The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on S. aureus biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward S. aureus. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of S. aureus, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of S. aureus infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating S. aureus.
Importance: The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat S. aureus-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against S. aureus in vitro and in vivo at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for S. aureus infections.
{"title":"Insights into small-molecule compound CY-158-11 antibacterial activity against <i>Staphylococcus aureus</i>.","authors":"Li Shen, Junhong Shi, Weihua Han, Jingyi Yu, Xinru Yuan, Haojin Gao, Yu Huang, Jianbo Lv, Cailing Wan, Peiyao Zhou, Yanghua Xiao, Jiao Zhang, Bingjie Wang, Rongrong Hu, Fangyou Yu","doi":"10.1128/msphere.00643-24","DOIUrl":"10.1128/msphere.00643-24","url":null,"abstract":"<p><p>The widespread prevalence and dissemination of antibiotic-resistant bacteria, coupled with the diminishing supply of new antibiotics, emphasize the pressing necessity for the exploration of innovative antibacterial agents. Previously, we detailed the impact of the small-molecule compound CY-158-11 on <i>S. aureus</i> biofilm. By hindering adhesion and PIA-mediated biofilm formation, subinhibitory concentrations of CY-158-11 exhibit antibiofilm activity toward <i>S. aureus</i>. Here, we sought to elucidate the antibacterial activity and mode of action of this compound. Upon CY-158-11 treatment in culture, the inhibition of bacterial growth, coupled with MBC to MIC of >4, indicated that CY-158-11 exerted a bacteriostatic effect. Particularly, CY-158-11 showed strong antibacterial activity against a wide variety of <i>S. aureus</i>, including multidrug-resistant bacteria. We found that CY-158-11 promoted the permeability of cell membrane and propidium iodide absorption as well as caused the dissipation of membrane potential. The effect of CY-158-11 on the mammalian cytoplasmic membrane was measured using hemolytic and cytotoxicity assays, and the skin irritation and systemic toxicity of the drug were measured by injecting the compound into the skin and tail vein of mice. Moreover, CY-158-11 exhibited considerable efficacy in a subcutaneous abscess mouse model of <i>S. aureus</i> infection. In conclusion, CY-158-11 possesses antibacterial properties, including inhibition of bacterial growth, damage to cell membranes, and treatment of skin abscesses, which can be a promising therapeutic option for combating <i>S. aureus</i>.</p><p><strong>Importance: </strong>The combination of the rising incidence of antibiotic resistance and the shrinking antibiotic pipeline has raised concern about the postantibiotic era. New antibacterial agents and targets are required to combat <i>S. aureus</i>-associated infections. In this study, we identified a maleimide-diselenide hybrid compound CY-158-11 exhibiting antibacterial activity against <i>S. aureus in vitro</i> and <i>in vivo</i> at relatively low concentrations. Furthermore, the investigation of its mode of action revealed that CY-158-11 can selectively perturb the cytoplasmic membrane of bacteria without harming mammalian cells or mouse organs. Thus, CY-158-11 is a compelling novel drug for development as a new therapy for <i>S. aureus</i> infections.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dictyostelium discoideum is a phagocytic amoeba continuously eating, killing, and digesting bacteria. Previous studies have detected in D. discoideum cell extracts a bacteriolytic activity effective against Klebsiella pneumoniae bacteria. In this study, we characterized bacteriolytic activities found in D. discoideum cell extracts against five different bacteria (K. pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). We first analyzed the bacteriolytic activity against these five bacteria in parallel over a range of pH values. We then measured the remaining bacteriolytic activity in D. discoideum kil1 and modA knockout mutants. We also performed partial fractionation of D. discoideum extracts and assessed activity against different bacteria. Together our results indicate that optimal bacteriolytic activity against different bacteria results from the action of different effectors. Proteomic analysis allowed us to propose a list of potential bacteriolytic effectors.IMPORTANCEMany antibacterial effectors have been characterized over the past decades, and their biological importance, mode of action, and specificity are often still under study. Here we characterized in vitro bacteriolytic activity in D. discoideum extracts against five species of Gram-negative and Gram-positive bacteria. Our results reveal that optimal lysis of different bacteria mobilizes different effectors. Proteomic analysis generated a list of potential bacteriolytic effectors. This work opens the way for future analysis of the role of individual effectors in living D. discoideum cells.
