Pub Date : 2026-01-27Epub Date: 2025-12-18DOI: 10.1128/msphere.00690-25
Matthew B Lohse, Megan E Garber, Haley Gause, Jenny Y Zhang, Anika Ramachandran, Carrie E Graham, Alexander D Johnson
Candida albicans is a normal resident of the human gut and mucosal microbiomes and also an opportunistic fungal pathogen. It undergoes several morphological transitions, one of which is white-opaque switching, where C. albicans reversibly alternates between two distinct cell types, namely, "white" and "opaque." Each state, which is maintained by a complex transcriptional feedback loop, is heritable through many cell divisions. To date, most research works on interactions between C. albicans and the innate immune system have utilized white cells. In this paper, we examine the response of opaque cells following phagocytosis by murine macrophage cell lines and compare it to the response of white cells. White cells are known to rapidly form hyphae that can rupture macrophages, but we show here that opaque cells continue to proliferate as yeast-form opaque cells within the macrophage. Before phagocytosis, white and opaque cells differ markedly in the mRNAs they express and therefore enter macrophages as two distinct types of cells. We were surprised to observe that, within macrophages, the transcriptional profiles of white and opaque cells became much more similar to each other. This convergence was driven, in part, by the upregulation, in white cells, of a set of genes that were already expressed in opaque cells prior to macrophage exposure. These observations indicate that opaque cells, compared to white cells, are "pre-adapted" for life within host macrophages.IMPORTANCEThe human fungal pathogen Candida albicans undergoes several morphological transitions, one of which is white-opaque switching. Although most research works on interactions between C. albicans and the innate immune system have focused on white cells, opaque cells have been shown to interact with macrophages differently compared to white cells. In this study, we examine the transcriptional response of opaque cells to phagocytosis and compare it to that of white cells. Despite differences in how the two cell types proliferate following phagocytosis, their transcriptional responses strongly overlap, and fewer genes are differentially expressed between white and opaque cells following phagocytosis than observed in media lacking macrophages. Unexpectedly, the responses of both white and opaque cells favor genes that were already upregulated in opaque cells (relative to white cells) before exposure to macrophages; these observations suggest that opaque cells are "pre-adapted" for life within macrophages.
{"title":"Response of <i>Candida albicans</i> white and opaque cells to phagocytosis by macrophages suggests that opaque cells are \"pre-adapted\".","authors":"Matthew B Lohse, Megan E Garber, Haley Gause, Jenny Y Zhang, Anika Ramachandran, Carrie E Graham, Alexander D Johnson","doi":"10.1128/msphere.00690-25","DOIUrl":"10.1128/msphere.00690-25","url":null,"abstract":"<p><p><i>Candida albicans</i> is a normal resident of the human gut and mucosal microbiomes and also an opportunistic fungal pathogen. It undergoes several morphological transitions, one of which is white-opaque switching, where <i>C. albicans</i> reversibly alternates between two distinct cell types, namely, \"white\" and \"opaque.\" Each state, which is maintained by a complex transcriptional feedback loop, is heritable through many cell divisions. To date, most research works on interactions between <i>C. albicans</i> and the innate immune system have utilized white cells. In this paper, we examine the response of opaque cells following phagocytosis by murine macrophage cell lines and compare it to the response of white cells. White cells are known to rapidly form hyphae that can rupture macrophages, but we show here that opaque cells continue to proliferate as yeast-form opaque cells within the macrophage. Before phagocytosis, white and opaque cells differ markedly in the mRNAs they express and therefore enter macrophages as two distinct types of cells. We were surprised to observe that, within macrophages, the transcriptional profiles of white and opaque cells became much more similar to each other. This convergence was driven, in part, by the upregulation, in white cells, of a set of genes that were already expressed in opaque cells prior to macrophage exposure. These observations indicate that opaque cells, compared to white cells, are \"pre-adapted\" for life within host macrophages.IMPORTANCEThe human fungal pathogen <i>Candida albicans</i> undergoes several morphological transitions, one of which is white-opaque switching. Although most research works on interactions between <i>C. albicans</i> and the innate immune system have focused on white cells, opaque cells have been shown to interact with macrophages differently compared to white cells. In this study, we examine the transcriptional response of opaque cells to phagocytosis and compare it to that of white cells. Despite differences in how the two cell types proliferate following phagocytosis, their transcriptional responses strongly overlap, and fewer genes are differentially expressed between white and opaque cells following phagocytosis than observed in media lacking macrophages. Unexpectedly, the responses of both white and opaque cells favor genes that were already upregulated in opaque cells (relative to white cells) before exposure to macrophages; these observations suggest that opaque cells are \"pre-adapted\" for life within macrophages.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0069025"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145775160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27Epub Date: 2025-12-15DOI: 10.1128/msphere.00638-25
Marina R Wylie, Jeremy J Gilbreath, Angela Melton-Celsa, D Scott Merrell
<p><p><i>Helicobacter pylori</i> causes cancer in approximately 1% of infected individuals. A proposed mechanism of <i>H. pylori</i> persistence centers on the ability of the pathogen to form biofilms, yet little is known about specific genetic requirements for this process. Our investigation revealed that during lab passage, <i>H. pylori</i> accumulates genetic changes that impact further phenotypic analyses. Specifically, we first sought to characterize the roles of the flagellar genes, <i>pflA</i> and <i>flgS</i>, in biofilm formation; the <i>flgS</i> mutant strain was biofilm deficient, but the <i>pflA</i> mutant strain was a hyper-biofilm former; however, the <i>pflA</i> mutant strain phenotype was unstable. Analysis and screening of six new <i>pflA</i> mutant strains revealed variable biomass phenotypes. This unexpected result led us to explore how genetic heterogeneity within an <i>H. pylori</i> population may complicate standard mutagenesis processes and the interpretation of downstream phenotypes. Analysis of single colony isolates from multiple wild-type strains similarly yielded different biomass phenotypes despite the expected isogenic nature of these isolates. Genomic sequencing of a subset of these isolates revealed various nucleotide changes. Analysis of some of these changes revealed that mutation of <i>futB</i>, <i>babA</i>, or <i>babB</i> did not affect biofilm formation, while mutation of <i>sabA</i>, which encodes the SabA adhesion, resulted in a significant decrease in <i>H. pylori</i> biofilm formation. Overall, these findings reveal that nucleotide changes that occur during a single passage of <i>H. pylori</i> may impact downstream phenotypic analyses. Moreover, these data emphasize the necessity of genetic confirmation redundancy and/or complementation to conclusively move from correlation to causation when analyzing phenotypes of constructed mutant strains.