanofluid by a stretching surface. Energy equation is developed through first law of thermodynamic with dissipation and Joule heating. Furthermore, random and thermophoretic motion is discussed. Additionally, binary reaction is discussed. Physical feature of irreversibility analysis is discussed. Nonlinear expression is obtained by suitable transformation. The obtained systems are solved through the numerical method (bvp4c). Variation of entropy rate, thermal field, velocity profile, and concentration against sundry variables are discussed. Computational outcomes of thermal and mass transport rate for influential parameters are studied in tabularized form. A reverse effect holds for thermal field and velocity through magnetic variable. Higher Bingham number leads to a rise in velocity field. An intensification in thermal field and concentration is noted for thermophoretic variable. An enhancement in fluid variable leads to augments velocity. An increment in entropy analysis is seen for magnetic effect. Larger estimation of diffusion variable improves entropy rate. A reduction in concentration is noticed for reaction variable.
{"title":"Irreversibility analysis in dissipative magnetohydromagnetic flow of non-Newtonian nanomaterials","authors":"Tasawar Hayata, Zobia Kainata, S. A. Khana, A. Alsaedi","doi":"10.1177/18479804211056425","DOIUrl":"https://doi.org/10.1177/18479804211056425","url":null,"abstract":"The theme of this article is to scrutinize the entropy rate in hydromagnetic flow of Reiner–Philippoff nanofluid by a stretching surface. Energy equation is developed through first law of thermodynamic with dissipation and Joule heating. Furthermore, random and thermophoretic motion is discussed. Additionally, binary reaction is discussed. Physical feature of irreversibility analysis is discussed. Nonlinear expression is obtained by suitable transformation. The obtained systems are solved through the numerical method (bvp4c). Variation of entropy rate, thermal field, velocity profile, and concentration against sundry variables are discussed. Computational outcomes of thermal and mass transport rate for influential parameters are studied in tabularized form. A reverse effect holds for thermal field and velocity through magnetic variable. Higher Bingham number leads to a rise in velocity field. An intensification in thermal field and concentration is noted for thermophoretic variable. An enhancement in fluid variable leads to augments velocity. An increment in entropy analysis is seen for magnetic effect. Larger estimation of diffusion variable improves entropy rate. A reduction in concentration is noticed for reaction variable.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47256435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-981-33-6056-3
{"title":"Nanomaterials and Nanotechnology: Biomedical, Environmental, and Industrial Applications","authors":"","doi":"10.1007/978-981-33-6056-3","DOIUrl":"https://doi.org/10.1007/978-981-33-6056-3","url":null,"abstract":"","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-981-33-6056-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51132364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/18479804211041181
A. Mahmoud, M. Mostafa, R. Peters
This study aims to investigate the efficiency of a pilot prototype system comprising coagulation/flocculation, filtration, and nano-bimetallic iron/copper (Fe/Cu) degradation and adsorption units for the removal of chemical oxygen demand (COD), biological oxygen demand (BOD), color, total nitrogen (TN), total phosphorus (TP), and TSS from real textile wastewater. The total removal efficiencies of the system were 96, 98, 82, 69, 88, and 97%, respectively, using 0.5 g/L ferric chlorides as a coagulant under an optimum adsorption condition of pH 6.0, nano-dosage 1.4 g/L, contact time 80 min, and stirring rate 250 r/min at room temperature. Adsorption isotherms indicated that the removal of COD and TP obeys both Koble–Corrigan and Freundlich adsorption models, removal of color obeys both Koble–Corrigan and Hill adsorption models, and removal of TN and TSS obeys Koble–Corrigan and Khan models, respectively. Avrami kinetic models adequately describe the adsorption data for COD, BOD, TN, and TSS, while pseudo-second-order and intraparticle models described the removal mechanism of color and TSS, respectively. An artificial neural network (ANN) with r2-value exceeding 0.98 is accurate and can be used with confidence in predicting removal efficiencies of the targeted parameters. Sensitivity analysis results showed that the initial concentration was the most influential parameter for TSS removal with relative importance greater than 25%, while the bimetallic Fe/Cu dosage was the most influential factor for all other studied parameters with relative importance greater than 40%. The total treatment cost of the proposed system per m3 after scaling up was found to be US$4.5 for reuse of the treated water for the irrigation of forest trees.