{"title":"Antibacterial effectors in <i>Dictyostelium discoideum</i>: specific activity against different bacterial species.","authors":"Raphael Munoz-Ruiz, Otmane Lamrabet, Tania Jauslin, Cyril Guilhen, Alixia Bourbon, Pierre Cosson","doi":"10.1128/msphere.00471-24","DOIUrl":"10.1128/msphere.00471-24","url":null,"abstract":"<p><p><i>Dictyostelium discoideum</i> is a phagocytic amoeba continuously eating, killing, and digesting bacteria. Previous studies have detected in <i>D. discoideum</i> cell extracts a bacteriolytic activity effective against <i>Klebsiella pneumoniae</i> bacteria. In this study, we characterized bacteriolytic activities found in <i>D. discoideum</i> cell extracts against five different bacteria (<i>K. pneumoniae</i>, <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, and <i>Bacillus subtilis</i>). We first analyzed the bacteriolytic activity against these five bacteria in parallel over a range of pH values. We then measured the remaining bacteriolytic activity in <i>D. discoideum kil1</i> and <i>modA</i> knockout mutants. We also performed partial fractionation of <i>D. discoideum</i> extracts and assessed activity against different bacteria. Together our results indicate that optimal bacteriolytic activity against different bacteria results from the action of different effectors. Proteomic analysis allowed us to propose a list of potential bacteriolytic effectors.IMPORTANCEMany antibacterial effectors have been characterized over the past decades, and their biological importance, mode of action, and specificity are often still under study. Here we characterized <i>in vitro</i> bacteriolytic activity in <i>D. discoideum</i> extracts against five species of Gram-negative and Gram-positive bacteria. Our results reveal that optimal lysis of different bacteria mobilizes different effectors. Proteomic analysis generated a list of potential bacteriolytic effectors. This work opens the way for future analysis of the role of individual effectors in living <i>D. discoideum</i> cells.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1128/msphere.00405-24
JohnMark O Makwatta, Paul N Ndegwa, Florence A Oyieke, Peter Ahuya, Daniel K Masiga, Merid N Getahun
The ability of ticks to interact and adapt to different ecologies and hosts determines their vectorial competence for various pathogens; however, ticks-livestock-pathogens interaction studies are limited. With our ticks-hosts-pathogens interface studies, we found 14 species of hard ticks feeding on various livestock. Ticks showed a strong preference for one-humped camels (Camelus dromedarius). The camel nostril was the most preferred predilection site. The most prevalent tick species on camels was Hyalomma rufipes. We found two novel Amblyomma gemma variants which are distinct both morphologically and genetically from previously described Amblyomma gemma. The signature odors from camel breath and body were attractive to adult H. rufipes, demonstrating ticks utilize camel-derived metabolites to find their host. Our research shows that H. rufipes and camel hosts have unique and shared pathogens showing H. rufipes' vector and dromedary camel's reservoir host qualities. Our study unravels the dynamic interactions between hard ticks, pathogens, and host camels that all influence the likelihood of pathogen adaptation and transmission dynamics.
Importance: Ticks are obligatory hematophagous arachnids, serving as vectors for a wide array of pathogens that can be transmitted to animals and humans. The ability of ticks to acquire and transmit various pathogens depends on their attraction to quality reservoir hosts and the survival of the pathogens in ticks' gut and other tissues. However, the complex dynamics of tick-pathogen interaction and host-seeking behavior remain understudied. This investigation revealed notable variation in tick preference for domestic animals, with camel being the most preferred host. Moreover, our spatial analysis of tick attachment sites showed nostrils are the most preferred sites by various tick species. Our epidemiology data showed variation in the pathogens harbored by camel (host) and vector (Hyalomma rufipes), demonstrating the camel's efficiency as reservoir host and ticks' vector competence for various pathogens. With our behavioral experiment using H. rufipes and its preferred host's (camel) breath and body signature odors, we identified novel attractants for H. rufipes, thus offering new avenues for combating tick-borne diseases. Overall, our study presents novel insights into how multiple factors shape tick-host-pathogen interaction.