</p><p><strong>Importance: </strong><i>H. pylori</i> displays a high rate of genetic variability, but many studies still do not utilize independent confirmation or complementation to conclusively demonstrate that mutations of interest are responsible for identified phenotypes. Our attempts to study biofilm formation were stymied by the realization that individual colonies cultured from wild-type strains had numerous genetic changes despite their expected isogenic nature; these changes correlated with phenotypic differences for individual wild-type isolates. Analysis of a subset of these genetic changes revealed that correlation and causation were not always linked. However, constructed mutations and natural variation in <i>sabA</i> both dramatically decreased biofilm formation. Overall, the extensive genetic heterogeneity that exists within individual cells within an <i>H. pylori</i> population may affect phenotypes of interest; this serves to emphasize the necessity of redundant methods of strain construction, sequence confirmation, and/or genetic complementation to co
{"title":"Correlation versus causation: <i>Helicobacter pylori</i> population heterogeneity complicates the identification of mutant strain phenotypes.","authors":"Marina R Wylie, Jeremy J Gilbreath, Angela Melton-Celsa, D Scott Merrell","doi":"10.1128/msphere.00638-25","DOIUrl":"10.1128/msphere.00638-25","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> causes cancer in approximately 1% of infected individuals. A proposed mechanism of <i>H. pylori</i> persistence centers on the ability of the pathogen to form biofilms, yet little is known about specific genetic requirements for this process. Our investigation revealed that during lab passage, <i>H. pylori</i> accumulates genetic changes that impact further phenotypic analyses. Specifically, we first sought to characterize the roles of the flagellar genes, <i>pflA</i> and <i>flgS</i>, in biofilm formation; the <i>flgS</i> mutant strain was biofilm deficient, but the <i>pflA</i> mutant strain was a hyper-biofilm former; however, the <i>pflA</i> mutant strain phenotype was unstable. Analysis and screening of six new <i>pflA</i> mutant strains revealed variable biomass phenotypes. This unexpected result led us to explore how genetic heterogeneity within an <i>H. pylori</i> population may complicate standard mutagenesis processes and the interpretation of downstream phenotypes. Analysis of single colony isolates from multiple wild-type strains similarly yielded different biomass phenotypes despite the expected isogenic nature of these isolates. Genomic sequencing of a subset of these isolates revealed various nucleotide changes. Analysis of some of these changes revealed that mutation of <i>futB</i>, <i>babA</i>, or <i>babB</i> did not affect biofilm formation, while mutation of <i>sabA</i>, which encodes the SabA adhesion, resulted in a significant decrease in <i>H. pylori</i> biofilm formation. Overall, these findings reveal that nucleotide changes that occur during a single passage of <i>H. pylori</i> may impact downstream phenotypic analyses. Moreover, these data emphasize the necessity of genetic confirmation redundancy and/or complementation to conclusively move from correlation to causation when analyzing phenotypes of constructed mutant strains.</p><p><strong>Importance: </strong><i>H. pylori</i> displays a high rate of genetic variability, but many studies still do not utilize independent confirmation or complementation to conclusively demonstrate that mutations of interest are responsible for identified phenotypes. Our attempts to study biofilm formation were stymied by the realization that individual colonies cultured from wild-type strains had numerous genetic changes despite their expected isogenic nature; these changes correlated with phenotypic differences for individual wild-type isolates. Analysis of a subset of these genetic changes revealed that correlation and causation were not always linked. However, constructed mutations and natural variation in <i>sabA</i> both dramatically decreased biofilm formation. Overall, the extensive genetic heterogeneity that exists within individual cells within an <i>H. pylori</i> population may affect phenotypes of interest; this serves to emphasize the necessity of redundant methods of strain construction, sequence confirmation, and/or genetic complementation to co","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0063825"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145757127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27Epub Date: 2025-12-17DOI: 10.1128/msphere.00402-25
Samantha Thompson, A Robert Williams, Veronica Dill, Deven Marshall, Emily Sawyer, Mason Alexander, Lilah Rahn-Lee, Joseph De-Chung Shih
One exciting class of future genetic devices could be those deployed in microbes that join complex microbial environments in the wild. We sought to determine whether genetic parts designed for monoculture are predictable when used in co-culture by testing constitutive Anderson promoters driving the expression of chromoproteins from a plasmid. In Escherichia coli monoculture, a high copy number origin of replication causes stochastic expression regardless of promoter strength, and high constitutive Anderson promoter strength leads to selection for inactivating mutations, resulting in inconsistent chromoprotein expression. Medium- and low-strength constitutive Anderson promoters function more predictably in E. coli monoculture but experience an increase in inactivating mutations when grown in co-culture over many generations with Pseudomonas aeruginosa. Expression from regulated promoters instead of constitutive Anderson promoters can lead to stable expression in a complex wastewater culture. Overall, we show intraspecies selection for inactivating mutations due to a competitive growth advantage for E. coli that do not express the genetic device compared to their peers that retain the functional device. We show additional interspecies selection against the functional device when E. coli is co-cultured with another organism. Together, these two selection pressures create a significant barrier to genetic device function in microbial communities that we overcome by utilizing a regulated E. coli promoter. Future strategies for genetic device design in microorganisms that need to function in a complex microbial environment should focus on regulated promoters and/or strategies that give the microorganism carrying the device a selective or growth advantage.
Importance: First-generation biotechnology focused on genetic devices designed for use in monoculture conditions. One class of next-generation biotechnology devices could be designed to function in complex ecosystems with other organisms, so we sought to create conditions where the genetic device retained function when the organism carrying it is in co-culture with other organisms. We discovered that when the genetic device is a significant resource burden on the organism carrying the device, mutations will be selected for due to intraspecies and interspecies selection pressures, and the device will be rendered non-functional. Therefore, genetic device design for complex ecosystems in next-generation biotechnology needs to balance functionality of the genetic device with the need to reduce resource burden on the organism carrying it.