{"title":"A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies","authors":"A. Mahmoud, M. Mostafa, R. Peters","doi":"10.1177/18479804211041181","DOIUrl":"https://doi.org/10.1177/18479804211041181","url":null,"abstract":"This study aims to investigate the efficiency of a pilot prototype system comprising coagulation/flocculation, filtration, and nano-bimetallic iron/copper (Fe/Cu) degradation and adsorption units for the removal of chemical oxygen demand (COD), biological oxygen demand (BOD), color, total nitrogen (TN), total phosphorus (TP), and TSS from real textile wastewater. The total removal efficiencies of the system were 96, 98, 82, 69, 88, and 97%, respectively, using 0.5 g/L ferric chlorides as a coagulant under an optimum adsorption condition of pH 6.0, nano-dosage 1.4 g/L, contact time 80 min, and stirring rate 250 r/min at room temperature. Adsorption isotherms indicated that the removal of COD and TP obeys both Koble–Corrigan and Freundlich adsorption models, removal of color obeys both Koble–Corrigan and Hill adsorption models, and removal of TN and TSS obeys Koble–Corrigan and Khan models, respectively. Avrami kinetic models adequately describe the adsorption data for COD, BOD, TN, and TSS, while pseudo-second-order and intraparticle models described the removal mechanism of color and TSS, respectively. An artificial neural network (ANN) with r2-value exceeding 0.98 is accurate and can be used with confidence in predicting removal efficiencies of the targeted parameters. Sensitivity analysis results showed that the initial concentration was the most influential parameter for TSS removal with relative importance greater than 25%, while the bimetallic Fe/Cu dosage was the most influential factor for all other studied parameters with relative importance greater than 40%. The total treatment cost of the proposed system per m3 after scaling up was found to be US$4.5 for reuse of the treated water for the irrigation of forest trees.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43827273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Au nanodots decorated Cu2O nanooctahedrons were fabricated by a facile liquid-phase process combined with a galvanic replacement reaction for nonenzyme glucose detection. A simple rapid test strip based on the nanooctahedrons was proposed to evaluate the possibility of commercial application in nonenzymatic glucose detection. This test strip shows excellent response toward glucose. Linear response was obtained over a concentration ranging from 0.05 mM to 15 mM, and the detection accuracy is 0.05 mM. The good detection performance in selectivity, stability, and feasibility proving the great potential application in human blood glucose monitoring. This study demonstrated the possibility of a high-performance nonenzyme glucose test strip based on metal-oxide nanostructures decorated by catalysts.
采用简单液相法结合电替代反应制备了金纳米点修饰的Cu2O纳米八面体,用于非酶葡萄糖检测。提出了一种基于纳米八面体的简单快速试纸条,以评估其在非酶葡萄糖检测中的商业应用可能性。该试纸条对葡萄糖有很好的反应。在0.05 mM ~ 15 mM的浓度范围内具有良好的线性响应,检测精度为0.05 mM,具有良好的选择性、稳定性和可行性,在人体血糖监测中具有很大的应用潜力。本研究证明了用催化剂修饰金属氧化物纳米结构制备高性能无酶葡萄糖试纸条的可能性。
{"title":"Nonenzymatic glucose detection using Au nanodots decorated Cu2O nanooctahedrons","authors":"Dexiang Chen, Kaifeng Xue, Huaiqiang Liu, Binbin Yao, Aixin Sun, Chenchen Liu, Pinhua Zhang, Guangliang Cui","doi":"10.1177/18479804211012889","DOIUrl":"https://doi.org/10.1177/18479804211012889","url":null,"abstract":"Au nanodots decorated Cu2O nanooctahedrons were fabricated by a facile liquid-phase process combined with a galvanic replacement reaction for nonenzyme glucose detection. A simple rapid test strip based on the nanooctahedrons was proposed to evaluate the possibility of commercial application in nonenzymatic glucose detection. This test strip shows excellent response toward glucose. Linear response was obtained over a concentration ranging from 0.05 mM to 15 mM, and the detection accuracy is 0.05 mM. The good detection performance in selectivity, stability, and feasibility proving the great potential application in human blood glucose monitoring. This study demonstrated the possibility of a high-performance nonenzyme glucose test strip based on metal-oxide nanostructures decorated by catalysts.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18479804211012889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48768694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/18479804211039425