蜱虫与不同生态环境和宿主相互作用并适应不同宿主的能力决定了它们对各种病原体的传播能力;然而,蜱虫-家畜-病原体相互作用的研究却很有限。在蜱-宿主-病原体相互作用研究中,我们发现有 14 种硬蜱以各种家畜为食。蜱虫对单峰骆驼(Camelus dromedarius)表现出强烈的偏好。骆驼鼻孔是蜱虫最喜欢的捕食部位。骆驼身上最常见的蜱虫种类是Hyalomma rufipes。我们发现了两种新的 Amblyomma gemma 变种,它们在形态和基因上都不同于之前描述过的 Amblyomma gemma。骆驼呼吸和身体散发的特征性气味对成年 H. rufipes 具有吸引力,这表明蜱虫利用骆驼产生的代谢物来寻找宿主。我们的研究表明,H. rufipes 和骆驼宿主具有独特和共享的病原体,显示出 H. rufipes 的载体和单峰骆驼的水库宿主特性。我们的研究揭示了硬蜱、病原体和骆驼宿主之间的动态相互作用,这些相互作用都会影响病原体适应的可能性和传播动态:蜱虫是强制性食血蛛形纲动物,是可传播给动物和人类的多种病原体的载体。蜱虫获取和传播各种病原体的能力取决于它们对优质宿主的吸引力以及病原体在蜱虫肠道和其他组织中的存活率。然而,蜱虫与病原体之间复杂的动态相互作用以及寻找宿主的行为仍未得到充分研究。这项调查显示,蜱虫对家畜的偏好存在明显差异,骆驼是最偏好的宿主。此外,我们对蜱虫附着部位的空间分析表明,鼻孔是各种蜱虫最喜欢的部位。我们的流行病学数据显示,骆驼(宿主)和病媒(Hyalomma rufipes)携带的病原体存在差异,这表明骆驼作为蓄积宿主的效率以及蜱对各种病原体的媒介能力。通过使用 H. rufipes 及其首选宿主(骆驼)的呼吸和身体特征气味进行行为实验,我们发现了吸引 H. rufipes 的新物质,从而为防治蜱传疾病提供了新途径。总之,我们的研究为了解蜱虫宿主与病原体之间的相互作用提供了新的视角。
{"title":"Exploring the dynamic adult hard ticks-camel-pathogens interaction.","authors":"JohnMark O Makwatta, Paul N Ndegwa, Florence A Oyieke, Peter Ahuya, Daniel K Masiga, Merid N Getahun","doi":"10.1128/msphere.00405-24","DOIUrl":"10.1128/msphere.00405-24","url":null,"abstract":"<p><p>The ability of ticks to interact and adapt to different ecologies and hosts determines their vectorial competence for various pathogens; however, ticks-livestock-pathogens interaction studies are limited. With our ticks-hosts-pathogens interface studies, we found 14 species of hard ticks feeding on various livestock. Ticks showed a strong preference for one-humped camels (<i>Camelus dromedarius</i>). The camel nostril was the most preferred predilection site. The most prevalent tick species on camels was <i>Hyalomma rufipes</i>. We found two novel <i>Amblyomma gemma</i> variants which are distinct both morphologically and genetically from previously described <i>Amblyomma gemma</i>. The signature odors from camel breath and body were attractive to adult <i>H. rufipes</i>, demonstrating ticks utilize camel-derived metabolites to find their host. Our research shows that <i>H. rufipes</i> and camel hosts have unique and shared pathogens showing <i>H. rufipes</i>' vector and dromedary camel's reservoir host qualities. Our study unravels the dynamic interactions between hard ticks, pathogens, and host camels that all influence the likelihood of pathogen adaptation and transmission dynamics.</p><p><strong>Importance: </strong>Ticks are obligatory hematophagous arachnids, serving as vectors for a wide array of pathogens that can be transmitted to animals and humans. The ability of ticks to acquire and transmit various pathogens depends on their attraction to quality reservoir hosts and the survival of the pathogens in ticks' gut and other tissues. However, the complex dynamics of tick-pathogen interaction and host-seeking behavior remain understudied. This investigation revealed notable variation in tick preference for domestic animals, with camel being the most preferred host. Moreover, our spatial analysis of tick attachment sites showed nostrils are the most preferred sites by various tick species. Our epidemiology data showed variation in the pathogens harbored by camel (host) and vector (<i>Hyalomma rufipes</i>), demonstrating the camel's efficiency as reservoir host and ticks' vector competence for various pathogens. With our behavioral experiment using <i>H. rufipes</i> and its preferred host's (camel) breath and body signature odors, we identified novel attractants for <i>H. rufipes</i>, thus offering new avenues for combating tick-borne diseases. Overall, our study presents novel insights into how multiple factors shape tick-host-pathogen interaction.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Epub Date: 2024-09-24DOI: 10.1128/msphere.00575-24
Jian Miao, David L Williams, Michael D Kruppa, Brian M Peters