{"title":"Effects of intraspecies and interspecies competition on genetic device construction and performance.","authors":"Samantha Thompson, A Robert Williams, Veronica Dill, Deven Marshall, Emily Sawyer, Mason Alexander, Lilah Rahn-Lee, Joseph De-Chung Shih","doi":"10.1128/msphere.00402-25","DOIUrl":"10.1128/msphere.00402-25","url":null,"abstract":"<p><p>One exciting class of future genetic devices could be those deployed in microbes that join complex microbial environments in the wild. We sought to determine whether genetic parts designed for monoculture are predictable when used in co-culture by testing constitutive Anderson promoters driving the expression of chromoproteins from a plasmid. In <i>Escherichia coli</i> monoculture, a high copy number origin of replication causes stochastic expression regardless of promoter strength, and high constitutive Anderson promoter strength leads to selection for inactivating mutations, resulting in inconsistent chromoprotein expression. Medium- and low-strength constitutive Anderson promoters function more predictably in <i>E. coli</i> monoculture but experience an increase in inactivating mutations when grown in co-culture over many generations with <i>Pseudomonas aeruginosa</i>. Expression from regulated promoters instead of constitutive Anderson promoters can lead to stable expression in a complex wastewater culture. Overall, we show intraspecies selection for inactivating mutations due to a competitive growth advantage for <i>E. coli</i> that do not express the genetic device compared to their peers that retain the functional device. We show additional interspecies selection against the functional device when <i>E. coli</i> is co-cultured with another organism. Together, these two selection pressures create a significant barrier to genetic device function in microbial communities that we overcome by utilizing a regulated <i>E. coli</i> promoter. Future strategies for genetic device design in microorganisms that need to function in a complex microbial environment should focus on regulated promoters and/or strategies that give the microorganism carrying the device a selective or growth advantage.</p><p><strong>Importance: </strong>First-generation biotechnology focused on genetic devices designed for use in monoculture conditions. One class of next-generation biotechnology devices could be designed to function in complex ecosystems with other organisms, so we sought to create conditions where the genetic device retained function when the organism carrying it is in co-culture with other organisms. We discovered that when the genetic device is a significant resource burden on the organism carrying the device, mutations will be selected for due to intraspecies and interspecies selection pressures, and the device will be rendered non-functional. Therefore, genetic device design for complex ecosystems in next-generation biotechnology needs to balance functionality of the genetic device with the need to reduce resource burden on the organism carrying it.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0040225"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145768363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27Epub Date: 2025-12-16DOI: 10.1128/msphere.00793-25
Patricia J Hare, Juliet R González, Wendy W K Mok
When susceptible bacterial cultures are treated with antibiotics, some cells can survive treatment without heritable resistance, giving rise to susceptible daughter cells in a phenomenon termed antibiotic persistence. Current models of fluoroquinolone (FQ) persistence in stationary-phase cultures posit that post-treatment resuscitation is dependent on double-stranded break (DSB) repair through RecA-mediated homology-directed repair. Previously, we reported that stationary-phase P. aeruginosa does not depend on RecA to persist. In this work, we ask whether P. aeruginosa FQ persisters from stationary-phase cultures suffer DSBs at all. We measured DSB formation in Levofloxacin (LVX)-treated cells recovering from treatment using strains expressing fluorescently labeled DSB-binding protein, Gam. We find that, surprisingly, the majority of P. aeruginosa LVX persisters survive treatment without apparent DSBs. Persisters that have evidence of DSBs take longer until their first division compared to persisters without DSBs. Additionally, the fates of their progenies suggest that persisters may cope with DSBs by repair or damage sequestration. These observations pave the way for mechanistic studies into P. aeruginosa FQ persistence and highlight the need for single-cell tools to track FQ-induced damage.
Importance: Pseudomonas aeruginosa is an opportunistic pathogen of significant clinical interest. When susceptible cultures of P. aeruginosa are treated with fluoroquinolone (FQ) antibiotics, some cells survive treatment and regrow in a phenomenon termed antibiotic persistence. Studies in Escherichia coli and other bacterial species suggest that FQ persisters survive by repairing DNA double-stranded breaks (DSBs) after antibiotic removal. In this study, we show that most stationary-phase P. aeruginosa survive by avoiding DSBs rather than repairing them.
{"title":"Stationary-phase <i>Pseudomonas aeruginosa</i> fluoroquinolone persisters mostly avoid DNA double-stranded breaks.","authors":"Patricia J Hare, Juliet R González, Wendy W K Mok","doi":"10.1128/msphere.00793-25","DOIUrl":"10.1128/msphere.00793-25","url":null,"abstract":"<p><p>When susceptible bacterial cultures are treated with antibiotics, some cells can survive treatment without heritable resistance, giving rise to susceptible daughter cells in a phenomenon termed antibiotic persistence. Current models of fluoroquinolone (FQ) persistence in stationary-phase cultures posit that post-treatment resuscitation is dependent on double-stranded break (DSB) repair through RecA-mediated homology-directed repair. Previously, we reported that stationary-phase <i>P. aeruginosa</i> does not depend on RecA to persist. In this work, we ask whether <i>P. aeruginosa</i> FQ persisters from stationary-phase cultures suffer DSBs at all. We measured DSB formation in Levofloxacin (LVX)-treated cells recovering from treatment using strains expressing fluorescently labeled DSB-binding protein, Gam. We find that, surprisingly, the majority of <i>P. aeruginosa</i> LVX persisters survive treatment without apparent DSBs. Persisters that have evidence of DSBs take longer until their first division compared to persisters without DSBs. Additionally, the fates of their progenies suggest that persisters may cope with DSBs by repair or damage sequestration. These observations pave the way for mechanistic studies into <i>P. aeruginosa</i> FQ persistence and highlight the need for single-cell tools to track FQ-induced damage.</p><p><strong>Importance: </strong><i>Pseudomonas aeruginosa</i> is an opportunistic pathogen of significant clinical interest. When susceptible cultures of <i>P. aeruginosa</i> are treated with fluoroquinolone (FQ) antibiotics, some cells survive treatment and regrow in a phenomenon termed antibiotic persistence. Studies in <i>Escherichia coli</i> and other bacterial species suggest that FQ persisters survive by repairing DNA double-stranded breaks (DSBs) after antibiotic removal. In this study, we show that most stationary-phase <i>P. aeruginosa</i> survive by avoiding DSBs rather than repairing them.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0079325"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145763287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27Epub Date: 2025-12-16DOI: 10.1128/msphere.00657-25
H L Fraser, D A Moustafa, J B Goldberg, S Azimi
Intrastrain genetic and phenotypic heterogeneity of Pseudomonas aeruginosa is a hallmark of chronic lung infections in individuals with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although the coexistence of multiple P. aeruginosa lineages within a single host is well documented, the impact of this heterogeneity on infection microbiogeography remains poorly understood. We previously showed that loss of the lipopolysaccharide (LPS) O-specific antigen (OSA) alters P. aeruginosa aggregate assembly. Since OSA-deficient variants are common in chronic pulmonary infections and associated with increased pathogenesis and immune evasion, we investigated whether intrastrain OSA diversity shapes infection microbiogeography. We constructed mixed populations containing equal ratios of OSA-deficient variants and wild-type (WT) cells and examined aggregate assembly and population structures in a synthetic CF sputum model (SCFM2). To assess OSA heterogeneity in vivo, we used a murine pneumonia model combined with hybridization chain reaction (HCR) RNA-FISH and whole-tissue clearing to visualize spatial organization in the airways. In SCFM2, OSA-deficient variants increased total population size, reduced WT aggregate size, and altered spatial organization. We employed 2-plex HCR RNA-FISH to distinguish WT and OSA-deficient variants in murine lungs. Interestingly, in contrast to in vitro conditions, OSA-deficient cells led to significantly larger WT aggregates in the airways. These findings highlight the role of intrastrain genetic heterogeneity in shaping infection microbiogeography and provide a framework for understanding how population dynamics influence microbial physiology and host-pathogen interactions at the micron scale.IMPORTANCEIntrastrain genetic and phenotypic diversity within Pseudomonas aeruginosa populations is common in chronic pulmonary infections. While this intrastrain heterogeneity is a hallmark of chronic infection, its consequences for the spatial organization of P. aeruginosa within the airways remain unclear. Here, we demonstrate that the loss of O-specific antigen in a subpopulation of P. aeruginosa significantly alters the spatial architecture of P. aeruginosa, without changing the total population size or composition. Using a combination of tissue clearing and hybridization chain reaction RNA-FISH in a murine lung infection model, we mapped the localization of genetically distinct P. aeruginosa variants in mixed populations in vivo. These findings reveal that genetic diversification within a strain can reshape the infection landscape at the micron scale, highlighting the overlooked role of intrastrain dynamics in shaping the microbiogeography of infections and influencing host-pathogen interactions.