Nompumelelo Malatji, E. Makhado, K. D. Modibane, K. E. Ramohlola, T. C. Maponya, G. R. Monama, M. J. Hato
Water pollution by organic dyes continues to pose a serious health and environmental threat to the ecosystem. Although adsorption using biopolymer-based hydrogels has proven to be an ideal technique for the treatment of these dye contaminants from aqueous solutions, these hydrogels suffer from lack of mechanical stability and recovery as compared to synthetic polymers. Herein, we review the low-cost synthesis of hydrogel incorporated with inorganic components mainly focusing on strategies to improve the mechanical stability and separation of the hydrogel in removing methylene blue (MB) dye from aqueous solution. The literature shows that hydrogel nanocomposites are a class of materials that have flourished significant consideration, especially concerning water treatment. In adsorption technology, hydrogel nanocomposites act as absorbents, prominent to enhance their removal efficiency towards contaminants. This review highlights the preparation and use of hydrogel nanocomposites as efficient adsorbents. In-depth discussions on adsorption and diverse synthetic routes of hydrogels have been devoted to applications of these nanocomposites and are compared in this contribution to the removal efficiency of MB dye from wastewater.
{"title":"Removal of methylene blue from wastewater using hydrogel nanocomposites: A review","authors":"Nompumelelo Malatji, E. Makhado, K. D. Modibane, K. E. Ramohlola, T. C. Maponya, G. R. Monama, M. J. Hato","doi":"10.1177/18479804211039425","DOIUrl":"https://doi.org/10.1177/18479804211039425","url":null,"abstract":"Water pollution by organic dyes continues to pose a serious health and environmental threat to the ecosystem. Although adsorption using biopolymer-based hydrogels has proven to be an ideal technique for the treatment of these dye contaminants from aqueous solutions, these hydrogels suffer from lack of mechanical stability and recovery as compared to synthetic polymers. Herein, we review the low-cost synthesis of hydrogel incorporated with inorganic components mainly focusing on strategies to improve the mechanical stability and separation of the hydrogel in removing methylene blue (MB) dye from aqueous solution. The literature shows that hydrogel nanocomposites are a class of materials that have flourished significant consideration, especially concerning water treatment. In adsorption technology, hydrogel nanocomposites act as absorbents, prominent to enhance their removal efficiency towards contaminants. This review highlights the preparation and use of hydrogel nanocomposites as efficient adsorbents. In-depth discussions on adsorption and diverse synthetic routes of hydrogels have been devoted to applications of these nanocomposites and are compared in this contribution to the removal efficiency of MB dye from wastewater.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49662148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/1847980420987352
Xiaohong Li, Wei Shi, Wenyan Zhang, Weiyao Chen, Dan Cao, S. Gopinath, P. Anbu, Na Liu
Parkinson’s disease (PD) is a nervous disorder, affects physical movement, and leads to difficulty in balancing, walking, and coordination. A novel sensor is mandatory to determine PD and monitor the progress of the treatment. Neurofilament light chain (NfL) has been recognized as a good biomarker for PD and also helps to distinguish between PD and atypical PD syndromes. Immunosensor was generated by current–volt measurement on gap-fingered interdigitated electrode with silicon dioxide surface to determine NfL level. To enhance the detection, anti-NfL antibody was complexed with gold-nanourchin and immobilized on the sensing electrode. The current–volt response was gradually increased at the linear detection range from 100 fM to 1 nM. Limit of detection and sensitivity were 100 fM with the signal-to-noise ratio at n = 3 on a linear curve (y = 0.081x + 1.593; R 2 = 0.9983). Limit of quantification falls at 1 pM and high performance of the sensor was demonstrated by discriminating against other neurogenerative disease markers, in addition, it was reproducible even in serum-spiked samples. This method of detection system aids to measure the level of NfL and leads to determine the condition with PD.