To adapt to various host microenvironments, the human fungal pathogen Candida albicans possesses the capacity to accumulate and store glycogen as an internal carbohydrate source. In the model yeast Saccharomyces cerevisiae, ScGlc7p and ScGac1p are the serine/threonine type 1 protein phosphatase catalytic and regulatory subunits that control glycogen synthesis by altering the phosphorylation state of the glycogen synthase Gsy2p. Despite recent delineation of the glycogen synthesis pathway in C. albicans, the molecular events driving synthase activation are currently undefined. In this study, using a combination of microbiologic and genetic techniques, we determined that the protein encoded by uncharacterized gene C1_01140C, and not the currently annotated C. albicans Gac1p, is the major regulatory subunit involved in glycogen synthesis. C1_01140Cp contains a conserved GVNK motif observed across multiple starch/glycogen-binding proteins in various species, and alanine substitution of each residue in this motif significantly impaired glycogen accumulation in C. albicans. Fluorescent protein tagging and microscopy indicated that C1_01140Cp-GFPy colocalized with CaGlc7p-tdTomato and CaGsy1p-tdTomato accordingly. Co-immunoprecipitation assays further confirmed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Lastly, c1_01140cΔ/Δ exhibited colonization defects in a murine model of vulvovaginal candidiasis. Collectively, our data indicate that uncharacterized C1_01140Cp is the functional ortholog of the PPP1R subunit ScGac1p in C. albicans.IMPORTANCEThe capacity to synthesize glycogen offers microbes metabolic flexibility, including the fungal pathogen Candida albicans. In Saccharomyces cerevisiae, dephosphorylation of glycogen synthase by the ScGlc7p-containing phosphatase is a critical rate-limiting step in glycogen synthesis. Subunits, including ScGac1p, target ScGlc7p to α-1,4-glucosyl primers for efficient ScGsy2p synthase activation. However, this process in C. albicans had not been delineated. Here, we show that the C. albicans genome encodes for two homologous phosphatase-binding subunits, annotated CaGac1p and uncharacterized C1_01140Cp, both containing a GVNK motif required for polysaccharide affinity. Surprisingly, loss of CaGac1p only moderately reduced glycogen accumulation, whereas loss of C1_01140Cp ablated it. Fluorescence microscopy and co-immunoprecipitation approaches revealed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Moreover, C1_01140Cp contributed to fungal fitness at the vaginal mucosa during murine vaginitis. Therefore, this work demonstrates that glycogen synthase regulation is conserved in C. albicans and C1_01140Cp is the functional ortholog of ScGac1p.
{"title":"Glycogen synthase activity in <i>Candida albicans</i> is partly controlled by the functional ortholog of <i>Saccharomyces cerevisiae</i> Gac1p.","authors":"Jian Miao, David L Williams, Michael D Kruppa, Brian M Peters","doi":"10.1128/msphere.00575-24","DOIUrl":"10.1128/msphere.00575-24","url":null,"abstract":"<p><p>To adapt to various host microenvironments, the human fungal pathogen <i>Candida albicans</i> possesses the capacity to accumulate and store glycogen as an internal carbohydrate source. In the model yeast <i>Saccharomyces cerevisiae</i>, <i>Sc</i>Glc7p and <i>Sc</i>Gac1p are the serine/threonine type 1 protein phosphatase catalytic and regulatory subunits that control glycogen synthesis by altering the phosphorylation state of the glycogen synthase Gsy2p. Despite recent delineation of the glycogen synthesis pathway in <i>C. albicans</i>, the molecular events driving synthase activation are currently undefined. In this study, using a combination of microbiologic and genetic techniques, we determined that the protein encoded by uncharacterized gene <i>C1_01140C</i>, and not the currently annotated <i>C. albicans</i> Gac1p, is the major regulatory subunit involved in glycogen synthesis. C1_01140Cp contains a conserved GVNK motif observed across multiple starch/glycogen-binding proteins in various species, and alanine substitution of each residue in this motif significantly impaired glycogen accumulation in <i>C. albicans</i>. Fluorescent protein tagging and microscopy indicated that C1_01140Cp-GFPy colocalized with <i>Ca</i>Glc7p-tdTomato and <i>Ca</i>Gsy1p-tdTomato accordingly. Co-immunoprecipitation assays further confirmed that C1_01140Cp associates with <i>Ca</i>Glc7p and <i>Ca</i>Gsy1p during glycogen synthesis. Lastly, <i>c1_01140c</i>Δ/Δ exhibited colonization defects in a murine model of vulvovaginal candidiasis. Collectively, our data indicate that