{"title":"Whole-tissue imaging reveals intrastrain diversity shapes the spatial organization of <i>Pseudomonas aeruginosa</i> in a murine infection model.","authors":"H L Fraser, D A Moustafa, J B Goldberg, S Azimi","doi":"10.1128/msphere.00657-25","DOIUrl":"10.1128/msphere.00657-25","url":null,"abstract":"<p><p>Intrastrain genetic and phenotypic heterogeneity of <i>Pseudomonas aeruginosa</i> is a hallmark of chronic lung infections in individuals with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although the coexistence of multiple <i>P. aeruginosa</i> lineages within a single host is well documented, the impact of this heterogeneity on infection microbiogeography remains poorly understood. We previously showed that loss of the lipopolysaccharide (LPS) O-specific antigen (OSA) alters <i>P. aeruginosa</i> aggregate assembly. Since OSA-deficient variants are common in chronic pulmonary infections and associated with increased pathogenesis and immune evasion, we investigated whether intrastrain OSA diversity shapes infection microbiogeography. We constructed mixed populations containing equal ratios of OSA-deficient variants and wild-type (WT) cells and examined aggregate assembly and population structures in a synthetic CF sputum model (SCFM2). To assess OSA heterogeneity <i>in vivo</i>, we used a murine pneumonia model combined with hybridization chain reaction (HCR) RNA-FISH and whole-tissue clearing to visualize spatial organization in the airways. In SCFM2, OSA-deficient variants increased total population size, reduced WT aggregate size, and altered spatial organization. We employed 2-plex HCR RNA-FISH to distinguish WT and OSA-deficient variants in murine lungs. Interestingly, in contrast to <i>in vitro</i> conditions, OSA-deficient cells led to significantly larger WT aggregates in the airways. These findings highlight the role of intrastrain genetic heterogeneity in shaping infection microbiogeography and provide a framework for understanding how population dynamics influence microbial physiology and host-pathogen interactions at the micron scale.IMPORTANCEIntrastrain genetic and phenotypic diversity within <i>Pseudomonas aeruginosa</i> populations is common in chronic pulmonary infections. While this intrastrain heterogeneity is a hallmark of chronic infection, its consequences for the spatial organization of <i>P. aeruginosa</i> within the airways remain unclear. Here, we demonstrate that the loss of O-specific antigen in a subpopulation of <i>P. aeruginosa</i> significantly alters the spatial architecture of <i>P. aeruginosa</i>, without changing the total population size or composition. Using a combination of tissue clearing and hybridization chain reaction RNA-FISH in a murine lung infection model, we mapped the localization of genetically distinct <i>P. aeruginosa</i> variants in mixed populations <i>in vivo</i>. These findings reveal that genetic diversification within a strain can reshape the infection landscape at the micron scale, highlighting the overlooked role of intrastrain dynamics in shaping the microbiogeography of infections and influencing host-pathogen interactions.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0065725"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145763274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27Epub Date: 2025-12-15DOI: 10.1128/msphere.00674-25
Eisha Pandey, Shivani Mishra, Aastha Varshney, Saman Habib, Satish Mishra
DNA ligases are a fundamental class of enzymes required for DNA replication and repair. They catalyze the formation of phosphodiester bonds, specifically at single-strand breaks in double-stranded DNA. The nuclear genome of malaria parasites encodes a single DNA ligase that is likely involved in nuclear and organellar DNA replication and repair. DNA ligase I from Plasmodium falciparum (PfLig1) has been biochemically characterized and shown to possess nick-sealing activity. However, its localization and function in the three genome-containing compartments-the nucleus, apicoplast, and mitochondrion-of the malaria parasites remain unknown. Here, we found that Lig1 is located primarily in the nucleus in both human and rodent malaria parasites throughout the parasite life cycle. Furthermore, we detected its presence in organelles via a chromatin immunoprecipitation-PCR assay. Our attempts to disrupt Plasmodium berghei Lig1 (PbLig1) in the blood stages have failed, indicating that the gene is likely essential. Next, we used an Flp/FRT-based conditional mutagenesis system that silences gene function in sporozoites. We demonstrated that PbLig1 is essential for parasite liver-stage development. Sporozoites lacking PbLig1 invade hepatocytes but arrest growth during mid-liver-stage development. PbLig1 cKO parasites undergo limited nuclear division and present a reduced DNA content that fails to increase beyond mid-liver stage of development. These data suggest that Lig1 is an essential enzyme for parasite blood- and liver-stage development.IMPORTANCEUnlike mammalian cells that possess multiple DNA ligases, the malaria parasite's nuclear genome encodes a single DNA ligase. This single DNA ligase is likely involved in both DNA replication and DNA repair. However, the importance of parasite DNA ligase remains largely unknown. Here, we show that Plasmodium Lig1 is primarily found within the nucleus, but it also exhibits a distribution across parasite organelles. Knockout of PbLig1 in sporozoites abolishes parasite liver-stage development, preventing the formation of hepatic merozoites and ultimately blocking the transition from the liver to the blood stage of infection. More specifically, PbLig1 is essential for nuclear division during hepatic schizogony. These findings enhance our understanding of the role of DNA ligase I in malaria parasite liver-stage development.