{"title":"Gold-nanourchin complexed silicon dioxide-probe on gap-fingered interdigitated electrode surface for Parkinson’s Disease determination by current–volt measurement","authors":"Xiaohong Li, Wei Shi, Wenyan Zhang, Weiyao Chen, Dan Cao, S. Gopinath, P. Anbu, Na Liu","doi":"10.1177/1847980420987352","DOIUrl":"https://doi.org/10.1177/1847980420987352","url":null,"abstract":"Parkinson’s disease (PD) is a nervous disorder, affects physical movement, and leads to difficulty in balancing, walking, and coordination. A novel sensor is mandatory to determine PD and monitor the progress of the treatment. Neurofilament light chain (NfL) has been recognized as a good biomarker for PD and also helps to distinguish between PD and atypical PD syndromes. Immunosensor was generated by current–volt measurement on gap-fingered interdigitated electrode with silicon dioxide surface to determine NfL level. To enhance the detection, anti-NfL antibody was complexed with gold-nanourchin and immobilized on the sensing electrode. The current–volt response was gradually increased at the linear detection range from 100 fM to 1 nM. Limit of detection and sensitivity were 100 fM with the signal-to-noise ratio at n = 3 on a linear curve (y = 0.081x + 1.593; R 2 = 0.9983). Limit of quantification falls at 1 pM and high performance of the sensor was demonstrated by discriminating against other neurogenerative disease markers, in addition, it was reproducible even in serum-spiked samples. This method of detection system aids to measure the level of NfL and leads to determine the condition with PD.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980420987352","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47517026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1177/18479804211001140
P. Kalakonda, Pranay Bhasker Kalakonda, Sreenivas Banne
Hydrogel of single-walled carbon nanotubes and polyaniline has been used for thermopower engineering applications due to desirable thermal, electrical, and mechanical properties as well as tunable degradability. In this article, we fabricated nanoporous composite scaffolds from hydrogel of single-walled carbon nanotubes and polyaniline polymer using a standard in situ polymerization process. Our solution-based fabrication method prevented single-walled carbon nanotube aggregation which resulted in enhancing thermal, electrical, and mechanical properties with keeping optimum flexibility in the porous composite scaffold. We compared the mechanical, electrical, and thermal properties of nanoporous composites with different single-walled carbon nanotube loadings. The porous composite scaffold with a 25 wt% showed higher electrical conductivity, ultimate tensile strength, and tensile modulus. Lastly, our solution fabrication method prevents aggregation single-walled carbon nanotube and could help to build the thermoelectrical materials for flexible electronic applications.
{"title":"Studies of electrical, thermal, and mechanical properties of single-walled carbon nanotube and polyaniline of nanoporous nanocomposites","authors":"P. Kalakonda, Pranay Bhasker Kalakonda, Sreenivas Banne","doi":"10.1177/18479804211001140","DOIUrl":"https://doi.org/10.1177/18479804211001140","url":null,"abstract":"Hydrogel of single-walled carbon nanotubes and polyaniline has been used for thermopower engineering applications due to desirable thermal, electrical, and mechanical properties as well as tunable degradability. In this article, we fabricated nanoporous composite scaffolds from hydrogel of single-walled carbon nanotubes and polyaniline polymer using a standard in situ polymerization process. Our solution-based fabrication method prevented single-walled carbon nanotube aggregation which resulted in enhancing thermal, electrical, and mechanical properties with keeping optimum flexibility in the porous composite scaffold. We compared the mechanical, electrical, and thermal properties of nanoporous composites with different single-walled carbon nanotube loadings. The porous composite scaffold with a 25 wt% showed higher electrical conductivity, ultimate tensile strength, and tensile modulus. Lastly, our solution fabrication method prevents aggregation single-walled carbon nanotube and could help to build the thermoelectrical materials for flexible electronic applications.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18479804211001140","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44815662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-29DOI: 10.1177/1847980420966883
G. Cárdenas-Triviño, Sergio Triviño-Matus
Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.
{"title":"Synthesis and characterization of Fe, Co, and Ni colloids in 2-mercaptoethanol","authors":"G. Cárdenas-Triviño, Sergio Triviño-Matus","doi":"10.1177/1847980420966883","DOIUrl":"https://doi.org/10.1177/1847980420966883","url":null,"abstract":"Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980420966883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41699483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}