uncharacterized C1_01140Cp is the functional ortholog of the PPP1R subunit <i>Sc</i>Gac1p in <i>C. albicans</i>.IMPORTANCEThe capacity to synthesize glycogen offers microbes metabolic flexibility, including the fungal pathogen <i>Candida albicans</i>. In <i>Saccharomyces cerevisiae</i>, dephosphorylation of glycogen synthase by the <i>Sc</i>Glc7p-containing phosphatase is a critical rate-limiting step in glycogen synthesis. Subunits, including <i>Sc</i>Gac1p, target <i>Sc</i>Glc7p to α-1,4-glucosyl primers for efficient <i>Sc</i>Gsy2p synthase activation. However, this process in <i>C. albicans</i> had not been delineated. Here, we show that the <i>C. albicans</i> genome encodes for two homologous phosphatase-binding subunits, annotated <i>Ca</i>Gac1p and uncharacterized C1_01140Cp, both containing a GVNK motif required for polysaccharide affinity. Surprisingly, loss of <i>Ca</i>Gac1p only moderately reduced glycogen accumulation, whereas loss of C1_01140Cp ablated it. Fluorescence microscopy and co-immunoprecipitation approaches revealed that C1_01140Cp associates with <i>Ca</i>Glc7p and <i>Ca</i>Gsy1p during glycogen synthesis. Moreover, C1_01140Cp contributed to fungal fitness at the vaginal mucosa during murine vaginitis. Therefore, this work demonstrates that glycogen synthase regulation is conserved in <i>C. albicans</i> and C1_01140Cp is the functional ortholog of <i>Sc</i>Gac1p.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Epub Date: 2024-09-19DOI: 10.1128/msphere.00600-24
Kyle R Allison
Antibiotics save lives but can have unwanted effects on our gut microbes, thereby contributing to disease. A mechanistic understanding of how such microbes respond to antibiotics is hence critical. Recently in mSphere, Nilson et al. investigated the metabolite dependence of antibiotic susceptibility in Bacteroides thetaiotaomicron, an abundant and important member of our gut microbiota (R. Nilson, S. Penumutchu, F. S. Pagano, and P. Belenky, mSphere 9:e00103-24, 2024, https://doi.org/10.1128/msphere.00103-24). Their uncovered findings suggest the possibility of potentiating antibiotics with metabolites to reduce post-antibiotic "blooming" of B. thetaiotaomicron and the associated development of gut symbiosis.
抗生素能拯救生命,但也会对我们的肠道微生物产生不必要的影响,从而导致疾病。因此,从机理上了解这些微生物如何对抗生素做出反应至关重要。最近,Nilson 等人在 mSphere 上研究了 Bacteroides thetaiotaomicron 对抗生素敏感性的代谢物依赖性,Bacteroides thetaiotaomicron 是我们肠道微生物群中丰富而重要的成员(R. Nilson, S. Penumutchu, F. S. Pagano, and P. Belenky, mSphere 9:e00103-24, 2024, https://doi.org/10.1128/msphere.00103-24)。他们的研究结果表明,有可能用代谢物增强抗生素的效力,以减少抗生素后 B. thetaiotaomicron 的 "繁殖 "以及肠道共生的相关发展。
{"title":"Metabolite dependence of antibiotic susceptibility in a gut microbe.","authors":"Kyle R Allison","doi":"10.1128/msphere.00600-24","DOIUrl":"10.1128/msphere.00600-24","url":null,"abstract":"<p><p>Antibiotics save lives but can have unwanted effects on our gut microbes, thereby contributing to disease. A mechanistic understanding of how such microbes respond to antibiotics is hence critical. Recently in <i>mSphere</i>, Nilson et al. investigated the metabolite dependence of antibiotic susceptibility in <i>Bacteroides thetaiotaomicron</i>, an abundant and important member of our gut microbiota (R. Nilson, S. Penumutchu, F. S. Pagano, and P. Belenky, mSphere 9:e00103-24, 2024, https://doi.org/10.1128/msphere.00103-24). Their uncovered findings suggest the possibility of potentiating antibiotics with metabolites to reduce post-antibiotic \"blooming\" of <i>B. thetaiotaomicron</i> and the associated development of gut symbiosis.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discovery of severe acute respiratory syndrome-coronavirus-2-like and Middle East respiratory syndrome-coronavirus-like viruses in Malayan pangolins has raised concerns about their potential role in the spread of zoonotic diseases. Herein, we describe the isolation and whole-genome sequencing of potentially zoonotic two bacterial pathogens from diseased Malaysian pangolins (Manis javanica)-Corynebacterium ulcerans and Erysipelothrix sp. The newly identified species were designated as C. ulcerans P69 and Erysipelothrix sp. P66. C. ulcerans P69 exhibited 99.2% whole-genome