{"title":"<i>Plasmodium</i> DNA ligase I is essential for parasite blood- and liver-stage development.","authors":"Eisha Pandey, Shivani Mishra, Aastha Varshney, Saman Habib, Satish Mishra","doi":"10.1128/msphere.00674-25","DOIUrl":"10.1128/msphere.00674-25","url":null,"abstract":"<p><p>DNA ligases are a fundamental class of enzymes required for DNA replication and repair. They catalyze the formation of phosphodiester bonds, specifically at single-strand breaks in double-stranded DNA. The nuclear genome of malaria parasites encodes a single DNA ligase that is likely involved in nuclear and organellar DNA replication and repair. DNA ligase I from <i>Plasmodium falciparum</i> (<i>Pf</i>Lig1) has been biochemically characterized and shown to possess nick-sealing activity. However, its localization and function in the three genome-containing compartments-the nucleus, apicoplast, and mitochondrion-of the malaria parasites remain unknown. Here, we found that Lig1 is located primarily in the nucleus in both human and rodent malaria parasites throughout the parasite life cycle. Furthermore, we detected its presence in organelles via a chromatin immunoprecipitation-PCR assay. Our attempts to disrupt <i>Plasmodium berghei</i> Lig1 (<i>Pb</i>Lig1) in the blood stages have failed, indicating that the gene is likely essential. Next, we used an Flp/FRT-based conditional mutagenesis system that silences gene function in sporozoites. We demonstrated that <i>Pb</i>Lig1 is essential for parasite liver-stage development. Sporozoites lacking <i>Pb</i>Lig1 invade hepatocytes but arrest growth during mid-liver-stage development. <i>Pb</i>Lig1 cKO parasites undergo limited nuclear division and present a reduced DNA content that fails to increase beyond mid-liver stage of development. These data suggest that Lig1 is an essential enzyme for parasite blood- and liver-stage development.IMPORTANCEUnlike mammalian cells that possess multiple DNA ligases, the malaria parasite's nuclear genome encodes a single DNA ligase. This single DNA ligase is likely involved in both DNA replication and DNA repair. However, the importance of parasite DNA ligase remains largely unknown. Here, we show that <i>Plasmodium</i> Lig1 is primarily found within the nucleus, but it also exhibits a distribution across parasite organelles. Knockout of <i>Pb</i>Lig1 in sporozoites abolishes parasite liver-stage development, preventing the formation of hepatic merozoites and ultimately blocking the transition from the liver to the blood stage of infection. More specifically, <i>Pb</i>Lig1 is essential for nuclear division during hepatic schizogony. These findings enhance our understanding of the role of DNA ligase I in malaria parasite liver-stage development.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0067425"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145757161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In immunosuppressed humans with oropharyngeal candidiasis (OPC) and in mice with experimental OPC, Candida albicans infection is associated with a bacterial imbalance characterized by significantly reduced oral microbiome diversity and the expansion of enterococcal and streptococcal species, which may exacerbate oral mucosal pathology. In this study, we applied an unbiased genome-wide transcriptomic profiling approach to shed further mechanistic light on the role of indigenous enterococcal communities in mucosal infection in a mouse model of cancer chemotherapy-associated OPC. Transcriptomic profiling of tongue tissues revealed a wide-ranging, barrier-compromising molecular activity of resident enterococci that explains the previously observed attenuation of fungal mucosal invasion with antibiotic treatment in this mouse model. Mechanistically, we validated the pathogenic potential of resident bacteria by showing that enterococci isolated from mice with OPC produce hydrogen peroxide (H2O2) and induce oral epithelial cell death through apoptosis and necrosis in vitro. We also discovered that C. albicans increased enterococcal H2O2 production. These findings uncover a novel mechanism of pathogenic synergy between C. albicans and Enterococcus faecalis, which may be responsible for increased epithelial barrier damage and mucosal invasion by C. albicans hyphae during cancer chemotherapy.
Importance: Chemotherapy-induced mucosal barrier injury and immune suppression increase susceptibility to oropharyngeal candidiasis (OPC), a debilitating fungal infection. Our study uncovers a previously unknown pathogenic interaction between Candida albicans and Enterococcus faecalis, by showing that indigenous enterococci produce H2O2, which contributes to oral epithelial cell death during fungal infection. By integrating transcriptomics with functional assays, we demonstrate that enterococci compromise epithelial integrity independently of fungal burdens, highlighting the role of the bacterial microbiota in driving tissue damage. These findings emphasize the need to consider bacterial-fungal interactions in managing OPC and suggest that targeting the microbial crosstalk could be a promising adjunctive strategy in immunocompromised hosts.
{"title":"<i>Enterococcus faecalis</i> induces H₂O₂-mediated epithelial cell death and enhances <i>Candida albicans</i> virulence in oropharyngeal candidiasis.","authors":"Roberto Vazquez-Munoz, Amit Ranjan, Martinna Bertolini, Angela Thompson, Pegah Mosharaf Ghahfarokhy, Alannah Harnden, Clarissa J Nobile, Takanori Sobue, Paola Vera-Licona, Anna Dongari-Bagtzoglou","doi":"10.1128/msphere.00822-25","DOIUrl":"10.1128/msphere.00822-25","url":null,"abstract":"<p><p>In immunosuppressed humans with oropharyngeal candidiasis (OPC) and in mice with experimental OPC, <i>Candida albicans</i> infection is associated with a bacterial imbalance characterized by significantly reduced oral microbiome diversity and the expansion of enterococcal and streptococcal species, which may exacerbate oral mucosal pathology. In this study, we applied an unbiased genome-wide transcriptomic profiling approach to shed further mechanistic light on the role of indigenous enterococcal communities in mucosal infection in a mouse model of cancer chemotherapy-associated OPC. Transcriptomic profiling of tongue tissues revealed a wide-ranging, barrier-compromising molecular activity of resident enterococci that explains the previously observed attenuation of fungal mucosal invasion with antibiotic treatment in this mouse model. Mechanistically, we validated the pathogenic potential of resident bacteria by showing that enterococci isolated from mice with OPC produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and induce oral epithelial cell death through apoptosis and necrosis <i>in vitro</i>. We also discovered that <i>C. albicans</i> increased enterococcal H<sub>2</sub>O<sub>2</sub> production. These findings uncover a novel mechanism of pathogenic synergy between <i>C. albicans</i> and <i>Enterococcus faecalis,</i> which may be responsible for increased epithelial barrier damage and mucosal invasion by <i>C. albicans</i> hyphae during cancer chemotherapy.</p><p><strong>Importance: </strong>Chemotherapy-induced mucosal barrier injury and immune suppression increase susceptibility to oropharyngeal candidiasis (OPC), a debilitating fungal infection. Our study uncovers a previously unknown pathogenic interaction between <i>Candida albicans</i> and <i>Enterococcus faecalis</i>, by showing that indigenous enterococci produce H<sub>2</sub>O<sub>2</sub>, which contributes to oral epithelial cell death during fungal infection. By integrating transcriptomics with functional assays, we demonstrate that enterococci compromise epithelial integrity independently of fungal burdens, highlighting the role of the bacterial microbiota in driving tissue damage. These findings emphasize the need to consider bacterial-fungal interactions in managing OPC and suggest that targeting the microbial crosstalk could be a promising adjunctive strategy in immunocompromised hosts.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0082225"},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145864092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-26DOI: 10.1128/msphere.00597-25
Kimberley S Ndlovu, Ricardo R Pavan, Jacqueline Corry, Ann C Gregory, Samia Mahamed, Natalia Zotova, Martine Tabala, Pelagie Babakazo, Nicholas T Funderburg, Marcel Yotebieng, Nichole R Klatt, Jesse J Kwiek, Matthew B Sullivan
Recent studies reveal that a suboptimal vaginal microbiome (VMB), including the enrichment of anaerobic bacteria associated with multiple female genital disorders, is linked to adverse pregnancy and birth outcomes in pregnant people. Problematically, however, the majority of the available data, to date, is biased toward highly developed, Global North countries, leaving underrepresented populations like the Democratic Republic of the Congo (DRC) poorly characterized. Here, we investigate the VMB from a cohort of 82 pregnant people living with human immunodeficiency virus (PLWH) on antiretroviral therapy (ART) from the DRC. Specifically, we explore the associations between the VMB via 16S rRNA gene sequencing and maternal peripheral immune factors. Additionally, we compare the VMB of pregnant PLWH-ART from DRC with publicly available VMB data (5 studies, 1861 samples) in a meta-analysis to elucidate the impact of HIV on the VMB. Combined, these analyses revealed the differences in community structure and predicted function of the microbiota between pregnant PLWH-ART and pregnant people without HIV (PWoH). Taxonomically, the VMB of DRC PLWH-ART were enriched for Lactobacillus iners-dominated VMBs (53%) or a diverse, polymicrobial VMB, that is, bacterial vaginosis (BV) (43%). Functional predictions made from these taxa suggested that protein-coupled receptors, amino sugar and nucleotide sugar metabolism, fatty acid metabolism, and polycyclic aromatic hydrocarbon degradation pathways were differentially abundant between the communities. Correlation with host plasma immune factors revealed putative links between some VMB metrics (e.g., alpha diversity and species abundance) that have been linked to adverse pregnancy and birth outcomes.
Importance: Human immunodeficiency virus (HIV) remains prevalent in sub-Saharan Africa, where it has been linked to adverse birth outcomes. Suboptimal vaginal microbiomes (VMBs) have shown similar links. This pilot study fills critical gaps in understanding how HIV interacts with the pregnant VMB in populations underrepresented in microbiome research, like the Democratic Republic of the Congo (DRC). We identified maternal systemic immune factors associated with suboptimal VMBs that have been linked to poor birth outcomes. In a global meta-analysis, we found significant taxonomic and functional differences in the VMBs between pregnant people living with and without HIV, revealing potential biomarkers that increase the risk of adverse birth outcomes. These findings provide crucial insights into VMB features that may influence pregnancy health in PLWH-ART, guiding future research and tailored interventions to support safer pregnancies in the DRC and similar populations.This study is registered with NCT03048669.
{"title":"The vaginal microbiome of pregnant people living with HIV on antiretroviral therapy in the Democratic Republic of Congo: a pilot study and global meta-analysis.","authors":"Kimberley S Ndlovu, Ricardo R Pavan, Jacqueline Corry, Ann C Gregory, Samia Mahamed, Natalia Zotova, Martine Tabala, Pelagie Babakazo, Nicholas T Funderburg, Marcel Yotebieng, Nichole R Klatt, Jesse J Kwiek, Matthew B Sullivan","doi":"10.1128/msphere.00597-25","DOIUrl":"https://doi.org/10.1128/msphere.00597-25","url":null,"abstract":"<p><p>Recent studies reveal that a suboptimal vaginal microbiome (VMB), including the enrichment of anaerobic bacteria associated with multiple female genital disorders, is linked to adverse pregnancy and birth outcomes in pregnant people. Problematically, however, the majority of the available data, to date, is biased toward highly developed, Global North countries, leaving underrepresented populations like the Democratic Republic of the Congo (DRC) poorly characterized. Here, we investigate the VMB from a cohort of 82 pregnant people living with human immunodeficiency virus (PLWH) on antiretroviral therapy (ART) from the DRC. Specifically, we explore the associations between the VMB via 16S rRNA gene sequencing and maternal peripheral immune factors. Additionally, we compare the VMB of pregnant PLWH-ART from DRC with publicly available VMB data (5 studies, 1861 samples) in a meta-analysis to elucidate the impact of HIV on the VMB. Combined, these analyses revealed the differences in community structure and predicted function of the microbiota between pregnant PLWH-ART and pregnant people without HIV (PWoH). Taxonomically, the VMB of DRC PLWH-ART were enriched for <i>Lactobacillus iners-</i>dominated VMBs (53%) or a diverse, polymicrobial VMB, that is, bacterial vaginosis (BV) (43%). Functional predictions made from these taxa suggested that protein-coupled receptors, amino sugar and nucleotide sugar metabolism, fatty acid metabolism, and polycyclic aromatic hydrocarbon degradation pathways were differentially abundant between the communities. Correlation with host plasma immune factors revealed putative links between some VMB metrics (e.g., alpha diversity and species abundance) that have been linked to adverse pregnancy and birth outcomes.</p><p><strong>Importance: </strong>Human immunodeficiency virus (HIV) remains prevalent in sub-Saharan Africa, where it has been linked to adverse birth outcomes. Suboptimal vaginal microbiomes (VMBs) have shown similar links. This pilot study fills critical gaps in understanding how HIV interacts with the pregnant VMB in populations underrepresented in microbiome research, like the Democratic Republic of the Congo (DRC). We identified maternal systemic immune factors associated with suboptimal VMBs that have been linked to poor birth outcomes. In a global meta-analysis, we found significant taxonomic and functional differences in the VMBs between pregnant people living with and without HIV, revealing potential biomarkers that increase the risk of adverse birth outcomes. These findings provide crucial insights into VMB features that may influence pregnancy health in PLWH-ART, guiding future research and tailored interventions to support safer pregnancies in the DRC and similar populations.This study is registered with NCT03048669.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0059725"},"PeriodicalIF":3.1,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-26DOI: 10.1128/msphere.00815-25
Adonis D'Mello, Erin Y Earnhardt, Jessica R Lane, Jennifer L Tipper, Eriel Martínez, Federico I Prokopczuk, Hansol Im, Holly N Roussey, Kevin S Harrod, Carlos J Orihuela, Hervé Tettelin