nucleotide identity to human bacterial isolate 4940, suggesting that it might have zoonotic potential. Notably, C. ulcerans P69 lacked the diphtheria toxin (tox) gene that is widely used in vaccines to protect humans from corynebacterial infection, which suggests that the current vaccine may be of limited efficacy against this pangolin strain. C. ulcerans P69 also contains other known virulence-associated genes such as pld and exhibits resistance to several antibiotics (erythromycin, clindamycin, penicillin G, gentamicin, tetracycline), which may affect its effective control. Erysipelothrix sp. P66 was closely related to Erysipelothrix sp. strain 2-related strains, exhibiting 98.8% whole-genome nucleotide identity. This bacterium is lethal in mice, and two commercial vaccines failed to protect its challenge, such that it could potentially pose a threat to the swine industry. Overall, this study highlights that, in addition to viruses, pangolins harbor bacteria that may pose a potential threat to humans and domestic animals, and which merit attention.
Importance: This study firstly reports the presence of two potentially zoonotic bacteria, Corynebacterium ulcerans and Erysipelothrix sp., in diseased Malaysian pangolins collected in 2019. The pangolin C. ulcerans is lethal in mice and resists many antibiotics. It clustered with a lethal human strain but lacked the diphtheria toxin gene. Diphtheria toxin is widely used as a vaccine around the world to protect humans from the infection of corynebacteria. The lack of the tox gene suggests that the current vaccine may be of limited efficacy against this pangolin strain. The pangolin Erysipelothrix sp. is the sister clade of Erysipelothrix rhusiopathiae. It is lethal in mice, and two commercial vaccines failed to protect the mice against challenge with the pangolin Erysipelothrix sp., such that this strain could potentially pose a threat to the swine industry. These findings emphasize the potential threat of pangolin bacteria.
{"title":"Identification of <i>Corynebacterium ulcerans</i> and <i>Erysipelothrix</i> sp. in Malayan pangolins-a potential threat to public health?","authors":"Hai Wang, Xiao Wang, Yilin Cao, Yiting Chen, Zanjian Zou, Xingbang Lu, Fen Shan, Jieying Tu, Jianhua Liu, Jiameng Liu, Jiaqi Sa, Niu Zhou, Shi-Ming Peng, Jie-Jian Zou, Xuejuan Shen, Junqiong Zhai, Zujin Chen, Edward C Holmes, Wu Chen, Yongyi Shen","doi":"10.1128/msphere.00551-24","DOIUrl":"10.1128/msphere.00551-24","url":null,"abstract":"<p><p>The discovery of severe acute respiratory syndrome-coronavirus-2-like and Middle East respiratory syndrome-coronavirus-like viruses in Malayan pangolins has raised concerns about their potential role in the spread of zoonotic diseases. Herein, we describe the isolation and whole-genome sequencing of potentially zoonotic two bacterial pathogens from diseased Malaysian pangolins (<i>Manis javanica</i>)-<i>Corynebacterium ulcerans</i> and <i>Erysipelothrix</i> sp. The newly identified species were designated as <i>C. ulcerans</i> P69 and <i>Erysipelothrix</i> sp. P66. <i>C. ulcerans</i> P69 exhibited 99.2% whole-genome nucleotide identity to human bacterial isolate 4940, suggesting that it might have zoonotic potential. Notably, <i>C. ulcerans</i> P69 lacked the diphtheria toxin (<i>tox</i>) gene that is widely used in vaccines to protect humans from corynebacterial infection, which suggests that the current vaccine may be of limited efficacy against this pangolin strain. <i>C. ulcerans</i> P69 also contains other known virulence-associated genes such as <i>pld</i> and exhibits resistance to several antibiotics (erythromycin, clindamycin, penicillin G, gentamicin, tetracycline), which may affect its effective control. <i>Erysipelothrix</i> sp. P66 was closely related to <i>Erysipelothrix</i> sp. strain 2-related strains, exhibiting 98.8% whole-genome nucleotide identity. This bacterium is lethal in mice, and two commercial vaccines failed to protect its challenge, such that it could potentially pose a threat to the swine industry. Overall, this study highlights that, in addition to viruses, pangolins harbor bacteria that may pose a potential threat to humans and domestic animals, and which merit attention.