<p><p><i>Streptococcus pneumoniae</i> (Spn) is typically an asymptomatic colonizer of the nasopharynx, but it also causes pneumonia and disseminated disease affecting various host anatomical sites. To delineate host-pathogen transcriptional interactions during pneumococcal (EF3030) and influenza A (pH1N1) coinfection, we used primary differentiated human bronchial epithelial cells (HBEC-three human donors) in a transwell monolayer model at an air-liquid interface, and a mouse pneumonia model, profiled with multispecies deep RNA-seq and NanoString nCounter as complementary models. Distinct pneumococcal gene expression profiles were observed in the presence and absence of influenza in HBEC infection. Influenza coinfection enabled significantly greater pneumococcal growth and triggered the differential expression of bacterial genes corresponding to multiple metabolic pathways. Notably, a fundamentally altered bacterial metabolic state and a greater nutrient availability were observed when coinfecting with influenza. Downregulation/deletion of sialic acid utilization genes promoted EF3030 proliferation during mono/coinfection with pH1N1 on HBEC. Surprisingly, HBEC transcriptomes were only modestly perturbed by infection with EF3030 alone relative to changes resulting from influenza A infection or coinfection. Influenza-infected HBEC transcriptomes showed significant loss of ciliary function, with changes in host defense, microtubules, and extracellular matrix (ECM). Some of these findings were confirmed in the murine lung infection model. Influenza-mediated changes in the host epithelium transcriptome also contribute to bacterial invasiveness. This included downregulation of genes involved in expressing cilia and increased ECM degradation. Ultimately, we identified novel genes and pathways involved in the dynamics of epithelium-influenza-pneumococcus coinfection, such as EF3030 metabolic regulons (NanR, LacR, etc.) and epithelial protein families (keratins and matrix metalloproteases). We conclude that influenza infection promotes a pneumococcal metabolic shift, allowing for transition from colonization to disseminated disease and an exacerbated breakdown in the epithelium, potentially permitting enhanced EF3030 infection and dissemination.IMPORTANCETransition from pneumococcal colonization to invasive disease is not well understood. Studies have shown that such a transition can occur as a result of influenza A virus (IAV) coinfection. We investigated the pneumococcal (serotype 19F, strain EF3030, and isogenic mutants) and airway epithelial transcriptomes with and without IAV (A/California/07 2009 pH1N1) infection. Pneumococcus and influenza coinfection leads to enhanced bacterial transcriptional programs related to growth, nutrient availability, and energy biosynthesis, suggesting conversion to an invasive phenotype. Influenza-induced secondary EF3030 infection influences human bronchial epithelial cell (HBEC) microtubules and extracellular matrix.
{"title":"Multispecies transcriptomics reveals influenza A virus modulation of <i>Streptococcus pneumoniae</i> EF3030 infection in human lung epithelium and murine lung.","authors":"Adonis D'Mello, Erin Y Earnhardt, Jessica R Lane, Jennifer L Tipper, Eriel Martínez, Federico I Prokopczuk, Hansol Im, Holly N Roussey, Kevin S Harrod, Carlos J Orihuela, Hervé Tettelin","doi":"10.1128/msphere.00815-25","DOIUrl":"https://doi.org/10.1128/msphere.00815-25","url":null,"abstract":"<p><p><i>Streptococcus pneumoniae</i> (Spn) is typically an asymptomatic colonizer of the nasopharynx, but it also causes pneumonia and disseminated disease affecting various host anatomical sites. To delineate host-pathogen transcriptional interactions during pneumococcal (EF3030) and influenza A (pH1N1) coinfection, we used primary differentiated human bronchial epithelial cells (HBEC-three human donors) in a transwell monolayer model at an air-liquid interface, and a mouse pneumonia model, profiled with multispecies deep RNA-seq and NanoString nCounter as complementary models. Distinct pneumococcal gene expression profiles were observed in the presence and absence of influenza in HBEC infection. Influenza coinfection enabled significantly greater pneumococcal growth and triggered the differential expression of bacterial genes corresponding to multiple metabolic pathways. Notably, a fundamentally altered bacterial metabolic state and a greater nutrient availability were observed when coinfecting with influenza. Downregulation/deletion of sialic acid utilization genes promoted EF3030 proliferation during mono/coinfection with pH1N1 on HBEC. Surprisingly, HBEC transcriptomes were only modestly perturbed by infection with EF3030 alone relative to changes resulting from influenza A infection or coinfection. Influenza-infected HBEC transcriptomes showed significant loss of ciliary function, with changes in host defense, microtubules, and extracellular matrix (ECM). Some of these findings were confirmed in the murine lung infection model. Influenza-mediated changes in the host epithelium transcriptome also contribute to bacterial invasiveness. This included downregulation of genes involved in expressing cilia and increased ECM degradation. Ultimately, we identified novel genes and pathways involved in the dynamics of epithelium-influenza-pneumococcus coinfection, such as EF3030 metabolic regulons (NanR, LacR, etc.) and epithelial protein families (keratins and matrix metalloproteases). We conclude that influenza infection promotes a pneumococcal metabolic shift, allowing for transition from colonization to disseminated disease and an exacerbated breakdown in the epithelium, potentially permitting enhanced EF3030 infection and dissemination.IMPORTANCETransition from pneumococcal colonization to invasive disease is not well understood. Studies have shown that such a transition can occur as a result of influenza A virus (IAV) coinfection. We investigated the pneumococcal (serotype 19F, strain EF3030, and isogenic mutants) and airway epithelial transcriptomes with and without IAV (A/California/07 2009 pH1N1) infection. Pneumococcus and influenza coinfection leads to enhanced bacterial transcriptional programs related to growth, nutrient availability, and energy biosynthesis, suggesting conversion to an invasive phenotype. Influenza-induced secondary EF3030 infection influences human bronchial epithelial cell (HBEC) microtubules and extracellular matrix. ","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0081525"},"PeriodicalIF":3.1,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoonotic Onchocerca lupi (Spirurida, Onchocercidae) has attracted the interest of the scientific community worldwide, by causing severe ocular infections in domestic animals (dogs, cats) and can infect wild carnivores (wolves, coyotes), as well as humans. Though recent advancements in scientific knowledge have been gained, gaps still remain about the biology of this filarioid, as well as its genetic structure. Based on mitochondrial genes, two highly divergent genotypes were identified, in the Iberian Peninsula (genotype 2) and Europe, Asia, and the United States (genotype 1), meanwhile only a draft nuclear genome of O. lupi from the United States is available. This study aimed to fill knowledge gaps about the genomic characterization of this filarioid and its Wolbachia endosymbiont. This study described the shotgun sequencing of an adult specimen of O. lupi isolated from a dog living in Portugal using the PacBio long-read sequencing technology. Three distinct genomes, such as the nuclear, mitochondrial, and Wolbachia endosymbiont, were assembled and analyzed. The assembled nuclear genome, Olupi_PT2024, exhibited high contiguity, accuracy, and completeness. Pairwise mitogenome comparative analyses among several Onchocerca species corroborated the high divergence between the two genotypes from Portugal and the USA, although the observed differences remained within the range of intra-species variation. The complete genome of the Wolbachia endosymbiont of O. lupi confirmed its classification within supergroup C and its close phylogenetic relationship with Wolbachia endosymbionts associated with the genus Onchocerca. The data on these three genomes may provide valuable resources for understanding the biology, population genetics, and phylogeography of this parasite.IMPORTANCEOnchocerca lupi, a zoonotic parasite, causes ocular onchocerciasis in both domestic and wild carnivores, as well as humans. Despite recent scientific advances, gaps remain in both the biology and genetic structure of this parasite. To date, two genotypes have been described (genotype 1 distributed in Europe, Asia, and the United States, and genotype 2 circulating in the Iberian Peninsula) based on mitochondrial gene analysis. This study provided three distinct genomes (nuclear, mitochondrial, and Wolbachia endosymbiont) of O. lupi isolated from a dog living in Portugal. Overall, the data presented here corroborate the divergence between the two genotypes and provide new insights into the identification of genes that could serve as novel therapeutic targets for this filarial disease.