</p><p><strong>Importance: </strong>This study firstly reports the presence of two potentially zoonotic bacteria, <i>Corynebacterium ulcerans</i> and <i>Erysipelothrix</i> sp., in diseased Malaysian pangolins collected in 2019. The pangolin <i>C. ulcerans</i> is lethal in mice and resists many antibiotics. It clustered with a lethal human strain but lacked the diphtheria toxin gene. Diphtheria toxin is widely used as a vaccine around the world to protect humans from the infection of corynebacteria. The lack of the <i>tox</i> gene suggests that the current vaccine may be of limited efficacy against this pangolin strain. The pangolin <i>Erysipelothrix</i> sp. is the sister clade of <i>Erysipelothrix rhusiopathiae</i>. It is lethal in mice, and two commercial vaccines failed to protect the mice against challenge with the pangolin <i>Erysipelothrix</i> sp., such that this strain could potentially pose a threat to the swine industry. These findings emphasize the potential threat of pangolin bacteria.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Epub Date: 2024-09-19DOI: 10.1128/msphere.00595-24
Shannon C David, Oscar Vadas, Irina Glas, Aline Schaub, Beiping Luo, Giovanni D'angelo, Jonathan Paz Montoya, Nir Bluvshtein, Walter Hugentobler, Liviana K Klein, Ghislain Motos, Marie Pohl, Kalliopi Violaki, Athanasios Nenes, Ulrich K Krieger, Silke Stertz, Thomas Peter, Tamar Kohn
{"title":"Correction for David et al., \"Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS\".","authors":"Shannon C David, Oscar Vadas, Irina Glas, Aline Schaub, Beiping Luo, Giovanni D'angelo, Jonathan Paz Montoya, Nir Bluvshtein, Walter Hugentobler, Liviana K Klein, Ghislain Motos, Marie Pohl, Kalliopi Violaki, Athanasios Nenes, Ulrich K Krieger, Silke Stertz, Thomas Peter, Tamar Kohn","doi":"10.1128/msphere.00595-24","DOIUrl":"10.1128/msphere.00595-24","url":null,"abstract":"","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Epub Date: 2024-10-03DOI: 10.1128/msphere.00430-24
Alejandro Gómez-Mejia, Mariano Orlietti, Andrea Tarnutzer, Srikanth Mairpady Shambat, Annelies S Zinkernagel
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
{"title":"Inhibition of <i>Streptococcus pyogenes</i> biofilm by <i>Lactiplantibacillus plantarum</i> and <i>Lacticaseibacillus rhamnosus</i>.","authors":"Alejandro Gómez-Mejia, Mariano Orlietti, Andrea Tarnutzer, Srikanth Mairpady Shambat, Annelies S Zinkernagel","doi":"10.1128/msphere.00430-24","DOIUrl":"10.1128/msphere.00430-24","url":null,"abstract":"<p><p>The human pathobiont <i>Streptococcus pyogenes</i> forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. <i>Lactiplantibacillus plantarum</i> and <i>Lacticaseibacillus rhamnosus</i> are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of <i>L. plantarum</i> and <i>L. rhamnosus</i> cell-free supernatants (LPSN and LRSN, respectively) on <i>S. pyogenes</i> biofilms grown <i>in vitro</i> in supplemented minimal medium. When planktonic or biofilm <i>S. pyogenes</i> were exposed to LPSN or LRSN<i>, S. pyogenes</i> survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that <i>L. plantarum</i> and <i>L. rhamnosus</i> produce glycolipid bioactive compounds that reduce the viability of <i>S. pyogenes</i> in planktonic and biofilm cultures.IMPORTANCE<i>Streptococcus pyogenes</i> infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill <i>S. pyogenes</i> has been documented by previous studies using <i>in vitro</i> settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of <i>S. pyogenes</i>. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
{"title":"Genomic evidence of <i>Escherichia coli</i> gut population diversity translocation in leukemia patients.","authors":"Julie Marin, Violaine Walewski, Thorsten Braun, Samira Dziri, Mélanie Magnan, Erick Denamur, Etienne Carbonnelle, Antoine Bridier-Nahmias","doi":"10.1128/msphere.00530-24","DOIUrl":"10.1128/msphere.00530-24","url":null,"abstract":"<p><p><i>Escherichia coli,</i> a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of <i>E. coli</i> populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, <i>E. coli</i> genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 <i>E. coli</i> isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of <i>E. coli</i> strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of <i>E. coli</i> gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of <i>E. coli</i> extra-intestinal diseases.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Epub Date: 2024-10-08DOI: 10.1128/msphere.00706-24