人畜共患lupi盘尾丝虫(螺旋藻,盘尾丝虫科)引起家畜(狗、猫)严重的眼部感染,并可感染野生食肉动物(狼、土狼)和人类,引起了全世界科学界的兴趣。尽管最近科学知识取得了进步,但关于这种丝状体的生物学及其遗传结构仍然存在空白。基于线粒体基因,鉴定出两个高度不同的基因型,分别在伊比利亚半岛(基因型2)和欧洲、亚洲和美国(基因型1),同时只获得了来自美国的O. lupi核基因组草图。本研究旨在填补关于该丝状体及其沃尔巴克氏体内共生体基因组特征的知识空白。本研究描述了使用PacBio长读测序技术对生活在葡萄牙的一只狗分离的O. lupi成年标本进行鸟枪测序。组装并分析了三个不同的基因组,如核、线粒体和沃尔巴克氏体内共生体。组装的核基因组Olupi_PT2024具有较高的连续性、准确性和完整性。对几个盘尾丝虫物种的成对有丝分裂基因组比较分析证实了来自葡萄牙和美国的两个基因型之间的高度差异,尽管观察到的差异仍然在种内变异的范围内。lupi O. Wolbachia内共生体的全基因组证实其属于超群C,并与盘尾丝虫属Wolbachia内共生体有密切的系统发育关系。这三个基因组的数据可能为了解该寄生虫的生物学、种群遗传学和系统地理学提供宝贵的资源。lupi盘尾丝虫病是一种人畜共患寄生虫,可在家养和野生食肉动物以及人类中引起眼盘尾丝虫病。尽管最近科学取得了进展,但这种寄生虫的生物学和遗传结构仍然存在空白。迄今为止,根据线粒体基因分析已经描述了两种基因型(基因1型分布于欧洲、亚洲和美国,基因2型流行于伊比利亚半岛)。本研究提供了从生活在葡萄牙的狗身上分离的O. lupi的三个不同的基因组(核、线粒体和沃尔巴克氏体内共生体)。总的来说,这里提出的数据证实了两种基因型之间的差异,并为鉴定可能作为这种丝虫病的新治疗靶点的基因提供了新的见解。
{"title":"Nuclear, mitochondrial, and <i>Wolbachia</i> endosymbiont genomes of <i>Onchocerca lupi</i>, Portugal.","authors":"Maria Stefania Latrofa, Ilenia Urso, Elisabetta Notario, Carmela Gissi, Carla Maia, Marinella Marzano, Graziano Pesole, Domenico Otranto","doi":"10.1128/msphere.00625-25","DOIUrl":"https://doi.org/10.1128/msphere.00625-25","url":null,"abstract":"<p><p>Zoonotic <i>Onchocerca lupi</i> (Spirurida, Onchocercidae) has attracted the interest of the scientific community worldwide, by causing severe ocular infections in domestic animals (dogs, cats) and can infect wild carnivores (wolves, coyotes), as well as humans. Though recent advancements in scientific knowledge have been gained, gaps still remain about the biology of this filarioid, as well as its genetic structure. Based on mitochondrial genes, two highly divergent genotypes were identified, in the Iberian Peninsula (genotype 2) and Europe, Asia, and the United States (genotype 1), meanwhile only a draft nuclear genome of <i>O. lupi</i> from the United States is available. This study aimed to fill knowledge gaps about the genomic characterization of this filarioid and its <i>Wolbachia</i> endosymbiont. This study described the shotgun sequencing of an adult specimen of <i>O. lupi</i> isolated from a dog living in Portugal using the PacBio long-read sequencing technology. Three distinct genomes, such as the nuclear, mitochondrial, and <i>Wolbachia</i> endosymbiont, were assembled and analyzed. The assembled nuclear genome, Olupi_PT2024, exhibited high contiguity, accuracy, and completeness. Pairwise mitogenome comparative analyses among several <i>Onchocerca</i> species corroborated the high divergence between the two genotypes from Portugal and the USA, although the observed differences remained within the range of intra-species variation. The complete genome of the <i>Wolbachia</i> endosymbiont of <i>O. lup</i>i confirmed its classification within supergroup C and its close phylogenetic relationship with <i>Wolbachia</i> endosymbionts associated with the genus <i>Onchocerca</i>. The data on these three genomes may provide valuable resources for understanding the biology, population genetics, and phylogeography of this parasite.IMPORTANCE<i>Onchocerca lupi</i>, a zoonotic parasite, causes ocular onchocerciasis in both domestic and wild carnivores, as well as humans. Despite recent scientific advances, gaps remain in both the biology and genetic structure of this parasite. To date, two genotypes have been described (genotype 1 distributed in Europe, Asia, and the United States, and genotype 2 circulating in the Iberian Peninsula) based on mitochondrial gene analysis. This study provided three distinct genomes (nuclear, mitochondrial, and <i>Wolbachia</i> endosymbiont) of <i>O. lupi</i> isolated from a dog living in Portugal. Overall, the data presented here corroborate the divergence between the two genotypes and provide new insights into the identification of genes that could serve as novel therapeutic targets for this filarial disease.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0062525"},"PeriodicalIF":3.1,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}