Arthur S McMillan, Guozhi Zhang, Michael K Dougherty, Sarah K McGill, Ajay S Gulati, Erin S Baker, Casey M Theriot
Recurrent C. difficile infection (rCDI) is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we use longitudinal stool samples collected from patients undergoing FMT to evaluate intra-individual changes in the microbiome, metabolome, and lipidome after successful FMTs relative to their baselines pre-FMT. We show changes in the abundance of many lipids, specifically a decrease in acylcarnitines post-FMT, and a shift from conjugated bile acids pre-FMT to deconjugated secondary bile acids post-FMT. These changes correlate with a decrease in Enterobacteriaceae, which encode carnitine metabolism genes, and an increase in Lachnospiraceae, which encode bile acid altering genes such as bile salt hydrolases (BSHs) and the bile acid-inducible (bai) operon, post-FMT. We also show changes in gut microbe-encoded amino acid biosynthesis genes, of which Enterobacteriaceae was the primary contributor to amino acids C. difficile is auxotrophic for. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT and generate hypotheses that require further experimental validation. This information is meant to help guide the development of new microbiota-focused therapeutics to treat rCDI.IMPORTANCERecurrent C. difficile infection is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant. However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae pre-FMT, which encodes carnitine metabolism genes, and Lachnospiraceae post-FMT, which encodes bile salt hydrolases and baiA genes. There was also a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT, which we hope will help aid in the development of new microbiota-focused therapeutics to treat rCDI.
{"title":"Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent <i>Clostridioides difficile</i> infection.","authors":"Arthur S McMillan, Guozhi Zhang, Michael K Dougherty, Sarah K McGill, Ajay S Gulati, Erin S Baker, Casey M Theriot","doi":"10.1128/msphere.00706-24","DOIUrl":"10.1128/msphere.00706-24","url":null,"abstract":"<p><p>Recurrent <i>C. difficile</i> infection (rCDI) is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we use longitudinal stool samples collected from patients undergoing FMT to evaluate intra-individual changes in the microbiome, metabolome, and lipidome after successful FMTs relative to their baselines pre-FMT. We show changes in the abundance of many lipids, specifically a decrease in acylcarnitines post-FMT, and a shift from conjugated bile acids pre-FMT to deconjugated secondary bile acids post-FMT. These changes correlate with a decrease in Enterobacteriaceae, which encode carnitine metabolism genes, and an increase in Lachnospiraceae, which encode bile acid altering genes such as bile salt hydrolases (BSHs) and the bile acid-inducible (<i>bai</i>) operon, post-FMT. We also show changes in gut microbe-encoded amino acid biosynthesis genes, of which Enterobacteriaceae was the primary contributor to amino acids <i>C. difficile</i> is auxotrophic for. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT and generate hypotheses that require further experimental validation. This information is meant to help guide the development of new microbiota-focused therapeutics to treat rCDI.IMPORTANCERecurrent <i>C. difficile</i> infection is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant. However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae pre-FMT, which encodes carnitine metabolism genes, and Lachnospiraceae post-FMT, which encodes bile salt hydrolases and <i>baiA</i> genes. There was also a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT, which we hope will help aid in the development of new microbiota-focused therapeutics to treat rCDI.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}